
ISSN:2278-7690 International Journal Of Research In Educational Methodology
Wwwcirworld.com Council For Innovative Research Vol.2, No.1 December 2012

72 | P a g e w w w . c i r w o r l d . c o m

Modeling Real Time Scheduler in OOAD Using UML

R.Sathiyaraj
Assistant Professor

Dept. of CSE
MITS,Madanapalle

N.Sudhakar Yadav
Assistant Professor

Dept. of CSE
MITS,Madanapalle

M.Prabhakar
Assistant Professor

Dept. of CSE
MITS,Madanapalle

ABSTRACT: Object-oriented analysis and design

(OOA&D) tools support object analysis and design
technologies and commonly use Unified Modeling
Language (UML) notation with a variety of methodologies
to assist in the creation of highly modular and reusable
software. In this Paper, a brief overview of modeling of an
application Real Time Scheduler using UML notations and
their strategies with various problems has been discussed.

Keywords;- Object Oriented Analysis and

Design(OOAD),Unified Modeling Language(UML),Real
Time Scheduler, Rational rose.

1. INTRODUCTION
Object-oriented analysis and design (OOA&D) tools
support object analysis and design technologies and
commonly use Unified Modeling Language (UML)
notation with a variety of methodologies to assist in the
creation of highly modular and reusable software. Object-
oriented analysis and design (OOA&D) tools support
object analysis and design technologies and commonly use
Unified Modeling Language (UML) notation with a

variety of methodologies to assist in the creation of highly
modular and reusable software. Many methodologies have
been proposed for object oriented software development.
A methodology usually includes:

 Notation: graphical representations of classes
and their relationships and interactions.

 Process: suggested set of steps to carry out for
transforming requirements into a working
system.

 Tools: software for drawings and

documentation.

1.1 History of UML

In October 1994, Rumbaugh joined Booch's company
(Rational Software Corporation) to unify the Booch and
OMT methods. A draft was released in October 1995, and
then called the Unified Method. In 1995 Jacobson also
joined the unification effort, merging in the OOSE method.
Preliminary documents for the Unified Modeling

Language (UML) were released during 1996. The UML
Version 1.0 definition was finalized in January 1997,
including the work of the

UML Partners consortium. UML 1.1 was adopted by the

Object Management Group (OMG) in November 1997.
OMG is an open membership, not-for-profit consortium
that produces and maintains computer industry

specifications for interoperable enterprise applications.
Revisions to the UML specification through Version 1.5
were released in March 2003. OMG is upgrading UML to
Version 2.0. Adopted in late 2003 and posted on OMG's
website labeled "UML 2.0 Final Adopted Specification’.
Beginning with UML 2.0, the UML Specification was split
into specifications: Infrastructure and Superstructure.
The UML infrastructure specification defines the

foundational language constructs required for UML 2.1.1.
It is complemented by UML Superstructure, which
defines the user level constructs required for UML 2.1.1.
The two complementary specifications constitute a
complete specification for the UML 2 modeling
language.UML 2.1.2 has been released on November
2007. UML 2.2 has been released on February 2009. A
complete specification for the UML 2 modeling language,

UML 2.3 has been released on May 2010.

UML Unified Modeling Language (UML) is a

standardized general-purpose modeling language in the
field of software engineering. The standard is managed,
and was created by, the Object Management Group. UML
includes a set of graphic notation techniques to create
visual models of software-intensive systems. UML
combines techniques from data modeling (entity
relationship diagrams), business modeling (work flows),
object modeling, and component modeling. It can be used
with all processes, throughout the software development

life cycle, and across different implementation
technologies.UML has synthesized the notations of the
Booch method, the Object-modeling technique (OMT) and
Object-oriented software engineering (OOSE) by fusing
them into a single, common and widely usable modeling
language. The UML diagrams are:

 Use Case Diagrams
 Class Diagrams
 Sequence Diagrams
 Collaboration Diagrams

 State Diagrams
 Activity Diagrams
 Component Diagrams
 Deployment Diagrams

ISSN:2278-7690 International Journal Of Research In Educational Methodology
Wwwcirworld.com Council For Innovative Research Vol.2, No.1 December 2012

72 | P a g e w w w . c i r w o r l d . c o m

Fig 1: Architectural View Model of UML diagrams

2. MODELING AN APPLICATION

WITH UML DIAGRAMS
It is important to distinguish between the UML model and

the set of diagrams of a system. A diagram is a partial
graphic representation of a system's model. The model also
contains documentation that drives the model elements and
diagrams (such as written use cases).
UML diagrams represent two different views of a system
model:
1. Static (or structural) view: emphasizes the static
structure of the system using objects, attributes, operations

and relationships. The structural view includes class
diagrams and composite structure diagrams.
2. Dynamic (or behavioral) view: emphasizes the dynamic
behavior of the system by showing collaborations among
objects and changes to the internal states of objects. This
view includes sequence diagrams, activity diagrams and
state machine diagrams.
Modeling an application Real Time Scheduler for a system

using IBM Rational Rose, where the time constraint is
very much important when compared to other type of
system. The system requests the user to check the deadline
for arriving tasks. The system compares the deadlines and
allocates the process. It also changes the process states.

2.1 Diagrams overview
UML 2.2 has 14 types of diagrams divided into two
categories. Seven diagram types represent structural
information, and the other seven represent general types of
behavior, including four that represent different aspects of
interactions.UML does not restrict UML element types to a
certain diagram type. In general, every UML element may
appear on almost all types of diagrams; this flexibility has
been partially restricted in UML 2.0. UML profiles may

define additional diagram types or extend existing
diagrams with additional notations.

2.1.1 Behavior diagrams
Behavior diagrams emphasize what must happen in the
system being modeled. Since behavior diagrams illustrate
the behavior of a system, they are used extensively to
describe the functionality of software systems.

2.1.1.1 Use Case Diagram
A use case diagram is a graph of actors, a set of use cases
enclosed by a system boundary, communication
(participation) associations between the actors and the use

cases, and generalization among the use cases. The
functionality of a system is described in a number of

different use cases, each of which represents a specific
flow of events in the system.
This use case start the actor to place set of processes with
certain tasks. The system requests the resources required.
The system requests the user to check the deadline for
arriving tasks. The system compares the deadlines and
allocates the process. It also changes the process status.

2.1.1.2 Activity diagram

An activity diagram is a variation or special case of state
machine. The purpose of an activity diagram is to provide
a view of flows and what is going on inside a use case or
among several use cases. It is similar to a state chart
diagram, where a token represents an operation. An
activity is shown as a round box, containing the name of
operation.

places set of process

check deadline for arriving tasks

compare deadline and allocate
process

change process states

resources required

Operating system

execute the tasks

User application

Fig 2: Use case diagram

ISSN:2278-7690 International Journal Of Research In Educational Methodology
Wwwcirworld.com Council For Innovative Research Vol.2, No.1 December 2012

73 | P a g e w w w . c i r w o r l d . c o m

2.1.2 Structure diagrams
Structure diagrams emphasize the things that must be

present in the system being modeled. Since structure
diagrams represent the structure, they are used extensively
in documenting the software architecture of software
systems.

2.1.2.1 Class diagram
A class diagram is a collection of static modeling
elements, such as classes and their relationships, connected
as a graph to each other and to their contents. A class is
drawn as a rectangle with three compartments separated by
horizontal lines. The top compartment holds the class
name, middle compartment holds the attributes, and the

bottom compartment holds the list of operations.

 Start

place set

of process

resource

allocation

execute the first

process(p1) arrived

process

(p2) arrived

move p1 to waitstate

and release p2

process p3

arrived

p2 continue

execution

p2

completed

move p1 to

runstate

p1

completed

move p3 to

runstate

p3

cmpleted

execute p3

process p3

completed

move p2 to

runstate

process(p2)

completed

mov(p1) to

runstate

p2 execution

derived

process p3

arrived

p3 execution

derived

process p1

completed

process p2

resumed

process p2

completed

process p3

resumed

p3

completed

End

3: Activity diagram

Fig 4: Representation of Class diagram

ISSN:2278-7690 International Journal Of Research In Educational Methodology
Wwwcirworld.com Council For Innovative Research Vol.2, No.1 December 2012

74 | P a g e w w w . c i r w o r l d . c o m

2.1.3 Interaction diagrams
Interaction diagrams, a subset of behavior diagrams,
emphasize the flow of control and data among the things in

the system being modeled:

2.1.3.1 Sequence diagram
A sequence diagram shows an interaction arranged in a
time sequence. The horizontal line represents different

objects. The vertical line represents the object life time,
which is the object’s existence during the interaction. An
object is shown as a box at the top of a dashed vertical
line. It is an alternative flow to understand the overall flow
of the control of the program.

Fig 5: Class Diagram

ISSN:2278-7690 International Journal Of Research In Educational Methodology
Wwwcirworld.com Council For Innovative Research Vol.2, No.1 December 2012

75 | P a g e w w w . c i r w o r l d . c o m

2.1.3.2 Collaboration d

ResourcesOS Process1 Process2 Process3 Processor

checkout required resourses

allocate resourses

Release process

Release process

Process execution

Process arrived

Check deadline

move to wait state

Release process

Process execution

Process arrived

Check deadlines

Not allowed

Process completion

move to run state

Process completion

Release Process

Process execution

Process completion

Fig 6: Sequence Diagram

ISSN:2278-7690 International Journal Of Research In Educational Methodology
Wwwcirworld.com Council For Innovative Research Vol.2, No.1 December 2012

76 | P a g e w w w . c i r w o r l d . c o m

A collaboration diagram represents a collaboration, which
is a set of objects, related in a particular context, and
interaction, which is a set of messages exchanged among
the objects within the collaboration to achieve a desired

outcome. The sequence is indicated by numbering the
messages.

3. BENEFITS OF UML AND OOAD
 UML breaks the complex system into discrete pieces

that can be understood easily.

 Complex system can be understood by the disparate
developers who are working on

 different platforms.

 UML model is not a system or platform specific. It

unifies all disparate developers under one roof.

 Promotes better understanding of user requirements

 Leads cleaner design

 Design flexibility

 Decomposition of the system is consistent

 Facilitates data abstraction & information hiding

 Software reuse

 Easy maintenance

 Implementation flexibility

4. CONCLUSION
Object oriented analysis and design elaborates the analysis
models to produce implementation specifications.OOAD
focuses on what the system does, OOD on how the system
does. In this paper, we have modeled an application by
implementing the UML diagrams. In the future, we plan to
work on more detailed guidance for requirements
modeling and develop a demo version of Real Time

Scheduler system for demonstrating the power of UML
and model-based development approach.

5. REFERENCES
[1] Fowler, M., 2003. UML Distilled: A Brief Guide to

the Standard Object Modeling Language. 3rd
Edn.Addison-Wesley Professional, Essex, UK.,

ISBN- 10: 0321193687, pp: 208

[2] Rumbaugh, J., I. Jacobson and G. Booch, 1999. The
Unified Modeling Language Reference Manual.
1st Edn., Addison-Wesley Professional, Reading,

Mass.,ISBN-10: 020130998X, pp: 550.
[3] UML Specifications,

http://www.omg.org/technology/documents/modeling
_spec_catalog.htm#UML.

[4] What Is Object-Oriented Design?.Object Mentor.
http://www.objectmentor.com/omSolutions/oops_wha
t.html.Retrieved 2012-11-10.

[5] Grady Booch,”Object Oriented Analysis and Design

with Applications”, 3rdedition”
http://www.informit.com.

[6] Evans, A.S., 1998. Reasoning with UML class
diagrams. Proceedings of the 2nd IEEE Workshop
on Industrial Strength Formal Specification
Techniques, Oct. 21-23, IEEE Xplore Press, Boca
Raton, FL., pp: 102-113.
DOI:10.1109/WIFT.1998.766304

[7] Hayes, Frank. "The Reality of Object Reuse,"
Computer World, May 6, 1996, p. 62.

OS Resourc

es

Process

1

Process

2

Process

3

Process

or

5: Process execution

7: Check deadline

12: Check deadlines

10: Process execution

18: Process execution

1: checkout required resourses

2: allocate resourses

3: Release process

4: Release process

8: move to wait state

15: move to run state

16: Process completion

6: Process arrived9: Release process 11: Process arrived

14: Process completion

19: Process completion

13: Not allowed

17: Release Process

Fig 7: Collaboration Diagram

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML
http://www.objectmentor.com/omSolutions/oops_what.html.Retrieved%202012-11-10
http://www.objectmentor.com/omSolutions/oops_what.html.Retrieved%202012-11-10
http://www.informit.com/

