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ABSTRACT 

The object of this work is to use functions of a generalized complex variable to solve the problems of fluid dynamics and 
elasticity theory. In this paper, we obtain Cauchy-Riemann conditions, generalized Laplace equation and the generalized 
Poisson formula for such functions. 
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INTRODUCTION  

The generalized complex numbers are divided into types such as elliptic, hyperbolic and parabolic complex numbers [1]. 

This means the following: let a generalized complex number be in this form 𝑧 = 𝑥 + 𝑝𝑦, 𝑝2 = −𝜃0 + 𝑝𝜃1, where 𝜃0 , 𝜃1 are 

real numbers. Then mentioned numbers are divided into types depending on  𝜃0 and  𝜃1.   

 If D =
θ1

2

4
− θ0 < 0, such generalized complex numbers refer to the elliptic type,      

 If D =
θ1

2

4
− θ0 > 0 we have the hyperbolic type, and 

 If D =
θ1

2

4
− θ0 = 0, we have the parabolic type. 

If it is set that θ0 = 1, θ1 = 0, we obtain usual complex numbers. If θ0 = −1, θ1 = 0, we obtain double numbers, and dual 

numbers if θ0 = θ1 = 0. 

In this paper, we consider the theory of analytical functions   f z = u x, y + pv x, y  of the generalized complex variable 

z = x + py, satisfying a set of Cauchy-Riemann equations  

ux + θ1vx = vy , uy + θ0vx = 0,                                                                      (1) 

which is essentially equivalent to Laplace equation 

 Δu =
1

−4D
 θ0uxx − θ1uxy + uyy  = 0.                                                                  (2) 

Similarly, for the imaginary part of the function v x, y = Im f z  we get 

Δv =
1

−4D
 θ0vxx − θ1vxy + vyy  = 0.                                                                  (3) 

THE EQUIVALENCE OF THE CAUCHY - RIEMANN CONDITIONS AND  
𝛛𝐟

𝛛𝐳 
= 𝟎 

CONDITION 

Suppose we are given a function f z = u x, y + pv x, y . x and y variables can be easily expressed by z = x + py  and 

z = x + θ1y − py 

x =
θ1−p

θ1−2p
z −

p

θ1−2p
z , 

y =
−1

θ1−2p
z +

1

θ1−2p
z , 

where p2 = −θ0 + pθ1. Therefore, the function f z  can be formally considered as a function of two variables z and z . Let 

find 
∂f

∂z 
. For this purpose we should consider differential operators  

∂

∂z
=

1

θ1−2p
  θ1 − p 

∂

∂x
−

∂

∂y
 ,                                                                       (4) 

∂

∂z 
=

1

θ1−2p
 −p

∂

∂x
+

∂

∂y
 ,                                                                           (5) 

with the following property  

∂p

∂zp  
∂q

∂z q =
∂q

∂z q  
∂p

∂zp ,  p, q = 0,1,2, … . 

Therefore next form operators are uniquely determined  

∂p +q

∂zp ∂z q =
1

 θ1−2p p +q   θ1 − p 
∂

∂x
−

∂

∂y
 

p
 −p

∂

∂x
+

∂

∂y
 

q
. 

In particular, for p = q = 1 we obtain 

∂2

∂z ∂z 
=

1

 θ1−2p 2  −p θ1 − p 
∂2

∂x2 + p
∂2

∂x ∂y
+  θ1 − p 

∂2

∂y ∂x
−

∂2

∂y2 =
1

−4D
 θ0

∂2

∂x2 − θ1
∂2

∂x ∂y
+

∂2

∂y2                    (6) 

where D =
θ1

2

4
− θ0. 

In case of p = q = 2,  the generalized biharmonic operator can be written as  

∂4

∂z2 ∂z 2 =
1

16D2  θ0
2 ∂4

∂x4 − 2θ0θ1
∂4

∂x3 ∂y
+  θ1

2 + 2θ0 
∂4

∂x2 ∂y2 − 2θ1
∂4

∂x ∂y3 +
∂4

∂y4                                     (7) 

It follows from here that for θ0 = 1, θ1 = 0 values a simple biharmonic operator is inferred  

∂4

∂z2 ∂z 2 =
1

16
 

∂4

∂x4 + 2
∂4

∂x2 ∂y2 +
∂4

∂y4 . 

Here z = x + iy, z = x − iy and p2 = −θ0 + pθ1 = −1, i.e p = i. 
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Theorem. Cauchy-Riemann conditions are equivalent to 
∂

∂z 
= 0.  

If 
∂

∂z 
= 0, then 

∂

∂z 
=

1

θ1−2p
 −p  

∂u

∂x
+ p

∂v

∂x
 +

∂u

∂y
+ p

∂v

∂y
 =

1

θ1−2p
 
∂u

∂y
+ θ0

∂v

∂x
− p  

∂u

∂x
+ θ1

∂v

∂x
−

∂v

∂y
  ≡ 0. Therefore Cauchy-

Riemann conditions are satisfied  

∂u

∂x
+ θ1

∂v

∂x
=

∂v

∂y
, 

∂u

∂y
+ θ0

∂v

∂x
= 0. 

In general case,  f z dz
AB

 integral depends on the shape of the path (where z = x + py, p2 = −θ0 + pθ1). We should 

determine conditions when the integral is independent of the path shape. The answer to this question is in the theorem 
below.   

Cauchy theorem. Let f z  be a generalized analytical function in a simply connected domain Ω. Then the contour integral 

of this function along any closed piecewise-smooth contour L, lying completely inside Ω, is equal to zero.   

Proof. As the function f z = u x, y + pv x, y  is analytical in Ω domain we have  

 f z dz
L

=  u x, y dx − θ0v x, y dy +
L

+ p  v x, y dx +  u x, y + θ1v x, y  dy
L

= −  
∂u

∂y
+ θ0

∂v

∂x
 dxdy

G
+ +p   

∂u

∂x
+

G

θ1∂v∂x−∂v∂ydxdy=2p−θ1G∂f∂zdxdy. 

It follows from Cauchy-Riemann conditions that 
∂f

∂z 
= 0. This condition and u, v, uxvx , uy , vy  functions continuity are enough 

to make integrals vanish.   

CAUCHY-RIEMANN CONDITIONS IN POLAR COORDINATES  

We should move from algebraic form of the generalized complex number z = x + py, p2 = −θ0 + pθ1 to its exponential 

trigonometric form.  

z =  z e
 −

θ1
2

+p φ
=  z  T φ + pS φ  , 

where  

e
 −

θ1
2

+p φ
= T θ0, θ1 , φ + pS θ0, θ1 , φ =  

 
 
 

 
   cos  −Dφ −

θ1

2 −D
sin  −Dφ + p

1

 −D
sin  −Dφ , D < 0

  1 −
θ1

2
φ + pφ , D = 0

  cosh  Dφ −
θ1

2 D
sinh  Dφ + p

1

 D
sinh  Dφ , D > 0

                   (9) 

Particularly, for θ0 = 1, θ1 = 0 we have: p2 = −1, D = −1; from here we can obtain Euler’s formula eiφ = cos φ + i sin φ. 

Now,  taking into account a connection formula of a point in the plane between Cartesian and the generalized coordinates, 
we can write  

x = rT θ0, θ1 , φ , y = rS θ0, θ1 , φ , where r2 =  z 2 = z ∙ z = x2 + θ1xy + θ0y2. 

Some calculations are necessary in the future. Suppose  

z = x + py = re
 −

θ1
2

+p φ
. 

Let: z = re
 
θ1
2

−p φ
 and z ∙ z = r2. Using calculation formulas of partial derivatives for a composite function of two variables 

we should find from two last equations r2 = x2 + θ1xy + θ0y2 = z ∙ z , 

2r
∂r

∂z
= z, 

∂r

∂z 
=

z

2r
=

1

2
e

 −
θ1
2

+p φ
, 

𝑧 = 𝑒 𝜃1−2𝑝 𝜑𝑧, 1 = 𝑧 𝜃1 − 2𝑝 𝑒 𝜃1−2𝑝 𝜑 𝜕𝜑

𝜕𝑧 
. 

From here  
∂φ

∂z 
=

θ1−2p

4D

1

r
e

 −
θ1
2

+p φ
, 

∂r

∂z 
=

1

2
e

 −
θ1
2

+p φ
, где D =

θ1
2

4
− θ0. 

In order to write down Cauchy-Riemann conditions in polar coordinates, we should introduce next differential operator  

∂

∂z 
=

∂r

∂z 

∂

∂r
+

∂φ

∂z 

∂

∂φ
=

1

2
e

 −
θ1
2

+p φ
 

∂

∂r
+

θ1−2p

2D

1

r

∂

∂φ
 . 

Then Cauchy-Riemann conditions can be written in the form 
∂f

∂z 
= 0, and equivalent to the following system  
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∂u

∂r
+

θ1

2D

1

r

∂u

∂φ
+

θ0

D

1

r

∂v

∂φ
= 0,

∂v

∂r
−

1

D

1

r

∂u

∂φ
−

θ1

2D

1

r

∂v

∂φ
= 0.

                                                                        (10) 

Particularly, for θ0 = 1, θ1 = 0 we have 
∂u

∂r
=

1

r

∂v

∂φ
, 

∂v

∂r
= −

1

r

∂u

∂φ
. 

Further, the system (10) can be rewritten in compact form. To do so we solve the system (10) with respect to 
∂u

∂r
,
∂u

∂φ
 

Δ =  
1

θ1

2Dr

0
1

Dr

 =
1

Dr
, Δ∂u

∂r

=  
−

θ0

Dr

∂v

∂φ

θ1

2Dr

∂v

∂r
−

θ1

2Dr

∂v

∂φ

1

Dr

 = −
θ1

2Dr

∂v

∂r
+

1

Dr2

∂v

∂φ
, 

Δ∂u

∂φ

=  
1 −

θ0

Dr

∂v

∂φ

0
∂v

∂r
−

θ1

2Dr

∂v

∂φ

 =
∂v

∂r
−

θ1

2Dr

∂v

∂φ
, 

∂u

∂r
=

Δ∂u
∂r

Δ
= −

θ1

2

∂v

∂r
+

1

r

∂v

∂φ
, 

∂u

∂φ
=

Δ∂u
∂φ

Δ
= Dr

∂v

∂r
−

θ1

2

∂v

∂φ
. 

In a similar manner, solving the system (10) with regard to 
∂v

∂r
,
∂v

∂φ
 we have  

∂v

∂r
= −

θ1

2θ0

∂u

∂r
−

1

θ0r

∂u

∂φ
, 

∂v

∂φ
= −

Dr

θ0

∂u

∂r
−

θ1

2θ0

∂u

∂φ
. 

Essentially, these equations are equivalent to Laplace equation  

∂2u

∂r2 +
1

r

∂u

∂r
−

1

Dr2

∂2u

∂φ2 = 0,

∂2v

∂r2 +
1

r

∂v

∂r
−

1

Dr2

∂2v

∂φ2 = 0,
                                                                         (11) 

where D =
θ1

2

4
− θ0. Let consider some examples 

EXAMPLES 

Example 1. Show that u x, y; x0 , y0 = ln
1

r
 function (where r is the distance between  x, y  and  x0 , y0  points in a 

generalized plane R2, i.e r =   x − x0 2 + θ1 x − x0  y − y0 + θ0y2)) is harmonic in any domain of the generalized plane 

R2, not containing  x0 , y0  point. 

Solution.  For the convenience of computing the distance between points we represent the distance in the next form  

r2 =  x − x0 2 + θ1 x − x0  y − y0 + θ0y2. 

From here  

rx =
2 x−x0 +θ1 y−y0 

2r
, ry =

θ1 x−x0 +2θ0 y−y0 

2r
, rxx = −

D y−y0 2

r3 , rxy =
D x−x0  y−y0 

r3 , ryy = −
D x−x0 2

r3 .  

Then for u x, y; x0 , y0 = ln
1

r
, function we have 

ux = −
rx

r
, uy = −

ry

r
, uxx = −

rxx r−rx
2

r2 , uxy = −
rxy r−rx ry

r2  and uyy = −
ryy r−ry

2

r2 . 

Substituting found values of the derivatives uxx , uxy  and uyy  in Laplace equation we obtain 

Δu = −
1

4D
 θ0

∂2u

∂x2
− θ1

∂2u

∂x ∂y
+

∂2u

∂y2
 =

1

4D
 θ0rxx − θ1rxy + ryy  

1

r
− 

−
1

4D
 θ0rx

2 − θ1rxry + ry
2 

1

r2 =
1

4D

1

r

−D

r
−

1

4D

1

r2
 −D =

1

4r2 −
1

4r2 ≡ 0, 

at all points  x, y  of the generalized plane R2, except one point  x0 , y0 , since  

θ0rxx − θ1rxy + ryy = −
D

r
,  θ0rx

2 − θ1rxry + ry
2 = −D. 

By this means, u = ln
1

r
 function is the solution to Laplace equation in the generalized plane R2, except  x0 , y0   point where 

the function turns to +∞.    

Example 2. A solution to Dirichlet problem for the generalized Laplace equation.  

Solution. Let consider the interior boundary value problem for Laplace equation with Dirichlet boundary condition  
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Δu =
1

−4D
 θ0

∂2u

∂x2
− θ1

∂2u

∂x ∂y
+

∂2u

∂y2
 = 0 

in domain Ω = {(x, y)|x2 + θ1xy + θ0y2 < 1} with borders Γ: x2 + θ1xy + θ0y2 = 1; where θ0 , θ1 are real control parameters. 

Here D =
θ1

2

4
− θ0 < 0, p2 = −θ0 + pθ1. 

Dirichlet problem.  Find a function u x, y  in Ω domain satisfying the following conditions: 

u x, y ∈ C Ω  ∩ C2 Ω ,                                                                                (12) 

Δu =
1

−4D
 θ0

∂2u

∂x2
− θ1

∂2u

∂x ∂y
+

∂2u

∂y2
 = 0,  x, y ∈ Ω                                                          (13) 

u x, y  |Γ = f φ , 0 ≤ φ ≤ 2π                                                                          (14) 

where f φ  is a prescribed function; Assume that f φ ∈ C1 Γ , 

f 0 = f 2π . 

In Ω domain we turn to the generalized polar coordinates  

x = rT θ0, θ1 , φ , y = rS θ0, θ1 , φ . 

Then the equation (13) in the generalized polar coordinates is as follows (see eq. (11)) 

∂2u

∂r2 +
1

r

∂u

∂r
−

1

Dr2

∂2u

∂φ2 = 0.                                                                       (15) 

The solution u x, y = u rT φ , rS φ  = u  r, φ = u r, φ  of the equation (15) we will search in the form of two functions 

multiplication 

u r, φ = R r ∙ Φ  −Dφ ≠ 0 в Ω                                                              (16) 

Substituting the expected form of the solution (16) in the equation (15), and separating the variables, we obtain  

r2 R ′′  r 

R r 
+ r

R ′  r 

R r 
= −

Φ ′′   −Dφ 

Φ  −Dφ 
= λ. 

It follows that the function R r  must be found by solving the equation below 

r2R′′  r + rR′ r − λR r = 0,                                                                  (17) 

and we obtain an eigenproblem for  Φ  −Dφ  function 

Φ′′   −Dφ + λΦ  −Dφ = 0,

Φ  −Dφ = Φ  −Dφ + 2π .
                                                                   (18) 

Here the periodicity condition of the function Φ  −Dφ  is a consequence of the frequency of the desired solution u r, φ  in 

the angular variable with period of 2π. This is only possible if λ = −Dn2 and n −D is an integer. Then a general solution of 

the differential equation (18) is determined as   

Φ  −Dφ = an cos n −Dφ + bn sin n −Dφ , 

where an  and bn  are arbitrary constants.  

Equation (17) has two linearly independent solutions at λ = −Dn2 (where D < 0)  

R1 r = r −Dn , R2 r = r− −Dn  

Since we seek particular solutions of this equation (17) at λ = −Dn2 in the form of a power function R r = rk , k = const.  
Substituting this function in equation (17) we can establish that the exponent k is determined from the equation  

k2 = −Dn2, i.e k = ± −Dn. 

Solution of the inner Dirichlet problem should be limited in the considered domain at r = 0. Therefore, from found two 

solutions should be taken only one  

Rn r = r −Dn . 

Thus, according to (16) the partial solutions of the equation (15) can be written as 

u r, φ = r −Dn an cos n −Dφ + bn sin n −Dφ  . 

Because of linearity and uniformity of the equation (15) a composition of particular solutions  

u r, φ =
a0

2
+  r −Dn an cos n −Dφ + bn sin n −Dφ  ∞

n=1 ,                                        (19) 



ISSN:2278-7690 

574 | P a g e  

 

will also satisfy this equation. 

Hence, the series (19) inside Ω domain is a harmonic function. It is known from a general course that the series (19) 

converges uniformly on Ω . Then, satisfying the series (19) with the boundary condition (14) we have   

u r, φ |r=1 = f φ  or f φ =
a0

2
+   an cos n −Dφ + bn sin n −Dφ  ∞

n=1 .                                (20) 

The series (20) represents a transformation into Fourier series of f φ  function  in  0,2π  interval. Then an  and bn  

coefficients are determined by the following formulas 

an =
1

π
 f φ cos n −Dφ dφ

2π

0
, n = 0,1,2, …,                                                        (21) 

bn =
1

π
 f φ sin n −Dφ dφ

2π

0
, n = 1,2, ….                                                           (22) 

Theorem. If a function f φ ∈ C1 0,2π , and f 0 = f 2π , then there exists an ambiguous solution to the Dirichlet problem 

in Ω domain, which is defined by the series (19).  

Poisson formula. Let transform the series (19) with regard to expressions (21) and (22): 

u r, φ =
1

2π
 f t dt

2π

0

+ 

+
1

π
 r −Dn   f t cos n −Dt dt

2π

0

cos n −Dφ + +  f t sin n −Dt dt

2π

0

sin n −Dφ  

∞

n=1

=
1

2π
 f t dt

2π

0

+ 

 +
1

π
 f t  r −Dn cos n −Dt cos n −Dφ  +   sin n −Dt sin n −Dφ  dt =

∞

n=1

2π

0

 

                       =
1

2π
  1 + 2  r −Dn cos n −D t − φ ∞

n=1  dt
2π

0
                                                     (23) 

Providing generalized Euler formula (9), we have  

z −Dn = r −Dnei −Dnω = r −Dn cos n −Dω + i sin n −Dω  , ω = t − φ. 

Find series’ sum 

1 + 2  r −Dn cos  n −D t − φ  
∞

n=1
= 1 + 2  r −Dn cos nω

∞

n=1
= 

= −1 + 2Re z −Dn
∞

n=0
= −1 + 2Re

1

1 − z −D
= 

= −1 +
2−2r −D cos  −Dω

1−2r −D cos  −Dω+r2 −D
=

1−r2 −D

1−2r −D cos  −Dω+r2 −D
                                               (24) 

Then substituting (24) in (23) we find a formula  

u r, φ =
1

2π
 f t 

1−r2 −D

1−2r −D cos  −D t−φ +r2 −D
dt

2π

0
,                                                       (25) 

which is called Poisson formula.  

Example 3. Evaluate an integral  Pn x eax sin bx dx. 

Solution. In case that D =
θ1

2

4
− θ0 < 0 formula (9) can be rewritten in the next form  

epx = J θ0 , θ1 , x + pK θ0, θ1 , x = e
θ1
2

x   cos  −Dx −
θ1

2 −D
sin  −Dx + p

1

 −D
sin  −Dx .                    (26) 

Then  J x dx + p  K x dx =
epx

p
+ C1 + pC2. From here 

 J x dx =
θ1

θ0
J x + K x + C1,  K x dx = −

1

θ0
J x + C2; 

since p = θ1 − p and p ∙ p = θ0. We can rewrite last integral as  

 e
θ1
2

x sin  −Dx dx = −
 −D

θ0
e

θ1
2

x  cos  −Dx −
θ1

2 −D
sin  −Dx + C. 

Here  
θ1

2
= a,  −D = b и θ0 = a2 + b2. Hence 

 eax sin bx dx =
eax  a sin bx−b cos bx  

a2+b2 + C. 

We have following from the exponent decomposition (26): 
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J′  x = −θ0K x , K′ x = J x + θ1K x . 

We apply these relations: 

θ0  K x dx = −J x + C, 

θ0  xK x dx = K x +  −x +
θ1

θ0
 J x + C. 

Next we replace parameters θ0, θ1 by parameters a and b, and we obtain:  

 xeax sin bx dx =
eax

a2+b2
 sin bx −  x −

2a

a2+b2
  b cos bx − a sin bx  + C. 

Now it is very easy to evaluate the given integral by using obtained results. Integration by parts leads to the depression of 
n degree under the integral. Indeed, we have 

 xn eax sin bx dx =  xn d  
eax  a sin bx−b cos bx  

a2+b2
 = xn eax  a sin bx−b cos bx  

a2+b2
− n  xn−1  

eax  a sin bx−b cos bx  

a2+b2
 dx. 
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