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ABSTRACT 

The aim of this paper is to study regional gradient observability for  hyperbolic system in the case where the subregion of 

interest is a part of the boundary, and the reconstruction of the state gradient without the knowledge of the state. First, we 

give definitions and characterizations of this new concept and establish necessary conditions for the sensor structure in 

order to obtain regional boundary gradient observability. The developed approach, based on the Hilbert uniqueness 

method [7], leads to a reconstruction algorithm. The obtained results are illustrated with numerical examples and 

simulations.   
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1 INTRODUCTION  

For a distributed parameter system evolving on domain 
nIR , the concept of regional observability was introduced by 

El Jai and Zerrik [3, 5], and refers to problems in which the observed state of interest is not fully specified as a state, but 

concerns the observability and the reconstruction of the state only on a subregion  , a portion of the spatial domain  . It 

was developed for parabolic and hyperbolic systems [10, 11, 13], where authors developed approaches for the 

reconstruction of the state on a subregion   interior or in the boundary of  . 

Since in many real problems the need may be only to reconstruct the state gradient, and since there exists a state that 

cannot be reconstructed but possible for its gradient, Zerrik and Bourray [12] introduced the notion of regional gradient 

observability and concerns the extension of the state observability to the observability of the gradient in a subregion  . 

Results have been developed for parabolic and hyperbolic systems that characterize this notion and give approaches for 

the reconstruction of the gradient in a subregion interior of the system domain [12, 13, 1].  

It is also plausible in real problems that the subregion of interest may be a portion of the boundary  .  

Here, we are interested in the regional gradient observability of distributed hyperbolic systems on  . This is the purpose 

of this paper, which is organized as follows:  

Section 2 is devoted to the definitions and characterizations of regional gradient observability. In the third section, we 
establish the relation between regional boundary gradient observability  and sensors structure. Section 4 is devoted to 
applications for two-dimensional hyperbolic system. In section 5 a reconstruction method is developed using extension of 
Hilbert uniqueness method. Finally a numerical approach is established and illustrations through numerical simulations are 
given. 

2 PREGIONAL BOUNDARY GRADIENT OBSERVABILITY 

2.1 Preliminaries 

Let   be an open bounded subset of 
nIR  with a regular boundary   and 0T . Denoted by  TQ ,0 , 

 T,0  and consider a system described by the hyperbolic equation  
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                                                      (2-1) 

 where A  is a second order elliptic linear operator with regular coefficients. 

Equation (2-1) has a unique solution       211
0 ;,0;,0 LTCHTy  (see [6]). 

Suppose that measurements on system (2-1) are given by means of the output function:      

     tyCtz                         (2-2) 

where     qIRHHC  1
0

2:   is a linear operator depending on the structure of q sensors.  

Let us recall that a sensor is defined by a couple  fD ,  where D  is the location of the sensor and  DLf 2  is 

the spatial distribution of the measurement on D . In the case of a pointwise sensor,  bD  and bf   is the Dirac 

mass concentrated in b , (see [2]) for more details. 

Let  Ttyyy  ,  and  0,yCyC   then the system (2-1) may be written in the form    
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with   









0

0

A

I
A . 

The operator A has a compact resolvent and generates a strongly continuous semi-group    0ttS  on a subspace of 

the Hilbert state space     22 LL  given by  

 
   

    



























 














 











 




 







jmm
L

jm

m

r

j

m
L

jmm

jmm
L

jm

mm

r

j

m
L

jm

wtwytwy

wtwytwy

y

y
tS

m

m








cos,sin,

sin,
1

cos,

22

22

2

1 1

1

2

1 1

1

2

1
 

 jmw  is a basis in     1
0

2 HHZ   of eigenfunctions of A , orthonormal in  2L  and 0m  the associated 

eigenvalues with multiplicity mr . Then (2-3) admits a unique solution   0ytSy   (see [6]). 

Let us define the observability operator     
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which is linear and bounded, its adjoint is denoted by 
*K and let the operator 
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while their adjoints are denoted by 
*

 and 
*  respectively. Consider a regular boundary subregion   of   of positive 

measure and let   be a open subregion of   with regular boundary   such that   . 

We consider the restriction operators  
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where 
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their adjoints are denoted by 
*

 , 
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  et 
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  respectively. 

And the trace operator 
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with     2

1

1
0 : HH  is the trace operator of order zero which is linear, surjective and continuous, 

*
0  denotes its 

adjoint, 
* and 

*
 denotes the adjoints of operators   and  . 

We finally introduce the operator  
*K   from  qIRTL ;,02
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2.2 Definitions and counterexample  

In this paragraph we will give definitions and characterization of regional gradient observability of system (2-1). Let recall 

that system (2-1) together with the output (2-2) is exactly (resp. approximately) gradient observable on   if  

       nn
HHK 

11*Im  (resp.        nn
HHK 

11*Im  ) 

Definition .1 

The system (2-1) together with the output equation (2-2) is said to be exactly regionally gradient observable (resp. 

approximately G-observable) on   if  
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Remark .2 

1. This is a natural definition of regional gradient observability extending those given in [1] to the case where we restrict 

the observability of the gradient to a boundary subregion  .  

2.           0kerIm *2
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4. There exist systems which are not G-observable  on the whole domain   but G-observable on  . This is shown 

through the following counter example. 
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Example .3 

Let    1,01,0  , we consider the two dimensional hyperbolic system described by the equation  
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                        (2-4) 

Measurements are given by the output function  

      212121 ,,, dxdxxxftxxytz

D

                                                                   (2-5) 

where  









2

1
1,0D  is the sensor support and    121 3sin, xxxf   is the function measure. 

Let    1,00   be the target subregion, and  10 , ggg   the initial gradient to be observed on   with 

          212121
0 cossin,sincos, xxxxxxg  and 

          212121
1 sincos,cossin, xxxxxxg   . Then we have the result. 

Proposition .4     

The gradient g  is not approximately G-observable on the whole domain  , however it may be approximately G-

observable on  . 

Proof 

To prove that g is not approximately G-observable on  , we show that  * KKerg .  
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Therefore consider only the case where 3i  and 12  INj  
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The following results characterize the G-observability on  . 

Proposition .5 

The system (2-1) together with the output equation (2-2) is 

1. exactly G-observable on   if and only if  there exists 0c , such that for all    
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2. approximately G-observable on   if and only if the operator 
*N  is positive defined. i.e. 
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3 BOUNDARY GRADIENT STRATEGIC SENSORS 

The aim of this section is to give a characterization of sensors structure (number and location) in order that a system be 

approximately gradient observable on  .  

Consider the system (2-1) observed by q sensors  
qiii fD

1
, , which may be pointwise or zone, where iD  is the 

location of the sensor and  ii DLf 2  is the spatial distribution of the measurements on iD . The output function is then 

given by  
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        Tttztztz q ,0,,,1                                                              (3-6) 

such that  
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Definition .6 

1. A sensor  fD,  is said to be gradient strategic on   if the observed system is G-observable on  . 

2. A sequence of sensors  
qiii fD

1
, is said to be gradient strategic on   if there exists at least a sensor 
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Proof 

The proof is developed in the case zone sensors located inside  . We show that if the system (2-1),(3-6) is G-observable 

on , then 1,  mrMrank mm . 
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i.e.    0ker ***  K  and the system (2-1)-(3-6) is not G-observable on .  

Remark .8 

1. The above proposition implies that the required number of sensors is greater than or equal to the largest multiplicity of 
eigenvalues. 

2. By infinitesimally deforming of the domain, the multiplicity of the eigenvalues can be reduced to one [4,8]. 
Consequently, the regional G-observability on the subregion   may be possible only by one sensor. 

4 APPLICATION TO SENSOR LOCATION 

In this section, we give applications of the above results to a two-dimensional system defined on     da ,0,0   with 
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4.1 Zone case 

Here we consider the system (4-7) with sensor  fD,  where D  (or D ) is the support of the sensor and 

 DLf 2  is the spatial distribution of the sensing measurements on D . 

for a 210   and d 210  , denote by 
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4.1.1 Internal zone sensor 

Here we consider the system (4-7) augmented by the output function 
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Proposition .9 
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from where one deduce the result. 

4.1.2 Boundary zone sensor 

Consider the system (4-7) with the output function 
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then we have 

Proposition .10 

1. If f  is uniformly distributed on    0, 21  D  (or on    dD  21, ), then the sensor  fD,  is not G-

strategic on   if  IQ
a
1  or IQ

a
1 . 

2. If f  is symmetric with respect to the point  0,1  or with  respect to the point  d,1 , then the sensor  fD,  is 
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*INk   such that  
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and the result is proved. 

3. if f  is symmetric with respect to the axis 11 x , we have    sgsg  11  , then we have 
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Then the result is proved. 

Proposition .11 

1. If f  is uniformly distributed on    21,0 D  (or on    21,  aD ), then the sensor  fD,   is not G-

strategic on   if IQ
d
2  or IQ

d
2 . 

2. If f  is symmetric with respect to the point  2,0   or with  respect to the point  2,a , then the sensor  fD,  

is not G-strategic on   if there exists 
*INl  such that 

d
l 22


 is odd. 

3. If f  is symmetric with respect to the axis 22 x , then the sensor  fD,  is not G-strategic on   if  IQ
d
2 . 

The proof is similar to that of the previous proposition. 

5 REGIONAL BOUNDARY GRADIENT RECONSTRUCTION 

In this section, we develop an approach for the reconstruction of the gradient of the initial state of system (2-1) on a 

boundary subregion   of  . The considered approach consists in the reconstruction of the gradient on a subregion 

  such that   by extension of the Hilbert uniqueness method. 

Proposition .12  

If the system (2-1) together with the output equation (2-2) is exactly (resp. approximately) G-observable on   then, it is 

exactly (resp. approximately) G-observable on .  

Proof 

1. We prove that If the system (2-1) together with the output equation (2-2) is exactly (resp. approximately) G-

observable in   then, it is exactly (resp. approximately) G-observable on . For this purpose, it is sufficient to show  

that 
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11~  , since the system (2-1)-(2-2) is exactly G-observable on  , there exists 

 qIRTLz ;,02  such that zKy *~     and then    zKy *** ~    . 

Thus    zKy *** ~     . 
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Consequently the system (2-1)-(2-2) is G-observable on  . 
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By the trace theorem, there exists      nn
HHy  11~ such that yy ~~  . 

Since       nn
HHy 

11~   the system (2-1)-(2-2) is approximately G-observable on  , then 

  qIRTLz ;,0,0 2  such that 
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By the continuity of the trace   , we have  
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From (5-8), we obtain    
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The operator   is continuous then  
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Since,    yzKyzK ~~ ****       yzK  
* , this gives  
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Then the system (2-1)-(2-2) is approximately G-observable on  . 

By the above proposition, we are going to reconstruct the components of the gradient of the initial state on , and deduce 

its trace on .  

Consider the system (2-1) with the output (2-2), and the set 
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                                     (5-9) 

has a unique solution         2121
0 ;,0;,0 LTCHHTC   (see [6]). 

Considering a zone sensor, the output equation is then 
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where D is the sensor support, f the function measures and we consider a semi-norm on F defined by  
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where  tx,  is the solution of (5-9). 

The reverse system given by 
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has a unique solution         2121
0 ;,0;,0 LTCHHTC   [6].  

We denote    0,0 xx    and  
 
t

x
x






0,1 
  and consider the operator  

   0110 ,,  P  

where   *P  ,    00001111 ,,,,,,,    . 
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The retrograde system   
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has a unique solution         2121
0 ;,0;,0 LTCHHTCZ   (see [6]). 

We denote    0,0 xxZ   and  
 
t

x
xZ






0,1
. 

If  10 ,  is chosen such that 
00   et 

11  on , then the regional gradient observability turns up to solve the 

equation 

    







0110 ,, ZZP                                                         (5-14) 

where  1111 ,,, ZZZZ   and   0000 ,,, ZZZZ  . 

Proposition .13 

If the sensor  fD,  is G-strategic on , then the equation (5-14) has a unique solution  10 , which coincides with the 

gradient of the initial state  10 , yy   in the subregion  , and the gradient on the subregion   is given by 

   1010 ,,   yy . 

Proof 

1. Let us show first that if the system (2-1) is G-observable, then (5-11) defines a norm on F . Indeed Consider a basis 

 
1jjw  of the eigenfunctions of A , without loss of generality we suppose that the multiplicities of the eigenvalues are 
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The set  1,cos,sin  jtt jj   forms a complete orthogonal set of  TL ,02
, then we obtain 
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and since the sensor  fD,  is G-strategic on  , we have 
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 (see [1]) then 
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Consequently 010   and thus 010  .  



ISSN 2278-5612 
I 

310 | P a g e                                 J u l y ,  2 0 1 3  

Conversely,  010  1
0 c and 2

1 c (constants),since         2121
0 ;,0;,0 LTCHHTC   and from 

0  on , (5-11) is a norm. 

2. Let denote by F completion of F  by the norm (5-11) and  
*F  its dual. We show that   is an isomorphism from F  

into
*F . Indeed, let   F10 ˆ,ˆ  and ̂  the corresponding solution of system  (5-9), we multiply system (5-12) by 
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The first term gives 
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Using Green formula for the second term, we obtain  
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The boundaries conditions gives 

     

 

 

 

dtf
x

t
f

x

t
T n

l DLl

n

k DLk
  





































0 11

1010

22

,,
ˆ

,,ˆ,ˆ


  

Using Cauchy-Schwartz inequality, we have  

       
FF

10101010 ,ˆ,ˆ,,ˆ,ˆ       F 1010 ˆ,ˆ,,,   

Hence,  

      2

ˆ

101010 ,,,,
F

  ,   F 10 ,  

This proves that   is an isomorphism and consequently the equation (5-14) has a unique solution  10 ,  which 

corresponds to initial state gradient to be observed on the subregion . Thus the initial state gradient to be observed on 

 is given by    1010 ,,   yy . 

6 NUMERICAL APPROACH AND SIMULATIONS 

In this section we develop a numerical approach which leads to explicit formulas for the gradient on the subregion  , and 

deduce the gradient on   . 

We consider the case where system (2-1) is observed by the output equation  

 
   Ttf
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k DLk
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6.1 Numerical approach 

Proposition .14  

If the sensor  fD,  is G-strategic on  , then the components of the initial gradient on   may be approached by 
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where M  a truncation order. 

Proof 

In the previous section, it has been seen that the regional reconstruction of the initial state gradient on   turns up to solve 

the equation (5-14). For that consider the functional  
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And solving equation (5-14) turns up to minimize   with respect to  10 ,  
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For T  large enough, we have 
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we obtain 
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The minimization of   is equivalent to solve the two following problems 
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which solutions are 
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With these developments, according to (6-19) and (6-20), we obtain. 1 j  
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replacing in relations (6-17) and (6-18), we obtain 
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We consider a truncation up to order  *, INMM  , then we obtain formulae (6-15) and (6-16). 

We define a final error 
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The good choice of M will be such that  0   and we have the following algorithm: 

Algorithm: 

Step 1: Data: The region  , the sensor parameters fD, and  . 

Step 2: Choose a truncation order M . 

Step 3: Computation of  

6.2 Simulations 

Here, we consider the two-dimensional system evolving in    1,01,0 
 
by 

     

       

 






































0,,

,0,,,,0,,

,,,,,,

21

21
1

2121
0

21

212
2

2

212
1

2

212

2

ty

xxyxx
t

y
xxyxxy

Qtxx
x

y
txx

x

y
txx

t

y



 

Measurements are given by one pointwise sensor 
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where    21,bbb  denote the pointwise location. Let  
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be the initial gradient to be reconstructed on   1,01  .  

Let    1,01,9.0   and  
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be the extensions of 
10 ,   yy  to  , where 1A  and B are selected to satisfy numerical considerations ( in order to 

obtain reasonable amplitude for 
0
y  and 

1
y ). Consider the following data:  

   98.0,66.0,,99.0,015.0,3 211  bbBAT .  

Applying the previous algorithm and using the formulae (6-15), (6-16), we obtain the following figures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Representes 
0y

 
(continuous line) and 

0ˆ y (dashed line) on  . 
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Fig 2: Representes 
1y (continuous line) and 

1ˆ y (dashed line) on  . 

Now let study the link between the subregion area and the reconstruction error. Also the evolution of the reconstruction 

error qith respect to the amplitude 1A of the initial gradient taking the subregion    1,9.01 
 

.and 99.0B . 

Numerical simulations leads to the following tables.                      

Table 1. means that the larger the region is, the greater the error is. 

 

 

 

 

 

 

 

 

 

 

Table 2. indicates that the reconstruction error depends on the amplitude of initial gradient, the greater the amplitude is, 
the greater the error is. 

 

 

 

 

 

 

 

 

 

 

 

 

Subregion   Error   

  1,55.01   

  1,6.01   

  1,65.01   

  1,7.01   

  1,75.01   

  1,8.01   

  1,85.01   

  1,9.01   

2107835.3   

2104298.3   

2103829.2   

2101944.1   

3108238.3   

4109483.5   

5108861.1   

6104113.6   

Amplitude 1A  Error 
 

05.0  

02.0  

015.0  

01.0  

008.0  

005.0  

004.0  

003.0  

2101544.4   

3105612.5   

3108133.2   
4109394.9   
4102611.5   
4100288.1   

5106082.3   
6104113.6   
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CONCLUSION 

The question of regional boundary gradient observability of hyperbolic systems was discussed in connection with sensors 

structure. A reconstruction approach of the gradient on a boundary subregion was developed leading to useful algorithm 

that successfully illustrated with examples and simulations. 
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