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ABSTRACT

The aim of this paper is to study regional gradient observability for hyperbolic system in the case where the subregion of
interest is a part of the boundary, and the reconstruction of the state gradient without the knowledge of the state. First, we
give definitions and characterizations of this new concept and establish necessary conditions for the sensor structure in
order to obtain regional boundary gradient observability. The developed approach, based on the Hilbert uniqueness
method [7], leads to a reconstruction algorithm. The obtained results are illustrated with numerical examples and
simulations.
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1 INTRODUCTION

For a distributed parameter system evolving on domain Q — IR", the concept of regional observability was introduced by
El Jai and Zerrik [3, 5], and refers to problems in which the observed state of interest is not fully specified as a state, but
concerns the observability and the reconstruction of the state only on a subregion w, a portion of the spatial domain Q . It
was developed for parabolic and hyperbolic systems [10, 11, 13], where authors developed approaches for the
reconstruction of the state on a subregion @ interior or in the boundary of Q .

Since in many real problems the need may be only to reconstruct the state gradient, and since there exists a state that
cannot be reconstructed but possible for its gradient, Zerrik and Bourray [12] introduced the notion of regional gradient
observability and concerns the extension of the state observability to the observability of the gradient in a subregion o .
Results have been developed for parabolic and hyperbolic systems that characterize this notion and give approaches for
the reconstruction of the gradient in a subregion interior of the system domain [12, 13, 1].

It is also plausible in real problems that the subregion of interest may be a portion of the boundary I" < 0Q2.

Here, we are interested in the regional gradient observability of distributed hyperbolic systems on I". This is the purpose
of this paper, which is organized as follows:

Section 2 is devoted to the definitions and characterizations of regional gradient observability. In the third section, we
establish the relation between regional boundary gradient observability and sensors structure. Section 4 is devoted to
applications for two-dimensional hyperbolic system. In section 5 a reconstruction method is developed using extension of
Hilbert uniqueness method. Finally a numerical approach is established and illustrations through numerical simulations are
given.

2 PREGIONAL BOUNDARY GRADIENT OBSERVABILITY

2.1 Preliminaries

Let Q be an open bounded subset of IR" with a regular boundary éQ and T >0. Denoted by Q=QX]O,T [
2. =0Qx ]O,T [ and consider a system described by the hyperbolic equation

2
%: Ay(xt) on Q
y(x,0)= yo,w =y? on Q. (2-1)
y(¢&t)=0 on ¥

where A is a second order elliptic linear operator with regular coefficients.
Equation (2-1) has a unique solution y e (O,T; Hé(Q))ﬂ Cl(O,T; LZ(Q)) (see [6]).
Suppose that measurements on system (2-1) are given by means of the output function:
2(t)=Cy(t) (2-2)
where C: H?(Q)NHF(Q)— IRY is a linear operator depending on the structure of ¢ sensors.

Let us recall that a sensor is defined by a couple (D, f) where D — Q is the location of the sensor and f e L*(D) is
the spatial distribution of the measurement on D . In the case of a pointwise sensor, D=beQ and f =g, is the Dirac
mass concentrated in b, (see [2]) for more details.

Let ¥ = (y,ay/at)T and Cy = (C y,O) then the system (2-1) may be written in the form

OV (i wo
p" t)=Ay(t) 0<t<T 2.3)

7° :<yo’ yl)
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] — (0 1
with A= .
% o

The operator Ahas a compact resolvent and generates a strongly continuous semi-group (S(t ))IZO on a subspace of

the Hilbert state space L*(Q)x L%(2) given by

N L -
s(t)(ylj: ;rjzl:(@’l,wmj>Lz(Q)cos,/ﬂmtJrﬁQz,WmJ>L2(Q)sm,//1mthmJ
Y2 ZZ(_,/—/’tm<y1,ij>L2(Q)sin —/1mt+<y2,wmj>Lz(Q)cos —/Imt)wmj

m>1 j=1

(ij) is a basis in Z=H?(Q)NHJ(Q) of eigenfunctions of A, orthonormal in L*(Q2) and A, <0 the associated
eigenvalues with multiplicity r,,. Then (2-3) admits a unique solution y = S(t ))70 (see [6]).
Let us define the observability operator
K:ZxZ —12(0,T;IR%)
h—Cs()h

which is linear and bounded, its adjoint is denoted by K" and let the operator

n

V:zxZ - (HY(Q) x (H{(2))

(v1.¥2) = (Vy1, Vy,)
where

n

v:Z —>(H1(Q))

y_)Vy: ﬂ’ﬂ,_n’ﬂ
0%, OXy 0 Xn

while their adjoints are denoted by V and V" respectively. Consider a regular boundary subregion I' of 6 of positive

measure and let @ be a open subregion of Q with regular boundary 6 such that ' c 0Qdw .

We consider the restriction operators

ZF:EH;—(GQ )Jn x {H;(agz )]n a[H;(r)Jn x [H;(r)]n
(V1.¥2) = Geryas 20 y2)

with

Zr:[HZ(aQ)] %[HZ(F)] and ;?F:H%(BQ)HH%(F)

%
y—>y|1—' y y|F

while their adjoints are denoted by ;?lf , ;(; and ;?lf respectively.

We also consider

jw:(Hl(Q))” x (Hl(Q))” N (Hl(a;))1 x (Hl(a)))n

(v0.Y2) = (Xo Y1 20 Y2)
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where

ZoiH Q) > (HY (o)) 7o HY(Q) > HY(0)
Y= Yo Y = Yo
their adjoints are denoted by ;?; )(; et ;?; respectively.

And the trace operator

77:(H1(Q))n x (Hl(Q))n e[H;(aQ)J x [H
(Y1nYZ)_>(?/Y1J’YZ)

where

&
2

yi(H(Q)) —>[H (aQ)J

y—>7ry =(7/oy1:7o)’21---:7’o)’n)

1
with yq : Hl(Q)—> H 2(69) is the trace operator of order zero which is linear, surjective and continuous, 7, denotes its

adjoint, y* and ;_/ denotes the adjoints of operators » and 7 .
1 i 1 i
We finally introduce the operator H = 37 VK™ from LZ(O,T ; IRq) into (HZ(F )] X {H E(1“ )J .

2.2 Definitions and counterexample

In this paragraph we will give definitions and characterization of regional gradient observability of system (2-1). Let recall
that system (2-1) together with the output (2-2) is exactly (resp. approximately) gradient observable on @ if

|m(;7ﬁ K*):(Hl(a)))n x (Hl(a)))” (resp. Im(z, VK" ’:(Hl(a)))n x (Hl(a)))n )

Definition .1

The system (2-1) together with the output equation (2-2) is said to be exactly regionally gradient observable (resp.
approximately G-observable) on I' if

Im(H):{H;(F)J x[H;(F)] (resp. W@:{H;(F)J x[H;(F)J )

Remark .2

1. This is a natural definition of regional gradient observability extending those given in [1] to the case where we restrict
the observability of the gradient to a boundary subregion T".

(r)} X[H;(F)J <:>(ker(H*)={O}>.
3. |mi§K*i=(H1(Q))”x(H1(Q)T@ker(KV):{o}.

4. There exist systems which are not G-observable on the whole domain € but G-observable on T". This is shown
through the following counter example.

N~

2. WPT):(H
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Example .3

LetQ = ]0,1[><]0,l[, we consider the two dimensional hyperbolic system described by the equation

62y(x1,2x2,t) _ azy(xl,zxz,t) . 82y(x1,2x2,t) onQ
ot OX1 OX3
y(%, %,0) =y (%, %) w yix,x,)  onQ (2-4)
¥(¢1.62:t)=0 onX
Measurements are given by the output function
:Iy(xl,xz,t) f (., X, ) dx, dx, (2-5)
D

where D =]0,1[x { %} is the sensor support and f (x,%,)=sin(37% ) is the function measure.

Let F—{O} [O,l] be the target subregion, and g:(go,gl) the initial gradient to be observed on I' with
9%(x, %, ) = (zcos(zxg)sin(zx,), 7sin(zx )eos (7 x,))and
g' (%, %, ) = (= zzsin(zx; ) cos(z x, ), — 7wcos(z x,)sin (X, )). Then we have the result.

Proposition .4

The gradient g is not approximately G-observable on the whole domain Q, however it may be approximately G-
observableon T .

Proof

To prove that g is not approximately G-observable on Q, we show that g € Ker(K§*).

We have

—<V*gl,Wij>L2(Q)Sin —ﬂijt:|<wlj'f> 12(D)

ij= ij

where 4 =— ( +] )72' associated to the eigenfunctions Wij(Xl,X2)=ZSin(iﬂxl)Sin(jﬂXZ).

Vi, jelIN,
(i, £ (D)=<25in(i;zx1)sin(jﬁx2),sin(37rxl)>L2(D)
. 1
Si (JEJ-([SIn iz )sin(37x,)dx,
1
:sin( jj cos(i —3)zx, —cos (i +3)7 x| dx

0

This gives

0 if (i#3orje2IN)

(i, ). (D)_{sin(jgj if (i=3orje2IN+1)
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Therefore consider only the case where i =3 and je2IN+1
* 0 _ /40 _
<V 9 'W3j>|_2(Q)_<g ’VW3J>(|_2(Q))2

1 1
:J- 622 cos (7% )cos (37 x, ) dx, I sin(zx, )sin( jzx, ) dx, +
0 0

1 1
2j;zzj sin( 7z x,)sin(37x, ) dx, J. cos( 7 x,)oos( jzx,)dx,
0 0

1 1

since cos( 7z X, )cos(37 %, )dx, =0 and sin( z X, )sin(3zx,)dx, =0, we have
_[ (7% )c0s (37 %) dxy _[ ( 1) ( 1) 0%
0 0

<v*g°,w3j>L2(Q) =0 ,Vje2IN+1

(Vgtwy >L2(Q) =(g".vw, >(L2(Q))2

1 1
= j —672sin(zx )cos(37x ) dx Icos(;zxz)sin( 7% ) dxy —
0 0

1 1
2j;r2'[cos(;rxl)sin(37rx1)dx1jsin(;rxz)cos(jfrxz)dx2
0 0

1 1
We also have J.Sin(ﬂ'Xl)COS(37Z'Xl)dX1 =0 and I cos( 7z x, )sin(37z x, ) dx, =0
0 0

Then <V*gl,W3J>Lz(Q) =0 ,Vje2IN+1

This gives K§*(go, gl): 0, and then the system is not approximately G-observable on Q.

On the other hand g may be approximately G-observable onT" .

[

Indeed, suppose that KV y ;(r;(rj_/(go, gl)=0, then
= 0 1 g
Z <)(r7g ' Xrr VW >(L2(F))2 cos \/_ﬂvijt+ﬁ<lr7glvll“7vwij >(L2(F))2 sin/—4; tJ<Wij v f>|_z(D) =0
ij=1 ij
Since for T large enough, the set {Sin,l—lijt,cosJ—/lij }ijzl forms a complete orthonormal set of LZ(O,T ) we have

<lr79011r7vwij >(L2(F))2 <Wij f >L2(D) = <ZF79117(F7/VWij >(L2(F))Z <Wij f >L2(D) =0 Vvi,j=1

Butfor i=3 and je2IN +1 we have <W3j,f>L2(D)=sin(j%j¢O

This gives

<ZF79017(F7VW3]>(L2(F))2 :<Zr79117(r7VW3j>(L2(r))z =0 Vje2IN+1

Butfor j=1
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1
(xr7g”, ZrVVW31>(|_2(r))2 ) ! 6 sin’(7x,) dxy

=372 %0

e —

0 1

thus KV y Zr;(ry(g g ):tO.

The following results characterize the G-observability on T".
Proposition .5

The system (2-1) together with the output equation (2-2) is

1 n 1 n
1. exactly G-observable on T if and only if there exists ¢ >0, such that for all z~ e[H 2 (F)j x {H 2 (F )J ,

Hz*H[Hzm]z[H:(r)]“ <K V72 g )

2. approximately G-observable on I" if and only if the operator N = HH is positive defined. i.e.
1 n 1 n
* E E . * * " n 1 n 1 * il
vz G(H (F)J x[H (r)} ((Ne22 >£H2(r)] X[Hz(r)] 0= z'=0.

Proof

1. Let us consider the operator h=Id » . Since the system is exactly G-observable on I", we have

{H;(F)JHX[H;(T)J

Imhc ImH , and by the general result given in [9], this is equivalent to there exist ¢ >0 such that

vz {H;(r)}n x {Hi(r)Jn;

1 ) 1 4
2. Let Z*G[HZ(F)J XLHZ(F)] such that <er*,z*>[H§(r)}” [H;(r)]” = O

* K

h z

2(0,7;1R)

[H;(r)]nx[H;(r)]n = C“H Z

So <H*Z*,H*Z*>,_2(0 -|--|Rq)=0 which means that z°' € Ker H and since (2-1) is approximately G-observable

then z° =0, thatis N is positive defined.

1 n 1 n
Conversely, let Z*e[HZ(F)J x[HZ(F)J such that H'z" =0, then <er*,z*>[H;(r)]” [H;(r)]” =0, that is the

system is approximately G-observable onI .
3 BOUNDARY GRADIENT STRATEGIC SENSORS

The aim of this section is to give a characterization of sensors structure (number and location) in order that a system be
approximately gradient observable onI".

Consider the system (2-1) observed by ( sensors (Di, fi)l which may be pointwise or zone, where D; c Q is the

<i<q ’
location of the sensor and f; € Lz(Di ) is the spatial distribution of the measurements on D; . The output function is then
given by
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2(t)=(z(t)-... z4(t)) teloT[ (3-6)
such that
n
M inthe pointwise case
= 0X
Zi(t): n 6( )
Z<Y_t fi> in the zone case
)\ % i)
Definition .6

1. Asensor (D, f ) is said to be gradient strategic on ' if the observed system is G-observable on T".

2. A sequence of sensors (Di,fi )lgisq is said to be gradient strategic on I" if there exists at least a sensor

(Di i ) which is G-strategic on I".
0 0

We assume that the operator A is of constant coefficients and has a complete set of eigenfunctions (ij) in

HZ(Q)ﬂ Hi(Q) orthonormal in LZ(Q) associated to the eigenvalues A, of multiplicityr,,. Assume also that

r =supr, is finite, then we have the following result.
mel

Proposition .7

If the sequence of sensors (Di, fi)lsisq is G-strategic onI", then q=r and rang M, =r, ,Ym=1, where for

1<i<q and 1<j<r,

L O Wiy
™ (b;) inthe pointwise case

0 Xy

(M m)i i~ n1
. ow,
Z "ot in the zone case
= 0 xk g
2(Dy)

Proof

The proof is developed in the case zone sensors located inside . We show that if the system (2-1),(3-6) is G-observable
onI", then rank M, =r,, ,Vm=>1.

Suppose that there exists my >1 such that rank My, # I, » thatis, there exists

Zmy1
Iy, =| ¢ |#0 and M, 7z, =0.
MoFing
2y 1 n
Let z; =| : e[Hz(F)] verifying
ZIFI

<Zl’ZF7VWm ]>{ %( )Jn =Zmyj ,ijl,...,rmo

<zf,;(ryVij>[H;(r)]n =0 ,Vm=zmy ,Vj=1..,1,
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*

Z31

1 n
and z,=| : e[HZ(F)J verifying

Z7n

<Z;Zr7/VWm0j>[H;(r)]n = Zpn, V=l

<Z;Zr7vwmj>[H§(r)Jn

I
o
<
3
*
S

o
<
I
Lo
é“

Then we have

r

my n .
ZO<ZIer7VWmOj> 1Y <%,fi> =0, Vi=1...,q.
=) H2(r) O Xy (o)

&, e 0/ Wy _

: <22'/‘KF7/VWm'> ! \ ! lfi =0, vm?'—'m(), V|=1,...,q.
- W2 (n) X

= o= (0,

N |-

1 n n
Thus there exists z~ :(z;,z;)e[HZ(F)J x[H (F)J suchthat z° # 0 and Vi=1...,q

e *_ o Iy « 1 . ] n 6ij 3
KVy xrz _;é{@/ ;(rzl,Vwmj>cos,/—ﬂmt+ﬁ<7 ZrZz-Vij>S'“«/—/1thl< o%, ,fi>_0

ie. ker(K 5*;7*;7{5)7& {0} and the system (2-1)-(3-6) is not G-observable onT" .

Remark .8

1. The above proposition implies that the required number of sensors is greater than or equal to the largest multiplicity of
eigenvalues.

2. By infinitesimally deforming of the domain, the multiplicity of the eigenvalues can be reduced to one [4,8].
Consequently, the regional G-observability on the subregion @ may be possible only by one sensor.

4 APPLICATION TO SENSOR LOCATION

In this section, we give applications of the above results to a two-dimensional system defined on Q= ]O,a[x]O,d[ with

2

a
d—zé |Q by
%y %y 0%y
— Xy, X5, b)) =—= (X, X0, U )+ — (X, X5, T onQ
atz(l Z)axlz(l 2 ) a)(22(1 2 )
0
Y(x1%2,0)=y% (1, %) Ey(xl’leo): y'(x.x;) on Q (4-7)
¥(¢1.62:t)=0 on X
. . o2 o2 2 (%) % .
The eigenfunctions of the operator A=—+— are Wi-(xl,xz)z—sm Iz— |sin| Jr—= | associated to the
X o5 Jad a d

2 2 2

i

eigenvalues 4 :—(—2+;—2J7z2 of multiplicity r; ;. Since :—2 z1Q, i =1 (see [4, 8]) and system (4-7) may be G-
a

observable only by one sensor.
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4.1 Zone case
Here we consider the system (4-7) with sensor (D, f ) where D c Q (or D < 0Q) is the support of the sensor and
fe L2(D) is the spatial distribution of the sensing measurements on D .
% & Br=Bi

for O<ey <y, <a and 0< B, < B, <d, denote by 771:0‘142'012’ 2=ﬂ1;ﬂ2,ﬂ1=71 and u, = 2

4.1.1 Internal zone sensor
Here we consider the system (4-7) augmented by the output function

0 0
2(t) = ja—;/l(xl, X, t) F (X, Xy ) dxq dx, + .E[a—)zlz(xl, Xo,t) F (X1, X, ) dxg dx,

and assume that the sensor is located inside the domain Q over D = ]al,az[x ]ﬂl,ﬁz[.

Proposition .9
If f is uniformly distributed on |ag,a,[x A, By, then the sensor (D, f) is not G-strategic on T if 'ul elQ or
e lQ or ( = elQ and 12 d € IQ) or if there exists k,1 e IN” such that 2k7;1 and 2172 d are odds.
Proof
We have
2 6Wi- > 2 . Bf,
j 2 | I_[
Z  f )= L[ # (kg xp oosin X sin 222 dx, dx,
k=1< OX, ad | a ) a d
. % f,
+di-“‘ f(xl,xz)sml;z;cos jﬂ'—XmdXZ
a B
If f(x,%;)=C , we obtain
2 GW,] > 2rc J e
o ) =—— cosiz L Slnjir X2 dx,dx, + smlzz—cosyr—dxldx2
;< 6Xk \/_ J-J- d d 0.[73"1 d
- /o Hy Ha H
== Icosi;rmdchosiﬂwds Isinjnmds+‘[sinjﬂw ds
ayad | j a 0 a 0 d 0 d
2j7ZC )7 (77 —S) Y2 (77 +S) H (77 —S) Hy (77 +S)
= jsiniﬂl—ds+jsiniﬂ1—ds jCOSjﬂZ—dS+ICOSjﬂ2—dS
dVad 0 a 0 a 0 d 0 d
ﬁ\/_smm“ sin jr == 5 (cj cosmﬂ sin jor = 4 +asm|7z77 cos jr = 4 j
from where one deduce the result.
4.1.2 Boundary zone sensor
Consider the system (4-7) with the output function
0 0
2(t)=[ a6 01 (68)0ads + [T Ha601(68) dads
Xy D6x2
July, 2013
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then we have

Proposition .10

1. If f is uniformly distributed on D= ]al,az[x {0} (oronD :]al,az[x {d}), then the sensor (D, f) is not G-
strategic on I if e S IQ or e Q.
a a
2. If f is symmetric with respect to the point (771,0) or with respect to the point (ﬁl,d ) then the sensor (D, f ) is

not G-strategic on T if there exists k € IN™ such that 2k s odd.
a

3. If f is symmetric with respect to the axis X, =7, , then the sensor (D, f ) is not G-strategic on T if e Q.
a

Proof

2, [ow; 2jr F X
We have Z< u f> = f(x,0)siniz=Ld x,
i \ O 0'[ a

dad

1. if f(xl,O) =C, we obtain

22:< > 2jrmc /j‘l SN 5) b (3, +5)
= siniz ds+IS|n|ﬂ—ds
Y 5Xk d.ad A a 4 a

k=1

—Ccosiz

23.j c (COS i (771 ;/ui)

“idyad
4ajc ( 771) . ( ylj
= SIN| lz— |SIN| | 7T—
id/ad a 3

In the next, we set g(xl)z f(xl,O), then we have

Then we deduce the result.

—

2jz | f (=), (m+5
— J.g(nl—s)siniﬂ la ds+J.g(771+s)sini;leds
0 0

2. if f is symmetric with respect to the point (771,0), then we have g(77l - s)z —g(771 + s) in this case we have

31001 24 ezl

k=1

4jr t s
=T cosig '[g(n1+s)sini7z—ds
aly a

dad

and the result is proved.

3. if f is symmetric with respect to the axis X, =7, we have 9(771 - S)= 9(771 + s), then we have
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2

2
k=1

i?Wij 2 J 7 0 { - (771 + S) .. (771 - S)jd
)= + AL
< X, > \/— ‘(!' g(nl S)siniz +Sinix S

. H
_ U7 Gnigh J‘g(n1+s)cosi7z§ds

dad aly

Then the result is proved.

Proposition .11

1 If f is uniformly distributed on D = {O}x]ﬂl, ﬂ’z[ (oron D= {a}x]ﬁl, B,[). then the sensor (D, f) is not G-

strategic on I if % elQ or 72—2 elQ.

2. If f is symmetric with respect to the point (0,772 ) or with respect to the point (a, 772), then the sensor (D, f)

is not G-strategic on T if there exists | € IN” such that 2I7(7j—2 is odd.

3. If f is symmetric with respect to the axis X, =1, , then the sensor (D, f ) is not G-strategic on I" if T2 Q.

The proof is similar to that of the previous proposition.
5 REGIONAL BOUNDARY GRADIENT RECONSTRUCTION

In this section, we develop an approach for the reconstruction of the gradient of the initial state of system (2-1) on a
boundary subregion ' of 0Q . The considered approach consists in the reconstruction of the gradient on a subregion

o c Q) suchthat I' € 0Q N dw by extension of the Hilbert uniqgueness method.
Proposition .12

If the system (2-1) together with the output equation (2-2) is exactly (resp. approximately) G-observable on @ then, it is
exactly (resp. approximately) G-observable onT .

Proof

1. We prove that If the system (2-1) together with the output equation (2-2) is exactly (resp. approximately) G-
observable in @ then, it is exactly (resp. approximately) G-observable onT" . For this purpose, it is sufficient to show
that

(Hi(r)}n X {H;(r)]n clmyy VK"

1
2

1 n 1 n
Lety :(yl,yz)e[Hz(F)} X(HZ(F)j , and let V:(yl, 92) be its extension to {H

trace theorem, there exists a continuous operator

(6Q)Jn x [H ;(GQ)T . Applying the

R: [H;(ag)] X[H;(aQ)J - (Hl(Q))F x(Hl(Q))n

.y2)= byt sy?)

with
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1 n
‘R:(HZ(GQ)J > (Hi)f
(y]_l y2 ----- yn)_) (iﬁylyiﬁyz ..... {}%yn)
suchthat 7Ry =y where R:H2(6Q)— HY(Q)

We have zwﬁye( 1(a))TX(H1(a)))7, since the system (2-1)-(2-2) is exactly G-observable on @, there exists
2 2(0,T;IRY) such that 7, Ry = 7, VK z and then (7.7, R¥)=7(77,VK 2).

Thus 777, 7,07 )= 777 7,VK 2).
But 7777, VK 2)= 77 (VK 2) and 77(7,7,%7)=y then  Z7VK'z-y.

Consequently the system (2-1)-(2-2) is G-observable on I".

1 n 1
2. We show that Ve > 0,Vy e [H Z(F)J X[H Z(F)J 137 12(0,T;1RY) such that
”Zr}7VK ‘y y“[H;(r)]nx[H;(r)Jn R

Let yz(yl,yz)e[H;(F)] X[H;(F)J and y=()71,)72) be its extension to( ;(6Q)] x[ ;(60)] !

By the trace theorem, there exists Ry e (Hl(Q))1 x (Hl(Q))n suchthat YRy =Y.
Since zﬁy € (Hl(a)))n X (H 1((0))1 the system (2-1)-(2-2) is approximately G-observable on @, then

¥e>0,3 2 L%(0.T;IRY) such that |7, VK 2~ 7, %Y (

< 5-8
ol = ©2)

By the continuity of the trace 7 , we have

" <|ZoZoVK 2= ZoZoR

2.7 2)-7 (zwxwf’?V)H[ o ] [ % @)

(59)}

By the continuity of the operator ;7:,, we have

”;?;Z“‘§K*z_z;;?“’s_~ (HQx(H ) S“;?”’§K*Z_;?‘”_~ (

o) (H ()]

From (5-8), we obtain “77()?;)701§K*Z)_ 77(77;}?“’%?)““z(aQ)Jnx[H;(aﬂ)Jn =¢

The operator - is continuous then
Hfrf@;fww*z—f;fwﬁ9>\\[Hz(r)}"x[Hz of <7z, vk2)-7 <zwmy>u[ e

Since, ;_(1-77(;7;;7”§K*z —;72,;@,%9): ;_(r?wK*z —ﬁy) = ;?rf(?K*z)— y, this gives
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“)_(rng*Z B y”[H;(r)Tx[Hi(r)}n =¢

Then the system (2-1)-(2-2) is approximately G-observable on I".

ISSN 2278-5612

By the above proposition, we are going to reconstruct the components of the gradient of the initial state on @ , and deduce

its traceonI.

Consider the system (2-1) with the output (2-2), and the set

F :{(¢°,¢1)e (Hl(Q))1 x(Hl(Q))”/(pO =" =0sur Q\a)}m

(V2,01 (1.8 (M2 ()N HA@K (HA(2)N HA@))

For (¢O,¢1)e (H ()N H(l)(Q))x (H 2(Q)N Hé(Q)) , consider the system

%g(x,t
gt(;( ). Ad(x,t) onQ
#x0)=°6) . 22560 ono 59)
#(¢.t)=0 ony.
has a unique solution ¢ C(O,T; H3(Q)NH 2(Q))ﬁ Cl(O,T; L2(Q )) (see [6]).
Considering a zone sensor, the output equation is then
n
2(t)= <M f > (5-10)
k=1 0% *(D)
where D is the sensor support, f the function measures and we consider a semi-norm on F defined by
(o 0)<Froflof o) :] Z<M f> E (5-11)
F 0\ k=1 O ?(D)
where ¢(x,t) is the solution of (5-9).
The reverse system given by
2 n
D vy e 3 2t} o(0i() one
ot k=L 0% 12(D)
w(xT)=0 6l//é>t<,T):0 onQ (5-12)
w(£,1)=0 ony
has a unique solution € C(O,T; H(Q)NH 2(Q))ﬂ Cl(O,T; L2(Q )) [6].
We denote wo (X): n//(x, 0) and l//l(x): 61//6(;(,0) and consider the operator
A((/JO,(/)l)= P(— ‘Pl,‘I’O)
where P = ;?ij W= (1//1,1//1,...,1//1)‘{’0 = (1//0,1//0,...,;//0).
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The retrograde system

ot? e
Z(xT)=0 , 622’;’T):0 on Q (5-13)
z(¢,t)=0 onY

has a unique solution Z C(O,T; H3(Q)NH Z(Q))ﬂ Cl(O,T; L2(Q )) (see [6]).

We denote Zo(x)= Z(X,O) and Zl(x) _ azé:,o) .

If ((oo,(pl) is chosen such that 1//0 =7° et 1//1 =Zon o , then the regional gradient observability turns up to solve the
equation

Al o) P(— 21,20) (5-14)

where Z' =(z1,2%,...,.2") and Z°=(2°,2°,...,2°).

Proposition .13

If the sensor (D, f) is G-strategic on @, then the equation (5-14) has a unique solution ((po,wl) which coincides with the
gradient of the initial state (Vyo,Vyl) in the subregion @, and the gradient on the subregion I' is given by
(vy2. vyt )=z 7o ).

Proof

1. Let us show first that if the system (2-1) is G-observable, then (5-11) defines a norm on F . Indeed Consider a basis

(Wj )jzl of the eigenfunctions of A , without loss of generality we suppose that the multiplicities of the eigenvalues are

simples, then

n
”(goo,(pl]": =0 <% f> =0 on ]O,T[ which is equivalent to
*(0)

. 1 , 0 /ow;
Z{<¢01W1>Lz(ﬂ)cosﬁt+ﬁ<¢lle>'-2(9)sm\/__/1jt kz_;‘<a_xkj f>L2(D)=O

j=1

The set {sin,/—lj t, cos,/—ij t, ] 21} forms a complete orthogonal set of LZ(O,T ) then we obtain

N /ow; .
<¢O’W1>L2(Q)z<a_x:’ f>L2(D) =0,Vj>1

k=1

N /ow;
tw, —Lf =0,vj=1
<¢ WJ>L2(Q)1<21:<8XK >L2(D) a

N /ow;
and since the sensor (D, f) is G-strategic on @ , we have Z<—J , f> #0,V j>1 (see [1]) then
X
k=1 k *(D)

<¢O’Wj>|_2(g) :<¢1’WJ>L2(Q) =0, Vj>1.

Consequently ¢° = ¢1 =0 and thus (po = (pl =0.
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Conversely, p° =" =0= ¢° =c,and ¢' =c, (constants),since ¢e C(O,T; H3(Q)NH Z(Q))ﬂ Cl(O,T; L2(Q )) and from
#=0 onZX, (5-11) is a norm.

2. Let denote by F completion of F by the norm (5-11) and F" its dual. We show that A is an isomorphism from F
into F*. Indeed, let (é)o,(j)l)e Fand ¢ the corresponding solution of system (5-9), we multiply system (5-12) by

dg(x,t)

, and integrate on Q , we obtain
0 Xy

04 0% 09 29 < >
—- 7 Ay 7o f
<a"k o’ >L2<> <8Xk >L2<o) < Z %" i)
The first term gives
s A R
(2.2) {Eolets) o)) {2l
oX, ot i OXy ot 2(@) OXy ot () OXy 2(0)
Using Green formula for the second term, we obtain

L°(Q)
op 0p ~-/ @ Gy
<ax—¢'A"’> +<ax_¢’z<a_f'f> %Df> :< aT¢’”’>
. (@) Ko VB 1) 2(Q) SR AE(C)

d%g(& 1) 5¢(§ t) oy (&, t)J f og(x, t) < o¢ >
t d> , f f (x)dx dt
'ﬂ N ) 017 0% K 0Ny +£i x G\ox LZ(D);(D(X) 5

Q)

The boundaries conditions gives

<((/3°:€7’1 1. k—l< O% ' >L2(D) (Z<%¢_’S)’f>LZ(D)Jdt

Using Cauchy-Schwartz inequality, we have

<(¢3°,¢1)A(¢°,¢1)> s“(é)o,éall\FH(coo,qall\F %, 0t), (0.6 )< F

Hence,

((°. ). Al 0 ) =[ (.0 )| vle® )< F

This proves that A is an isomorphism and consequently the equation (5-14) has a unique solution ((po,r,iﬁl) which
corresponds to initial state gradient to be observed on the subregion @ . Thus the initial state gradient to be observed on

Tis given by (Vy2, vyt )= 7:7(0%.¢").
6 NUMERICAL APPROACH AND SIMULATIONS

In this section we develop a numerical approach which leads to explicit formulas for the gradient on the subregion @, and
deduce the gradient on I' < 0Q 0w .

We consider the case where system (2-1) is observed by the output equation

2(t)= kz<ay( )f>L2(D),te]o,T[

0 X

6.1 Numerical approach
Proposition .14

If the sensor (D, f ) is G-strategic on @, then the components of the initial gradient on @ may be approached by
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T n
vy© zi 2 . Zi(wm, f)jz<% f>cos — At dt<wm,2N—X|J> vw;  (6-15)

]

<ﬂ, f>sm— VAt dt<wm,%> VW,  (6-16)
|

<
<»—\
Q
Mz
[
N
~
N
| M3
Mz
=
3
.
o
M:

'1‘
—
7/ N\
=
M-
z
/\
&)
|2
= —
.
=
N——
N
3
'L

where M a truncation order.
Proof

In the previous section, it has been seen that the regional reconstruction of the initial state gradient on @ turns up to solve
the equation (5-14). For that consider the functional

ol ) =5 (Al o) (0" 01 ) - (P21, 2°). . 07

2

T( n

=1I Z<Mf> dt—<—21,¢°>—<Z_°,¢1>
2 0\ k=L X L*(D)

And solving equation (5-14) turns up to minimize ® with respect to (qpo,(pl)

After development and when T ——+o0 , we obtain

b3l 30, fa-i8fiomemr (g )

o\ k=1 j=l

For T large enough, we have

A=t

#°(x)= (6w Jw; (x) and ¢(x)= D" (4" w; )w; (x)
= j=1

since (¢0,¢1)=§(¢0’¢1) , then

¢0(X):g<¢o'wj>(?§(’j Z\;(VZJ ..... ZZ(V:J on @ (6-17)
and

+00 OW: OW: OW.:

¢1(X)=§<¢1,Wj >[ 6\,)\(/1] , 6\:(\,2] ..... a\;v: J on @ (6-18)

we obtain
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and

. %<¢O’Wi>i2<g)(

¢

which solutions are

Now, let Z(X, t ): ZZm(t )Wm (x) be the solution of the system (5-13) with
m>1

LZ(D) :
Z,(t J.Z< , >L2(D)sm —Jm (s—t)ds

m 0 i=1l
Thus
(W, f>L2(D) _
ARy ivay e IZ , siny/— 4, sds w,,(x)
m>1 \/ Am 0 i=1 L%(D)
and

Ton
0Z Z Z ovyl.,
Zl:E(X’O):_ <Wmlf>L2(D)J. <yaf> Cos _;{'deS Wm(x)
pose iz \ O (D)

Thus we have

= < AW > . OW;
Z° vw,), = (D) < , > sin —Amsds< m,—J>
< WJ>L(w) IZ:;‘; \/ A !; 2(0) ! W 0% (o)

and
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(289w >L2(w) :_iimm’ Doy IZ:'<6;(>'<;S)’ f>

T od < 6Wj>
COS \/— Ay SUS( Wy, —
| =1m=1 0l 6X|

With these developments, according to (6-19) and (6-20), we obtain. V j >1

T
2 n_+o n ay(.,s) OW:
<¢0'W1>L2(Q)= ZZZ<Wm’f>LZ(D)IZ< ™ ,f> cos —/1msds<wm,8—xJ
" /ow. I =l m=L 0 i=L i *(D) I 12(0)
k=1 0%y (D)
and

-2, 8 & (W F) oy T /ay(s) i o,
<¢1’WJ>L2(Q)= i 222 L°(D) jz< ox ,f>L2(D)sm —ﬂdes<Wm:a—XJ>L2(w)

T i<awj f> 1=l m= — 0 i=l
k=1 0% L*(D)

replacing in relations (6-17) and (6-18), we obtain

L2(D) (o)

+00 n 4o
2

P ()= ZZZ<Wm,f>i_n <a;()-(;5),f>cos N sds<wm,%>ij(x)onco

and

o -2%; D32 (W, ) T

P=3 [ r f>]zzﬁ J30(E2 v st S w0 onc

il
Téan

We consider a truncation up to order M, (M eIN *), then we obtain formulae (6-15) and (6-16).

We define a final error

A A PR

2
L3(r)
The good choice of M will be such that £ <¢ (g > O) and we have the following algorithm:
Algorithm:

Step 1: Data: The region @ , the sensor parameters D, f and ¢.

Step 2: Choose a truncation order M .
Step 3: Computation of
6.2 Simulations

Here, we consider the two-dimensional system evolving in Q = ]O,l[x ]0,1[ by

o%y o%y o%y
?(lelet)Zm(xuxz,t)+a—2(X1,Xz:t) Q

1 X3
0
y(xl,xz,O)zyO(xl,xz) ) Ey(xl,xz,O):yl(xl,xz) Q
y(¢1.650t)=0 )

Measurements are given by one pointwise sensor
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5 oy(by, b, t)
t = —_—
2(t) kE:l 2% tepT[
where b =(b;,b,)eQ denote the pointwise location. Let

2a)=[ 527w vyt )=( 2277, o

be the initial gradient to be reconstructed on I"= {1}><[0,1].

Let o= ]0.9,]{>< ]O][ and
WO, )= (ZAlzz cos(27 )sin(z x, )J

A zesin(27x, )cos(7x, )

Vyl(xllxz){

2B x; X, c0s(272x )sin(7z X, ) + Bx, sin(27x; )sin(zx, )
B X, Sin(272x, )cos(7x, )+ Bx, sin(27x, )sin(zx, )

be the extensions of Vy?, Vy% to w, where A; and B are selected to satisfy numerical considerations ( in order to
obtain reasonable amplitude for Vyg and Vy#). Consider the following data:
T=3 A=0015 B=099, (b,b,)=(0.66,0.98).

Applying the previous algorithm and using the formulae (6-15), (6-16), we obtain the following figures.

Fig 1: Representes Vy0 (continuous line) and §y° (dashed line) on T .
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Fig 2: Representes Vyl (continuous line) and @yl (dashed line) on T".

Now let study the link between the subregion area and the reconstruction error. Also the evolution of the reconstruction
error gith respect to the amplitude A of the initial gradient taking the subregionF:{l}x]O.Q,l[ .and B=0.99.
Numerical simulations leads to the following tables.

Table 1. means that the larger the region is, the greater the error is.

Subregion I Error &£
fjxp551 | 37835x1072
Wx.61 | 3.4208x1072
f1}x0.651 | 23829x107
xp71 | 1.1944x1072
Wxp.751 | 3.8238x103
=P8l | 59483x10™
Wxp8sy | 18861x10°°
ixpod | 64113x10°

Table 2. indicates that the reconstruction error depends on the amplitude of initial gradient, the greater the amplitude is,
the greater the error is.

Amplitude A, Error &£
0.05 4.1544x1072
0.02 5.5612x107°
0.015 2.8133x1072
0.01 9.9394x107*
0.008 5.2611x107*
0.005 1.0288x107*
0.004 3.6082x107°
0.003 6.4113x10°°
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CONCLUSION

The question of regional boundary gradient observability of hyperbolic systems was discussed in connection with sensors
structure. A reconstruction approach of the gradient on a boundary subregion was developed leading to useful algorithm
that successfully illustrated with examples and simulations.
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