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Abstract 

Chaos theory and fractal geometry have begun to appear as an important issue in secondary school mathematics. Chaos 
theory is the qualitative study of unstable periods in deterministic nonlinear dynamical systems, chaos theory looks at how 
things evolve. Fractal geometry is a subject that has established connections with many areas of mathematics (including 
number theory, probability theory and dynamical systems). Fractal geometry, together with the broader fields of nonlinear 
dynamics and complexity, represented a large segment of modern science at the end of the 20

th
 century; this paper 

investigates the concepts of chaos theory and fractal geometry as a conceptual transformation at secondary school level. 
This paper reports a study of the effects of teaching chaos theory and fractal geometry on geometric reasoning skills in 
geometry. Thirty of the tenth grade students of basic education participated in an experimental group, which was involved 
in working with chaos theory and fractal geometry activities, pre-treatment measures the geometric Reasoning skills. 
Teaching fractal geometry properties and examples were focused in the teaching activities. At the end of the teaching 
measures geometric reasoning skills were again obtained. Since the study was an exploration, the effectiveness of 
teaching chaos theory and fractal geometry, the exploratory data collected by the researcher was also considered to be an 
important part of the study.  
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Introduction  

Geometry is integrated in an inclusive mathematics curriculum in Oman secondary stage. Clements and Battista (1992) 
have claimed that school geometry refers almost universally to Euclidian geometry, even though there are numerous 
approaches to the study of a topic, such as synthetic, analytical, transformational, and vector- not to mention non-
Euclidian approaches. The National Council of Supervisors of Mathematics(NCSM) identified geometry as one of the ten 
basic skill areas of mathematics, in their 1978 position statement NCSM stated,  “students should learn the geometric 
concepts they will need to function effectively in the three-dimensional world’’ (p. 149) 

Secondary geometry builds on middle and elementary school geometry, which traditionally has emphasized measurement 
and informal development of the basic concepts required in geometry at secondary school level, fractal geometry provides 
an accessible, interesting setting not only for mathematical research, but also for mathematics education, and there have 
been many curricular initiatives in this area. In addition to its impact on middle and secondary school mathematics, fractal 
geometry has influenced undergraduate mathematics, and has been the source for many undergraduate research efforts. 
The difference between chaos and fractals is the fact that chaos depends on the dynamics more than the geometric 
properties of the system, while for fractals the opposite is true (Stewart, 1998& 216). In this study, I have investigated the 
effect of teaching chaos theory and fractal geometry as an applied part of geometry and its geometric properties upon 
geometric reasoning skills of the secondary students, this experimental study took place during the semester of autumn of 
2013. 

Theoretical Background  

Mathematics is an experimental science, a discipline that is still evolving and making new discoveries. Reform in 
mathematics mirrors the reforms proposed by cognitive research. In the year 2000 NCTM principles and standards, reflect 
a very different attitude toward the teaching of mathematics from the traditional algorithmic approach by placing an 
emphasis on doing mathematics as well as well knowing mathematics. Reasoning is central to mathematics as a discipline 
(Steen, 1997) and underpins mathematical learning (Russell, 1999). As NCTM (2000) emphasizes, the ability to reason is 
essential to mathematical understanding, and should be a primary goal in mathematics education by developing ideas, 
exploring phenomena, justifying results, and using mathematical conjectures in all content areas. Chaos theory and fractal 
geometry are the result of this change and fall within the boundaries of discrete mathematics (Fareell, 1998). Chaos theory 
and fractal geometry provide an opportunity for students to understand that mathematics itself is evolving and changing, it 
provides an opportunity for students to investigate and describe the relationship between geometry and algebra and 
further the understanding of dynamical system and mathematics. Fractals demonstrate a repetitive scaling that makes 
them identical on all scales, whereas chaos introduces a seemingly random aspect to the patterning. 

Chaos theory  

Chaos is a topic that has developed through the study of dynamical systems and has connection with fractal geometry, 
fractals can be thought of as the images of chaos. Geometrically, they exist in between our familiar dimensions. Infinitely 
complex, their patterns are self-similar across different scales. Chaos Theory deals with nonlinear things that are 
effectively impossible to predict or control, like turbulence, the stock market, weather forecasters use patterns in weather 
to predict temperature, tornadoes, and hurricanes. Some aspects of weather forecasting use chaos theory. Many natural 
objects exhibit fractal properties, including landscapes, clouds, trees, organs, rivers etc, and many of the systems in which 
we live exhibit complex, chaotic behavior. Chaos involves systems or equations that are extremely sensitive to initial 
conditions and that preclude a prediction of long term behavior as a result of the inability to perfectly define the initial 
conditions such as the weather. Chaotic systems often appear random and unpredictable but they are often defined by 
simple equations and demonstrate intermittent periodic behavior. Chaotic systems are known as non-linear equations 
meaning that a small change in the initial parameters does not result in a small change in the outcome, but instead is 
widely divergent and results in unpredictable outcomes. Recognizing the chaotic, fractal natural of our world can give us 
new insight, power, and wisdom. According to Kellert (1993), chaos theory is the qualitative study of unstable a periodic 
behavior in deterministic nonlinear dynamical systems. A dynamical system is one that changes over time, so chaos 
theory looks at how things evolve. Clapham describes chaos as a situation in which a fully deterministic dynamical 
process can appear to be random and unpredictable due to the sensitive dependence of the process on its starting values 
and the wide range of qualitatively different behaviors available to the process. This sensitive dependence is often called 
the butterfly effect (Clapham, 1996;35). The systems studied are deterministic, that is, the state of the system at any stage 
depends on the state at the previous stage in a way that can be completely specified using simple mathematical 
operations on exact numbers (Bedford, 1998; 276). Chaos is defined in systems that are incredibly sensitive to initial 
conditions. Linear systems can be represented by the equation, x → ax + b. Unlike linear equations, in which changes in 
initial conditions have a proportional effect, in a chaotic system very small changes in initial conditions can, and often do 
result, in totally divergent outcomes. 

The main tool for studying a dynamical system is the sequence, called an orbit in chaos theory. The sequence is 
generated by iterating a function, f, whose initial argument, x, is called a seed. The three defining characteristics of 
deterministic chaos according to Devaney (1992) are: 

Sensitivity to initial conditions: Arbitrarily close to every seed is another whose orbit moves far. Mixing of the domain: if we 
specify any two subintervals of the domain, we can always find a seed in the first interval  whose orbit gets into the 
second.  
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Density of periodic points: any point of the domain is arbitrarily close to a point whose orbit ends up in a repetitive cycle. I 
presented chaotic behavior of a point for secondary students by asking them to choose a point xo, find where the tangent 

at 
1

2
 x −

1

x
    meets the x-axis, and repeat the process over and over again. What do we think will happen? To understand 

how chaos work I asked them to do the following: 

Sketch a graph of  y = x2 + 1 . Starting anywhere you like, carry out Newton’s method construction a few times on your 

graph. What would happen if, at some stage in the iteration, you reached a very positive number, or a very small negative 
number?  

Show that Newton’s method applied to the equation x2 + 1 = 0 is equivalent to iterating the functionf x =
1

2 
 x −

1

x
 .  

Choose any number as starting point, and carry out the iteration at least 10 times. Do you see any pattern in the 
sequence?  

Choose another starting point very close to the first one, and iterate the same number of times. Compare the last few 
numbers in the two sequences. What do you notice?  

The sequence has no detectable pattern, and very small differences in the starting point can result in large differences 
further along the sequence. If a sequence like this were used to model a real world system, it would be impossible to 
predict future outcomes.  

One of the interesting approaches to the introduction of chaos for secondary students is the chaos game approach to 
fractals suggested by (Devancy, 2004) which provides teachers with an opportunity to help students comprehend the 
geometry of affine transformations. The classical chaos game and other related games are described in Deviancy’s article. 
Crilly (1991) described the principal features of chaos, as it is the simple deterministic systems can generate what appears 
to be random behavior. Chaos can be observed in basic mathematical systems (Crilly et al., 1991), 195).  

Fractal geometry  

Fractal geometry has been explored in classrooms from kindergarten through graduate school for more than twenty-five 
years. Fractal geometry is an irregular geometric object with an infinite nesting of structure at all scales. Fractals are 
repetitive patterns that display characteristics of scaling and self similarity. Fractal geometry has become a topic of 
widespread interest in recent years. It serves as a powerful illustration of some of the qualities of mathematical inquiry that 
have been underdressed in school mathematics (Simmt & Davies, 1999, 103). The study of fractal geometry is appropriate 
in high school for many reasons: students have the opportunity to investigate traditional mathematics topics from a new 
approach, to make connections both within mathematics and between mathematics and natural and human worlds, and to 
explore mathematics in non-analytic ways (Lornell&Wesberg, 1999, 265). Fractal geometry allows students to explore 
mathematical concepts by drawing pictures of constructive iteration of classical fractals.  

The word Fractal comes from the Latin verb franger which means to break (Gleik, 1987). This verb refers to a quality often 
characterizing natural objects; they look fragmented, irregular, broken, complex (Lornell & Wesberg, 1999). There are two 
main properties for fractal geometry: first is self-similarity, with this attribute, smaller sections of the object (fractal) are 
replicas of the whole object. Strict self-similarity refers to a characteristic of a form exhibited when a substructure 
resembles a superstructure in the same form. Self-similarity can be found in many fractals. Students can see geometric 
patterns and they begin to able to describe the relationship of these patterns (Bringer& Ury, 2002). Second is the fractal 
dimension:  

Peitgen (1992) describe the foundation of fractal dimension; given a self-similar structure, there is a relation between the 
reduction factors and the number of pieces a into the structure can be divided, and that is  

 

a =
log a

log
1

s

   Or  D =  
log a

log
1

s

 

D is called the self-similarity dimension, for the line, the square and the cube we obtain the expected self-similarity 
dimensions one, two, and three (Peitgen, 1992, 232-233). Fractal scaling means that the same level of detail exists at all 
levels. Scaling is the property of being the same on all scales 

Fractals can be divided into two categories (Vacc, 1999): natural fractals and mathematically structured fractals. This 
study concentrates on the mathematically structured fractals and using some examples of natural fractals in the everyday 
environment of students to be an attractive approach for studying fractal geometry and chaos theory. Teaching fractal 
concepts requires more activities so that students can be involved in drawing, reasoning, and mathematical thinking. In the 
procedure of learning fractal geometry, observation of the construction of fractal images is the most important part as 
much as understanding mathematical ideas behind them. Students will understand mathematical concepts better if they 
could see the construction procedure of the fractal figures step by step (Yi, 2004).  

Geometric Reasoning Skills   

Reasoning in the classroom is affected by teacher expectations, the classroom discourse, and opportunities to make 
sense of mathematics through different types of reasoning and more general conditions such as a supportive climate 
(Diezmann, et al., 2002). Developing student’s geometric reasoning skills is one of the major objectives of geometry 
teaching in secondary mathematics.  
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As fractal geometry evolves to encompass the understanding of diverse natural phenomena, it is important to be clear 
about what is meant by the geometrical reasoning necessary to understand the components of natural fractal images and 
how such reasoning develops. Although geometry consists of the geometric figures of zero, one, two, and three 
dimensions and relationships among them, fractal geometry present a new vision of geometric figures of fractal dimension 
that lies between two and three dimensions. Students study properties and relationships having to do with size, shape, 
location, direction and orientation of these figures. As Davis (2004; 192) has pointed out: The value of fractal geometry to 
studies of education is just beginning to be demonstrated. For example, in terms of description, the notion of scale 
independence and self-similarity are useful for making sense of the leveled and embedded natures of individuals, social 
collectives, bodies of knowledge, cultures and societies, O’Daffer and Thorquist (1993; 43) have pointed out that 
mathematical reasoning is part of mathematical thinking that involves forming generalizations and drawing valid 
conclusions about ideas and how they are related. Mathematical reasoning can be viewed as a dynamic activity that 
includes a variety of modes of thinking. It is an integral component of mathematical thinking (Pressini & Webb, 1999; 157).  

Teaching fractal geometry of secondary students presents a strong geometry-learning environment to develop geometric 
reasoning skills. Inductive reasoning would be when we are given a geometric pattern and we need to come up with the 
rule for the pattern. There is a clear example for inductive reasoning skills in fractal shapes. Figure 1 show that Example:  

 

 

The Royal Society/ Joint Mathematical Council (2001) report on the teaching and learning of geometry for pupils aged 11-
19 makes a number of recommendations about suitable approaches to the teaching of deductive reasoning in geometry. 
The report suggests that (p. 5):  

Geometric situations should be chosen, as far as possible, to be useful, interesting and/or surprising to pupils, and the 
level of sophistication expected in the logical argument will depend upon the age and attainment of the pupils concerned, 
and the proof produced might equally be called an explanation, or justification or reason for the result.  

Several studies have described geometric reasoning skills; the Van Hieles (1986) have described a progression in 
geometry curriculum. The levels are:  

 Identification or production of a shape by visual recognition (e.g. recognizing or drawing a rhombus);  
 Awareness of properties of classes of shape ( observing that a rhombus has four equal sides but no right angles);  
 Beginning to clarify definitions or relations between different shapes and properties and to make some logical 

connections; 
 Developing deductive reasoning, deriving new theorems from one or more axioms or theorems accepted as true; 
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 Appreciation of the abstract structure of an axiomatic system, with axioms as an initial set of statements accepts as 
true, and a network of theorems, which can be derived from these.  

Brown, Jones, and Taylor (2003) have described deductive geometrical reasoning to include Theorems, is an important 
aim of a mathematics curriculum. However, deductive geometrical reasoning can be more widely interpreted to also 
include: 

 Deriving a specific value of a variable (e.g. the size of an angle) using both known theorems and known prosperities of 
shapes.  

 Deducing a specific result in relation to a figure with given properties which does not have the generality or status of a 
theorem (e.g. proving that two sides of a quadrilateral with a particular set of properties are equal). This type of 
problem used to be known as a rider.  

 Considering an alternative definition of geometrical shapes, deciding which of these are necessary, sufficient and 
minimal, and becoming familiar with the differences between the meanings of these terms. (p.6) 

 Duval (1998) pointed out that geometrical reasoning involves three kinds of cognitive processes: 

 Visualization processes, for example the visual representation of a geometrical statement, or the heuristic exploration 
of a complex geometrical situation. 

 Construction processes (using tools) 
 Reasoning processes- particularly discursive process for the extension of knowledge, for explanation, and for proof. (p. 

38) 

Fractal geometry is a natural place for the development of students reasoning skills; it offers ways to describe physical 
environments and natural geometric figures.  

Objective of the study  

The purposes of this study were: 

1. To develop teaching activities in chaos theory and fractal geometry for secondary students.  
2. To identify the effectiveness of teaching the suggested activities on developing secondary students geometric 

reasoning skills.  

Research Questions  

The following questions have been identified as the focus for this study: 

1. What is the effect of teaching chaos theory and fractal geometry on the achievement of the tenth grade students?  
2. What is the effect of teaching chaos theory and fractal geometry on developing the tenth grade students 

geometric reasoning skills?  

Hypotheses of the study  

The study included two hypotheses, which are listed below: 

1. There are statistically significant differences (p<0.05) between students mean scores in the achievement pre-test 
and their mean scores in the same achievement post-test in favor of the students mean scores of the post-test.  

2. There are no statistically significant differences (p<0.05) between students mean scores in Geometric reasoning 
skills pre-test and their mean scores in the same post-test in favor of the students mean scores of the post-test.  

Overview of Chaos Theory and Fractal geometry teaching activities: 

The objectives of chaos theory and fractal geometry teaching activities for secondary students were to explore the 
phenomena of chaos, which refers to fractals, and to develop fractal geometry concepts based on the iteration geometry. 
These activities center primarily around fractals with a small emphasis on chaos theory, the study of chaos and fractals 
both deal with the structure of irregularity 

 The content of teaching activities includes the following: 

 
First: Three specific projects (groups activate): 

1. The chaos game: the goal of the Chaos game is to improve students geometric thinking, it is connected the role 
of the chaos game in construction fractals. 

2. Construction of the Siepinski Tetrahedron. 
3. The generation pattern of Pascal’s Triangle: Students will use iterative geometric constructions to create the 

Sierpinski triangle as well as a variation of it. On closer inspection, students will find that the numerical patterns 
within these triangles demonstrate an amazing link between algebra and geometry.  

The groups’ activities have been designed to practice the wonderful side of the chaos and fractal geometry by students; 
they apply the fractal properties to construct the Seierpinski tetrahedron and generation pattern of Pascal’s triangle. Also 
students discovered the relationship between chaos and fractal through the chaos game.  
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Second: Teaching Fractal geometry (individual worksheets activities): 

1. Spirolateral: it is a geometric design generated from number sequences through iterative procedures, it connect 
to a wide variety of other topics and have obvious applications when discussing symmetry, transformations, and 
coordinate geometry.  

2. The Sierpinski triangle  
3. Fractal curves: The Coach curve, The Hat curve.  
4. Cantor set  
5. Fractal Cards  

The design of the activities of the second part was based on educational tasks,so that each student could practice 
reasoning skills, which appear in each task. In addition, they understand the concepts of fractal geometry. Resources of 
the suggested activities were from: two books ( Sobel and Maletsky, 1999 & Malestsky; perciante; and Yunker, 1992), and 
internet website such as: 

 
http://math.bu.edu/DYSYS/applets/chaos-game_more.html 
 
http://metalinks.metaculture.net/science/fractal/learning/default.asp 
 
http://home.inreach.com/kfarrell/course.outline.html  

 

Some of the mathematics educators (three teachers and three of my colleagues) reviewed all the teaching activities, they 
provided feedback and comments on the content of activities and I adjusted the content accordingly. 

Methods  

Participants  

The participants in this study were students of the tenth grade in a secondary school in Muscat area (grades tenth, 
eleventh, and twelfth are secondary grades in Omani educational system). The thirty participants were all female and had 

a secondary mathematical background, which is required to understand the topics of chaos theory and fractal geometry.  

Instruments: 

In order to gather data, two instruments were used in this study:  

 
First: An Achievement Test in chaos theory and fractal theory  

(ATCTFG): 

The main purpose of using the achievement test was to measure students’ achievement on the content of chaos theory 
and fractal geometry. ATCTFG consists of six questions, each question requiring writing all solving steps. The question 
dealt with cognitive aspects of chaos theory and fractal geometry, these aspects were chosen from the work of (Benson et 
al., 1993& and Barnes, 1993), The selection, and adoption of some of the question, was done in consultation with four 
colleagues in math department in college of Science and math education in college of Education at SQU, also it was 
refereed by three experts who are working in the field of fractal geometry in USA. Resources of test Questions were 
chosen to assess chaos theory concepts (Qs. #1 and #3), fractal geometry skills (Qs. # 2, #4, #5, and #6). The initial 
results of the test for a group of 25 students (chosen from another school and has not studied fractal geometry) yielded 
Cronbach alpha reliability coefficient of 0.67. (Appendix1).  

Second: Geometric Reasoning Skills Test  

(GRST): 

The research study planned to evaluate the effectiveness of teaching chaos theory and fractal geometry on geometric 
reasoning skills for secondary students, the researcher designed Geometric Reasoning skills Test (GRST) for the purpose 
of the study. Several steps have been done to develop the GRST; determined its objectives, determined the geometric 
content, choose the effective questions, then measuring the validity and stability of the test. Referees commented and 
suggested changes on the second part of the test, the researcher did the recommended comment. GRST consists of two 
parts: first part consists of three questions, each one of them asked students to draw and filling the missing information 
based on the presented fractal figures, second part consists of four questions, these questions asked students to choose 
the right answer based on his skills of geometric reasoning content of the question, The suggested time for the test by the 
referees was 120 minutes. The total marks of the test estimated as 20 marks: 4 marks for each question of the first part, 
and 2 marks for each question of the second part, A Cronbach alpha reliability coefficient of the test was 0.63. (Appendix 
2)  

The Treatment in the Experimental Group 

 This is a quasi-experimental study of one sample group, in which topics of chaos theory and fractal geometry activities in 
addition to school geometry has presented for the experimental group. Because of the new content of chaos and fractal 
geometry, which is not presented to all students of the same grade, it was suitable for only one sample experimental 

http://math.bu.edu/DYSYS/applets/chaos-game_more.html
http://metalinks.metaculture.net/science/fractal/learning/default.asp
http://home.inreach.com/kfarrell/course.outline.html
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group, Students were taught the additional geometric activities (chaos theory and fractal geometry) in separate periods 
(each period-lasted 40 minutes) a week in a five weeks at the same pace in the first tem of the 2013 academic year.  

The geometric activities in fractal geometry designed in continuous teaching tasks, each task contained an objective with 
activities that should be done by students and an evaluation about the task content.  

Tasks were presented to students with a clear instruction by the teacher. Since the teacher had never taught fractal 
geometry before but was willing to teach it in the classroom, I assumed most of the responsibility for both the tasks 
planning and the carrying out of the experience. During the first five minutes, warm up activities were used to make the 
students ready to be involved in the content tasks. Additional internet websites resources were used to develop 
understanding of fractal   properties, for examples: 

www.yale.edu/fractals 
 
www.fractalfoundation.org  

The students worked in groups of 4-6 students. They were active by taking roles, imagining, discussing, exploring, 
deciding, justifying, expressing ideas, and communicating during the lesson. The two instruments: ATCTFG and GRST 
have presented to students of the experimental group before teaching the suggested fractal geometry activities, and after 
teaching.  

Results and Discussion:  

This study examined the effectiveness that studying chaos theory and fractal geometry activities had on students’ 
achievement and their geometric reasoning skills. Obtained data were analyzed by using SPSS v.12.0 statistical computer 
software. To answer the research questions, t-test were conducted in order to compare the mean scores of the 
experimental group on pre and post achievement test. Table 1 presents the means and standard deviations for the 
achievement on which the pre and post of achievement tests differed significantly.  

Table 1: Means, Standard Deviations, and Value of T-Test for Achievement Test 

 N Means SD T-value df P< 

Pre-achieve. 
test 

 

30 

 

13.50 

 

8.62 

 

 

17.32 

 

 

29 

 

 

0.000 Post-
achieve. 
test 

 

30 

 

37.50 

 

10.73 

 

 Stands for p˃0.05 

The independent t-test results of achievement test showed that student’s performances for post achievement test has 
improved in which posttest mean score was 37.5, and S.D. was10.73 compared by students performance in pre 
achievement test in which mean score was 13.5, and S.D. was 8.62. Table 1 shows that there is a significant statistical 
differences at the level of p <0.05 for t value of 17.32 between students performances of the achievement test for the 
favorite of the posttest. These results could indicate that participants demonstrated improved performances in the 
achievement of chaos theory and fractal geometry activities which were presented to them in this study. The first 
hypothesis has been accepted as it is showed in results in table 1.  

To identify the effect size of statistical significance of t value, the equation of the effect size (Fam, 1997; 69) used: 

𝜇2 =
𝜏2

𝜏2 + 𝑑𝑓
 

𝜇2 = 0.91 and when comparing this value with 𝜇2 value on standards table of the effect size, it is clear that the effect size 

is large. This result means that students can achieve concepts and skills of fractal geometry and chaos theory. Students’ 
performances in the achievement test showed that teaching chaos theory in its suitable levels, the selected fractal 
geometry activities are effective, and we may integrate these activities in secondary mathematics curriculum. This result 
coincides with Al-Shahat ‘s results of her fractal geometry program for secondary students (Al-Shahat, 2005). 

To determine the effectiveness of teaching chaos theory and fractal geometry on geometric reasoning skills of the 
experimental group, t-tests were performed to find out if statistically significant differences existed between students 
performances on pre and posttest of GRST. Table 2 presents the means and standard deviations for the GRST on which 
the pre and post of achievement tests differed significantly. 

 

 

 

http://www.yale.edu/fractals
http://www.fractalfoundation.org/


                                            ISSN 2278-7690                                                     

811 | P a g e                                                                                                                             A u g u s t  1 9 ,  2 0 1 4  

 

 

Table 2: Means, Standard Deviations, and Value of T-test for GRST 

 N Means SD T-value df P< 

Pre-GRST 30 19.83 6.76  
21.07 

 
29 

 
0.000 

Post- 
GRST 

 
30 

 
43.16 

 
3.6 

 

The independent t-test result of GRST showed that students performances for post test of GRST had improved in which 
post test mean score was 43.16, and S.D. was3.6 compared by students performance in pre test of GRST in which mean 
score was 19.83, and S.D. was 6.76. Table 2 shows that there is a statistical significant difference at the level of p <0.05 
for t value of 21.07 between students performances of the GRST for the favorite of the posttest. These results appear to 
indicate that participants demonstrated improved performances in pre-test of GRST after the studying of chaos theory and 
fractal geometry presented for them in this study. Thus, the second hypothesis has been rejected as it is showed in results 
of table 2.  

 
To identify the effect size of statistical significance of t value, n

2 
= 0.93, and comparing this value with n

2 
value on 

standards table of the effect size, it is clear that the effect size is large. This result means that teaching concepts and skills 
of fractal geometry and chaos theory can improve geometric reasoning skills of secondary students and it is important to 
consider that topics in secondary mathematics curricula. The statistical analyses conducted for this study indicate that 
studying chaos theory and fractal geometry produces significant differences in both achievement and geometric reasoning 
skills. This result is coinciding with results of (Camp, 1995; Lornell, 1999). Geometric reasoning skills may be developed 
for secondary students when they learn Euclid geometry, students of the experimental group showed high performance of 
skills need to solve the pre test of GRST, that means fractal geometry is a rich subject in which geometric reasoning skills 
may apply.  
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Appendix 1 

Achievement Test: "Chaos Theory and Fractal Geometry"  

Solve the following questions; show all solving steps you follow: 

1. Start with the equation 𝑓 𝑥 = 0.1𝑥 + 0.4 . Begin the iteration with 𝑥0 =0.4 and use the output as the new input 𝑥1. 

Continue repeating the process for successive values of x. Express as a fraction the limiting value of this iteration 
process. 

2. What geometric properties would appear in a Spiro lateral generated from the number sequence 12345 on a square 
grid? 

 

3. Iteration is performed through the function f(x) using the special relationship 𝑥𝑖+1=𝑓(𝑥𝑖)  . Write equations that can be 

used through this iteration to generate the decimals for    
1

11
  and 

1

7
  

4.  Do the Koch snowflake iteration using squares instead of triangles. The first iteration is shown: 

 

 

 

         

5. If the largest equilateral triangle in the diagram is 1 inch on each side and if the "spiral" shown is continued indefinitely, 
what will be the total length of the spiral? 

 

 

 

 

 

 

 

6. Starting with a square of side 1 unit, erase the middle third of each side, and replace it with a square going inwards. Do 
the same each side of the resulting figure, and keep repeating the process. Stages 2, 3 and 4 of this pattern are shown 
in figure. Find the length of the boundary and the area enclosed by stages 1, 2, 3, 4 and n. what can you say about the 
length and the area as 
 𝑛 → ∞ . 

 

 
 

http://archives.math.utk.edu/ICTCM/EP-17/C21/pdf/paper.pdf
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Appendix 2 

Geometric Reasoning Skills Test 

First: Answer the following questions 

1. Write a new procedure called KOCHISLAND, which starts with a square (level1). Grow your KOCHISLAND by 
replacing each unit segment in the square with a zigzag path composed of eight smaller units each one-fourth as long 
as a side of the original square (level2). 

Replace this:                                                                                       with this: 

 

                      Level 1 (Koch Island)                                                                 Level 2 (Koch Island) 

 

2. Study the pattern of the fractal octahedron below and complete the missing data on the table: 
 

 
Table 3 

 

Stage 0 1 2 3 4 n 

N. of Tetrahedrons 1 4 16 64 ? ? 

Volumes 1 1

2
 

1

4
 

1

8
 

? ? 

 
3. If you start with a 4 cm square pice of paper. And you are folding the four corners. How do the area and perimeter 

change from one stage to the next? Complete the missing data in the table: 
 

 
 
               Stage 0                           stage 1                      Stage2            stage 3                           stage 4 

 
Table 4 

 

Stage 0 1 2 3 4 n 

Area 16 8 4 2 1 ? 

Perimeter 16 ? 8 4 2 4   2 
?−𝑛
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Second: Choose the right answer: 

4. What is the next series of triangles in the sequence below? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Write another form of the following statement. If a closed figure has exactly 3 vertices, then it is a triangle: 
 

A. If a triangle has exactly 3 vertices, then it is a closed figure. 
B. If a figure is closed, then it is a triangle with exactly 3 vertices 
C. A closed figure is a triangle if it has exactly 3 vertices 
D. A triangle is a closed figure if it has exactly 3 vertices 

 
6. Write a converse for the statement, "If a figure has five angles, then it is a pentagon" 

 
A. "A five angled figure is a pentagon" 
B. "A pentagon is a figure with five angles" 
C. "Pentagons have five angles and five sides" 
D. "If a figure is a pentagon, then it has five angles" 

 
7. How many different lines can be drawn using the points below? 

 
                                        A ٭ 
 
     B٭                  D٭ 
 
                                        C٭ 

A. 8 
B. 4 
C. 6 
D. 10 


