
Council For Innovative Research International Journal of Research in Education Methodology

www.cirworld.com Volume 1, No.1 June 2012

14 | P a g e w w w . i j r e m . c o m

Comprehensive Study of Object-Oriented Analysis and
Design by using the Concept of OOSE

Sanjeev Kumar Dhiman
Assistant Professor

Deptt of CSE
SRMIET, Distt. Ambala

Haryana, India

Amit Sharma
Assistant Professor

Deptt of CSE
SRMIET, Distt. Ambala

Haryana, India

Amanbir Kaur
Assistant Professor

Deptt of CSE
GIEMT,Amritsar

Punjab, India

ABSTRACT

Object Oriented Analysis is concerned with specifying system
requirements and analyzing the application domain. Object
Oriented Design is concerned with implementing the
requirements identified during OOA in the application domain.
In this paper, the brief overview of object oriented concepts, its
analysis and designing concepts, their strategies with its various
advantages and disadvantages have been discussed.

1. INTRODUCTION
Object-oriented analysis and design (OOAD) is a software
engineering approach that models a system as a group of
interacting objects. Each object represents some entity of
interest in the system being modeled, and is characterized by its

class, its state (data elements), and its behavior. Various models
can be created to show the static structure, dynamic behavior,
and run-time deployment of these collaborating objects. There
are a number of different notations for representing these
models, such as the Unified Modeling Language (UML).Object-
oriented analysis (OOA) applies object-modeling techniques to
analyze the functional requirements for a system. Object-
oriented design (OOD) elaborates the analysis models to

produce implementation specifications. OOA focuses
on what the system does, OOD on how the system does it .An
object contains encapsulated data and procedures grouped
together to represent an entity. The 'object interface', how the
object can be interacted with, is also defined. An object-oriented
program is described by the interaction of these objects. Object-
oriented design is the discipline of defining the objects and their
interactions to solve a problem that was identified and
documented during object-oriented analysis.

2 OBJECT ORIENTED CONCEPTS

The five basic concepts of object-oriented design are the
implementation level features that are built into the
programming language. These features are often referred to by
these common names:

(a) Object/Class: A tight coupling or association of data
structures with the methods or functions that act on the data.
This is called a class, or object (an object is created based on a

class). Each object serves a separate function. It is defined by its
properties, what it is and what it can do. An object can be part

Of a class, which is a set of objects that are similar?

(b) Information hiding: The ability to protect some components
of the object from external entities. This is realized by language

keywords to enable a variable to be declared as private or
protected to the owning class

(c) Inheritance: The ability for a class to extend or override

functionality of another class. The so-called subclass has a
whole section that is derived (inherited) from the super class and
then it has its own set of functions and data.

(d) Interface: The ability to defer the implementation of a
method. The ability to define the functions or methods

signatures without implementing them.

(e) Polymorphism: The ability to replace an object with its sub
objects. The ability of an object-variable to contain, not only that
object, but also all of its sub objects.

Fig 1: Object Oriented Software Engineering

3. OBJECT ORIENTED DESIGN

3.1 Input (sources) for object-oriented design

The input for object-oriented design is provided by the output of
object-oriented analysis. Realize that an output artifact does not
need to be completely developed to serve as input of object-
oriented design; analysis and design may occur in parallel, and
in practice the results of one activity can feed the other in a short
feedback cycle through an iterative process. Both analysis and
design can be performed incrementally, and the artifacts can be

continuously grown instead of completely developed in one
shot. Typical input artifacts for object-oriented design are:

3.1.1 Conceptual model: Conceptual model is the result of
object-oriented analysis .it captures concepts in the problem
domain. The conceptual model is explicitly chosen to be
independent of implementation details, such as concurrency or
data storage.

3.1.2 Use case: Use case is a description of sequences of events
that, taken together, lead to a system doing something useful.

Each use case provides one or more scenarios that convey how
the system should interact with the users called actors to achieve
a specific business goal or function. Use case actors may be end
users or other systems. In many circumstances use cases are
further elaborated into use case diagrams. Use case diagrams are
used to identify the actor (users or other systems) and the
processes they perform.

3.1.3 System Sequence Diagram: System Sequence diagram

(SSD) is a picture that shows, for a particular scenario of a use
case, the events that external actors generate, their order, and
possible inter-system events.

3.1.4 User interface documentations (if applicable): Document
that shows and describes the look and feel of the end product's
user interface. It is not mandatory to have this, but it helps to
visualize the end-product and therefore helps the designer.

http://www.cirworld.com/
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Functional_requirements
http://en.wikipedia.org/wiki/Object-oriented_design
http://en.wikipedia.org/wiki/Object-oriented_design

Council For Innovative Research International Journal of Research in Education Methodology

www.cirworld.com Volume 1, No.1 June 2012

15 | P a g e w w w . i j r e m . c o m

3.1.5 Relational data model (if applicable) A data model is an
abstract model that describes how data is represented and used.
If an object database is not used, the relational data model
should usually be created before the design, since the strategy
chosen for object-relational mapping is an output of the OO

design process. However, it is possible to develop the relational
data model and the object-oriented design artifacts in parallel,
and the growth of an artifact can stimulate the refinement of
other artifacts.

3.2 Output (deliverables) of object-oriented design

3.2.1 Sequence Diagrams: Extend the System Sequence
Diagram to add specific objects that handle the system events. A
sequence diagram shows, as parallel vertical lines, different

processes or objects that live simultaneously, and, as horizontal
arrows, the messages exchanged between them, in the order in
which they occur.

3.2.2 Class diagram: A class diagram is a type of static structure
UML diagram that describes the structure of a system by
showing the system's classes, their attributes, and the
relationships between the classes. The messages and classes
identified through the development of the sequence diagrams

can serve as input to the automatic generation of the global class
diagram of the system.

4. DESIGNING CONCEPTS

Defining objects, creating class diagram from conceptual
diagram: Usually map entity to class. Identifying attributes.

Fig2: Object oriented design

4.1 Use design patterns (if applicable) A design pattern is not a
finished design, it is a description of a solution to a common

problem, in a context [1]. The main advantage of using a design
pattern is that it can be reused in multiple applications. It can
also be thought of as a template for how to solve a problem that
can be used in many different situations and/or applications.
Object-oriented design patterns typically show relationships and
interactions between classes or objects, without specifying the
final application classes or objects that are involved.

4.2Define application framework (if applicable): Application
framework is a term usually used to refer to a set of libraries or

classes that are used to implement the standard structure of an
application for a specific operating system. By bundling a large
amount of reusable code into a framework, much time is saved
for the developer, since he/she is saved the task of rewriting
large amounts of standard code for each new application that is
developed.

4.3 Identify persistent objects/data (if applicable): Identify
objects that have to last longer than a single runtime of the

application. If a relational design the object relation mapping.
Identify and define remote objects (if applicable).

5.DESIGNPRINCIPLESAND STRATEGIES

5.1 Dependency injection: The basic idea is that if an object
depends upon having an instance of some other object then the

needed object is "injected" into the dependent object; for
example, being passed a database connection as an argument to
the constructor instead of creating one internally.

5.2Acyclic dependencies principle: The dependency graph of
packages or components should have no cycles. This is also
referred to as having a directed acyclic graph[2]. For example,
package C depends on package B, which depends on package A.
If package A also depended on package C, then you would have

a cycle.

5.3Composite reuse principle: Favor polymorphic composition
of objects over inheritance [1].

6. BENEFITS OF OOAD

Many benefits are cited for OOAD, often to an unrealistic
degree. Some of these potential benefits are:

6.1 Faster Development: OOAD has long been touted as leading
to faster development. Many of the claims of potentially reduced

development time are correct in principle, if a bit overstated.

6.2 Reuse of previous work: This is the benefit cited most
commonly in literature, particularly in business periodicals.
OOAD produces software modules that can be plugged into one
another, which allows creation of new programs. However, such
reuse does not come easily. It takes planning and investment.

6.3 Increased Quality: Increases in quality are largely a by-
product of this program reuse. If 90% of a new application

consists of proven, existing components, then only the
remaining 10% of the code has to be tested from scratch. That
observation implies an order-of-magnitude reduction in defects.

6.4 Modular Architecture: Object-oriented systems have a
natural structure for modular design: objects, subsystems,
framework, and so on. Thus, OOD systems are easier to modify.
OOD systems can be altered in fundamental ways without ever
breaking up since changes are neatly encapsulated. However,
nothing in OOD guarantees or requires that the code produced

will be modular. The same level of care in design and
implementation is required to produce a modular structure in
OOD, as it is for any form of software development.

6.5Client/Server Applications: By their very nature, client/server
applications involve transmission of messages back and forth
over a network, and the object-message paradigm of OOAD
meshes well with the physical and conceptual architecture of
client/server applications.

6.6 Better Mapping to the Problem Domain: This is a clear
winner for OOAD, particularly when the project maps to the real
world. Whether objects represent customers, machinery, banks,
sensors or pieces of paper, they can provide a clean, self-
contained implication which fits naturally into human thought
processes.

6.7 Maintainable: OOP methods make code more maintainable.
Identifying the source of errors becomes easier because objects

are self-contained (encapsulation). The principles of good OOP
design contribute to an application’s maintainability.

6.8 Reusable: Because objects contain both data and functions
that act on data, objects can be thought of as self-contained
“boxes” (encapsulation).This feature makes it easy to reuse code

OO DESIGN PATTERN

SYSTEM DESIGN

S/W ARCHITECTURE

OBJECT DESIGN

OBJECT DESCRIPTION OBJECT
INTERACTION

http://www.cirworld.com/

Council For Innovative Research International Journal of Research in Education Methodology

www.cirworld.com Volume 1, No.1 June 2012

16 | P a g e w w w . i j r e m . c o m

in new systems. Messages provide a predefined interface to an
object’s data and functionality. If you know this interface, you
can make use on an object many context you want. OOP
languages, such as C# and VB.Net, make it easy to
expand on the functionality of these “boxes” (polymorphism and

inheritance), even if you don’t know much about their
implementation (again, encapsulation).

6.9 Scalable: Object oriented applications are more scalable then
their structure programming roots. As an object’s interface
provides a roadmap for reusing the object in new software, it
also provides you with all the information you need to replace
the object without affecting other code. This makes it easy to
replace old and aging code with faster algorithms and newer

technology.

7. DISADVANTAGE OF OOAD

The challenges of OOP exists mainly in the conversion of legacy
systems that are built in structured programming languages.
The technical challenge is not as big as the actual design
challenge.The goal when converting is to minimize the effect the
stuctural systems on the OO nature of the new design, and this
can sometimes be difficult.

8. CONCLUSION
Object oriented analysis and design elaborates the analysis

models to produce implementataion specifications .ooad
focuses on what the system does, ood on how the system does.

This paper describes it serve as input and output of object
oriented design. Analysis and design may occur in parallel in
parallel and in practice the results of one activity can feed.Both
these process can be performed incrementally. Benefits of ooad
often to an unrealistic degree.

9. REFERENCES
[1] Grady Booch."Object-oriented Analysis and Design with
Applications,3rdedition":http://www.informit.com/store/product

.aspx?isbn=020189551X Addison-Wesley 2007.
[2] Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley. 1995. ISBN 0-201-63361-2.

[3] What Is Object-Oriented Design?. Object Mentor.
http://www.objectmentor.com/omSolutions/oops_what.html.
Retrieved 2007-07-03.

[4] Harmon, Paul and David A. Taylor. Objects in Action:
Commercial Applications of Object-Oriented Technology,
Addision-Wesely Publishing, Reading, MA, 1993.

[5] Hayes, Frank. "The Reality of Object Reuse," Computer
World, May 6, 1996, p. 62.

[6] Love, Tom. "Seven Deadly Sins of Object-Oriented
Development," Journal of Information Systems Management,
Summer1995,pp.84-86.

[7] Lucas, Henry. Managing Information Services, McMillan
Publishing Company, New York, NY, 1989.

http://www.cirworld.com/

