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ABSTRACT

The object of this work is to use functions of a generalized complex variable to solve the problems of fluid dynamics and
elasticity theory. In this paper, we obtain Cauchy-Riemann conditions, generalized Laplace equation and the generalized
Poisson formula for such functions.
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INTRODUCTION

The generalized complex numbers are divided into types such as elliptic, hyperbolic and parabolic complex numbers [1].
This means the following: let a generalized complex number be in this form z = x + py, p?> = —8, + p6;, where 6,, 6, are
real numbers. Then mentioned numbers are divided into types depending on 6, and 6.

2
e IfD= 94—1 — 0y < 0, such generalized complex numbers refer to the elliptic type,

o IfD=%_ 0, > 0 we have the hyperbolic type, and

e IfD= %1 — 89 = 0, we have the parabolic type.

)

oS

If it is set that 6, = 1,8; = 0, we obtain usual complex numbers. If 8, = —1,0; = 0, we obtain double numbers, and dual
numbers if 6, = 8; = 0.

In this paper, we consider the theory of analytical functions f(z) = u(x,y) + pv(x,y) of the generalized complex variable
z = X + py, satisfying a set of Cauchy-Riemann equations

uy + 01vy = vy, u, + 0gvy, =0, (1)
which is essentially equivalent to Laplace equation
1
Au = E(Gouxx —01uy, + uyy) =0. 2
Similarly, for the imaginary part of the function v(x,y) = Im f(z) we get

1
Av = 7Y (OOVXX —01vyy + vyy) =0. 3)

THE EQUIVALENCE OF THE CAUCHY - RIEMANN CONDITIONS AND % =0
CONDITION

Suppose we are given a function f(z) = u(x,y) + pv(x,y). x and y variables can be easily expressed by z = x + py and
Z=x+ 0,y —py

01— 5
.

T 8,-2p 0,—2p

-1 1
= Z —
% 0,—2p +91—2p ¢

where p? = —8, + p8;. Therefore, the function f(z) can be formally considered as a function of two variables z and z. Let
find % For this purpose we should consider differential operators

3 1 2 2
WO [(91 R D)o — 5], (4)

a 1 a a
52 ol [—P&+a' ®)

with the following property

o (ﬂ) ps 0 (ﬂ) ,(p,g=012,..).

azp \9z9) ~ 879 \azP
Therefore next form operators are uniquely determined

ap+a 1 ] 9 1P [ 919
- =ﬁ[(61_p)___] [—p—-l—— :
azP 974 (61—2p)Pta ax dy ox  dy

In particular, for p = q = 1 we obtain

9% 1 92 92 92 92 1 a 92 9%
9207 (6,—2p)? [_p(el - p) 67 + paxay + (91 - p) dy dx - F - E(eo ﬁ - 61 dx dy + m) (6)

62
where D == — @,,.
4
In case of p = q = 2, the generalized biharmonic operator can be written as

()

9* 1 ( 2 0% 9% 2 9* 9% 9%
= (08 — 2008; o=+ (07 + 200) —— — 260, =+ )
022972 16D2 \ "0 gx* 0%1 9x3 9y + (81 +26)) 9x2 dy? 1oxay3 + ay*

It follows from here that for 8, = 1,08, = 0 values a simple biharmonic operator is inferred

AN WP
922072 16 \ax* ax2ay? = ayt)’

Herez = x+1iy,Z=x—iyand p?> = =6, + p8; = —1,i.e p = i.
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Theorem. Cauchy-Riemann conditions are equivalent to % =0.

a a 1 du av du av 1 du av du av  ov\] _
If P 0, then FEARr T [—p (E + pa) + 3y + pa = [54_ 90& -p (5 + 6, pol 5)] = 0. Therefore Cauchy-
Riemann conditions are satisfied
du v v

ax " lax oy’

In general case, fAB f(z)dz integral depends on the shape of the path (where z = x + py, p?> = —8, + p8;). We should

determine conditions when the integral is independent of the path shape. The answer to this question is in the theorem
below.

Cauchy theorem. Let f(z) be a generalized analytical function in a simply connected domain Q. Then the contour integral
of this function along any closed piecewise-smooth contour L, lying completely inside Q, is equal to zero.

Proof. As the function f(z) = u(x,y) + pv(x,y) is analytical in Q domain we have

§, f@dz=§ ulxy)dx—0Bov(xy)dy ++pg vixy)dx+(uGy) +0veoy))dy = = [, (55 +8057) dxdy ++p fI; (55+
010vox—0vdydxdy=2p—01Gdfozdxdy.

It follows from Cauchy-Riemann conditions that % = 0. This condition and u, v, u,vy, uy, v, functions continuity are enough
to make integrals vanish.

CAUCHY-RIEMANN CONDITIONS IN POLAR COORDINATES

We should move from algebraic form of the generalized complex number z = x + py, p?> = —8, + p8; to its exponential
trigonometric form.

2= |z1e(3)° = |2][T(g) + pS(@)],

where
8, . i .
e ([(COS\/—Dcp—Ni_Dsmv—Dcp)+pﬁ51nv—D¢],D<0
91 8
e( 2 +p)(p > T(GO: 91' (p) + pS(QO: ell (p) . [(1 L 71@) + p(p] 4 D=0 (9)
0 . 3
\ [(cosh VDo — 575 sinh \/ﬁcp) +p5sinh \/5(p] ,D>0
Particularly, for 8, = 1,8; = 0 we have: p? = —1,D = —1; from here we can obtain Euler's formula e'® = cos ¢ + isin @.
Now, taking into account a connection formula of a point in the plane between Cartesian and the generalized coordinates,
we can write

x = rT(0y,0;, ), y = rS(8, 01, @), where r? = |z|? = z-Z = x? + 8;xy + 0,y2.
Some calculations are necessary in the future. Suppose

01
Z=X+py= re(-7+0)e.
01_ . 3 ) - " . .
Let: Z= re(z p)“’ and z-Z = r2. Using calculation formulas of partial derivatives for a composite function of two variables
we should find from two last equations r? = x? + 0;xy + 8y? =z Z,

z _ 1 (-Z+p)o
a2 3252(2)’

> — p(01—-2p)g = (61—2p)g 99
Z=e z,1=2z(0, —2p)e'\“1 —.
(6, p) 97
[¢] [¢]
From here 22 = Mle(—%ﬂa)@, = le(‘71+P)(P, rmeD="%_ 8.
0z 4D r 0z 2 4

In order to write down Cauchy-Riemann conditions in polar coordinates, we should introduce next differential operator

ar 2D roe

[E]
o _oro 3_‘Pi_le(—71+p)w(5 otp1d)
0z 0z Or 0z 0@ 2

Then Cauchy-Riemann conditions can be written in the form % = 0, and equivalent to the following system
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Ju, 8:110u, 810v _
ar ' 2Drde  Drae (10)
av 110u 61 10v

dr Drag ZDratp_

. du 10v adv 10u
Particularly, for 6, = 1,6, = 0 we have e o rag

du du

Further, the system (10) can be rewritten in compact form. To do so we solve the system (10) with respect to e

8, _%odv O
2Dr 1 Dr d¢ 2Dr 0, v 1 av
A= 2Dr| _ = Aoy = - 21 T, - 7
O R e TR A 2orar T o2 a¢’
Dr dr  2Dr de Dr
1 _ 8 0v
Ao = Drog | _av_ 8 ov
g—:)_ 0 gv 6y ov “or 2Drae’
dr  2Dr de
A Ay
du _ 37\:_ 610v , 19v du _ ﬁ_ rav 61 dv
ar A 2dr rde'dp A ar 29¢
I . . v dv
In a similar manner, solving the system (10) with regard to o ag V€ have
ov _ 0; du 1 du dv _  Drdu 0; du
ar  28pdr Brag’ d¢ By or 28,09

9%u 1du 1 9%u
a2 " rar Dr? A2 11
a2v 10dv 1 9%v ( )
arZ " rar Dr? ap?

0% i
where D = Tl — 0. Let consider some examples

EXAMPLES

Example 1. Show that u(x,y;xo, Vo) =ln% function (where r is the distance between (x,y) and (xq,yp) points in a

generalized plane R?, i.e r = J(x —x0)% 4+ 0;(x — x0)(y — yo) + 0py?2)) is harmonic in any domain of the generalized plane
RZ, not containing (xo,y,) point.

Solution. For the convenience of computing the distance between points we represent the distance in the next form
r? = (x —x9)% + 8; (x — x0)(y — yo) + 8oy*.
From here

i~ 2(x—x0)+61 (y—yo) ¥ el(X—X0)+290(y—Yo), r _a D(y=yo)* _ D&=x)G—v0) 2

= D(x—xg)?
X 2r Ty 2r XX r3 1 Xy r3 vy r3 .

Then for u(x,y; X, ¥) = In % function we have

2
- Iy - Iy - Iyx I Ty - Txy I—TIxIy
Uy = —?,uy = —?,uxx = —r—z, llxy = _r—z and uyy =

Substituting found values of the derivatives u,,,u,, and uy, in Laplace equation we obtain

1< 20%u 0’u  9%u

1 1
Au=-—7v 90@‘%@"‘@) =E(Gorxx =011y "'ryy);_

1 1 11-D 11 1 1
——(0gr2 —0;1yry, +r2)==—-"———=(-D)=—=-—=0
4D(0X %y Y)rz 4Dr r 4Dr2( ) '

at all points (x,y) of the generalized plane R?, except one point (xo,y,), since
Borx — O1Tyy + 1y = —%, BorZ — 011y + 17 = —D.

By this means, u = ln% function is the solution to Laplace equation in the generalized plane R?, except (xq,y,) point where
the function turns to +oo.

Example 2. A solution to Dirichlet problem for the generalized Laplace equation.

Solution. Let consider the interior boundary value problem for Laplace equation with Dirichlet boundary condition
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1 d%u 0 d%u +62u
T 4D\ %9x2  loxay = ay?

Au

in domain Q = {(x,y)|x? + 8;xy + 8,y% < 1} with borders T:x? + 8;xy + 8,y% = 1; where 8, 8, are real control parameters.
2
Here D = 51— 8, < 0,p? = —8; + po;.

Dirichlet problem. Find a function u(x,y) in Q domain satisfying the following conditions:

u(x,y) € C(Q) n C2(Q), 12)
1 9%u 92u 92u
Au:E(egﬁ_ 1Bxay+ﬁ)=0’(x'y)e~ﬂ (13)
u(x,y) Ir =f(@),0 < @ < 2m (14)
where f(¢) is a prescribed function; Assume that f(¢) € C1(I"),
f(0) = f(2m).

In & domain we turn to the generalized polar coordinates
X= rT(eOr 61: (P), Yis rs(e()r 61: (P)

Then the equation (13) in the generalized polar coordinates is as follows (see eq. (11))

Zu u 2
Lo S . (15)

a2 " rar Dr? A2

The solution u(x,y) = u(rT(q)),rS((p)) = {(r, @) = u(r, @) of the equation (15) we will search in the form of two functions
multiplication

u(r, ) = R() - ®(vV-Dep) # 0B Q (16)
Substituting the expected form of the solution (16) in the equation (15), and separating the variables, we obtain

. R' () R(@ _ o (VDo) _

R TTRO = T o(De) T

It follows that the function R(r) must be found by solving the equation below
r?R" (r) + rR'(r) — AR(r) = 0, a7

and we obtain an eigenproblem for &(v—Dg¢) function
o (V=De) + Ab(v=Dep) =0,
®(V=Dg) = ®(V=De¢ + 2m).

Here the periodicity condition of the function fb(\/—D(p) is a consequence of the frequency of the desired solution u(r, ¢) in

the angular variable with period of 2m. This is only possible if A = —Dn? and nv=D is an integer. Then a general solution of
the differential equation (18) is determined as

<I>(\/—_D(p) =a, cos(n\/—_Dq)) + b, sin(n\/—_Dtp),

where a, and b, are arbitrary constants.

(18)

Equation (17) has two linearly independent solutions at A = —Dn? (where D < 0)
Ri(r) = 170", Ry(r) = r Y01

Since we seek particular solutions of this equation (17) at A = —Dn? in the form of a power function R(r) = r*,k = const.
Substituting this function in equation (17) we can establish that the exponent k is determined from the equation

k% = —Dn?, i.e k = +V/—Dn.

Solution of the inner Dirichlet problem should be limited in the considered domain at r = 0. Therefore, from found two
solutions should be taken only one

R,(r) = rV-Dn,
Thus, according to (16) the partial solutions of the equation (15) can be written as
u(r, @) = rV=bn [an cos(nv/=De) + b, sin(n\/—_Dcp)].
Because of linearity and uniformity of the equation (15) a composition of particular solutions

u(r, @) = a;“ + Y0 rV=bn [an cos(nvV=D¢g) + b, sin(nmcp)], (29)
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will also satisfy this equation.

Hence, the series (19) inside Q domain is a harmonic function. It is known from a general course that the series (19)
converges uniformly on Q. Then, satisfying the series (19) with the boundary condition (14) we have

u(r, @)|,=1 = (@) or f(p) = 370 + 221 [a, cos(nvV=D¢) + b, sin(nvV—De)]. (20)

The series (20) represents a transformation into Fourier series of f(¢) function in [0,2n] interval. Then a, and b,
coefficients are determined by the following formulas

a, = %f()zﬂ f(¢) cos(nV—Deg)de,n =0,1,2, ..., (1)
b, = % 02" f(¢) sin(nvV=Deg) dep,n = 1,2, ... (22)

Theorem. If a function f(¢) € C1[0,2n], and f(0) = f(2m), then there exists an ambiguous solution to the Dirichlet problem
in Q domain, which is defined by the series (19).

Poisson formula. Let transform the series (19) with regard to expressions (21) and (22):

2n
u(r, @) = zif f(t)dt +

o

21
Z J. f(t) cos(n\/—t) dt cos(n\/—cp) ++ f f(t) sm(n\/—t) dt sm(m/_cp) T[f f(dt +
0

2m

ff(t)z ‘/_“[Cos(n\/_t) cos(n\/—cp)+ sm(m/—t) sm(n\/_(p)]dt—

0
=1 [1 +23%, rVPn cosn/—D(t — q))] dt (23)

Providing generalized Euler formula (9), we have
zV=Dn = (V=Dngiv-Dnw _ V-Dn [cos(n\/—Dm) + isin(n\/—Dw)], w=t—q.

Find series’ sum

1+2 rV=Dn cos (m/—D(t — cp)) =1+2 V=D cosnw =

n=1 n=1
=-1+ 2Rezm 270 = 1 4 2Re— =
n=0 1-— Z\/__D
- 2—2rV"D cos V=Dw _ 1—r2V-D
51t 1-2rV=D cos V=Dw+r2¥=D ~ 1-2rV=D cos V=D w+r2V-D (24)
Then substituting (24) in (23) we find a formula
1 (2m 1—r2V-D
u(r, (P) T 2n fo f(t) 1-2rV=D cos V=D (t—¢)+r2V-D dit (25)
which is called Poisson formula.
Example 3. Evaluate an integral [ P, (x)e® sin bx dx.
2
Solution. In case that D = ﬁ — 0y < 0 formula (9) can be rewritten in the next form
eP* =1](0y,01,%x) + pK(8y,01,%) = e 5 [(cosv Dx — 5 sinV—- x) + pF51n \/—Dx]. (26)

Then [J(x) dx + p [ K(x) dx = % + C; + pC,. From here

[160 dx = g11G) + KG) + €1, [ KG) dx = =] + G
since p=0; —pand p-p = 8,. We can rewrite last integral as

ez sin xdx——Cez
I V-

Here 92_1 =a, V=D =bwu 6, =a? +b% Hence

e® (a sin bx—b cos bx)

e® sinbxdx =
f aZ_H)Z

+C.

We have following from the exponent decomposition (26):
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@)

J® = —gK(x), K® =](x) + 6;K(x).
We apply these relations:
0o f Kx)dx = —-J(x) + C,

8y [ xK(x) dx = K(x) + (—x + 2—;) Jx) + C.

Next we replace parameters 8,, 8, by parameters a and b, and we obtain:

2a

axX o1 —
xe® sinbxdx = -
f aZ+bZ

% [sin bx — (x ) (b cosbx — asin bx)] + C.
Now it is very easy to evaluate the given integral by using obtained results. Integration by parts leads to the depression of
n degree under the integral. Indeed, we have

e (asin bx—b cos bx e® (asin bx—b cos bx _1 [e™ (asin bx—b cos bx
a2+b? a2+b? aZ+b?

[x"e®* sinbxdx = [ x" d[
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