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ABSTRACT 

The main objective of this study was to present in one applet java program the five approaches for solving the Multi-
Objective Transportation Problem (MOTP). The program was built using the java programming language, to solve 
the MOTP and to visualize the solution steps. In addition, the study made a comparisons between the four different 
approaches used to solve the MOTP. For better understanding, the solution procedure is illustrated with a 
numerical example. 
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1. INTRODUCTION  

The Transportation Problem (TP) is a special type of linear programming problem. It is considered as a minimum 

cost flow problem,  which deals with the transportation of commodities from m sources to n destinations. This 

means to transfer a quantity of products from plants to warehouses such that the transportation cost is minimum. 

TP usually involves a single objective function. However the transportation problem which involves multiple 

objective functions is called Multi-Objective Transportation Problem (MOTP).  

A number of studies has been available to obtain an optimal solution for balanced transportation problems. That is 
when the total supply is equal to the total demand then the transportation model is said to be balanced [23]. But in 
real life, the decision maker faces an unbalanced transportation problem in which the total supply is less than the 
total demand. This can be solved through compromised solutions. M. Zangiabadi and H. R. Maleki used a special 
type of nonlinear (hyperbolic and exponential) membership functions to solve MOTP, it gives an optimal 
compromise solution [17]. Kishore and Jayswal [10] introduced a method, called fuzzy approach, to solve 
unbalanced transportation problems with budgetary constraints. Charnsethikul Peerayuth and Sverasreni Saeree 
[3] discussed a method for solving the constrained bottleneck transportation problem under budgetary condition. Lin 
and Cheng [14] gave a genetic algorithm for solving a transportation network under a budget Constraint. Senapati 
and Tapan Kumar [22] investigated fuzzy multi-index transportation problems with budgetary restriction. Khanna, 
Bak hshiand Puri [9] introduced an algorithm for solving transportation flow under budgetary constraints. Tiwari, 
Dharmar and Rao [24] investigated how the preemptive priority structure can be used in fuzzy goal programming 
problems. Weighted goal programming for unbalanced single objective transportation problem with budgetary 
constraint has been discussed by Kishore and Jayswal [11]. Pandian and Natarajan [18] introduced the zero point 
method for finding an optimal solution to a classical transportation problem. Subsequently, a number of 
transportation problems have been appeared in the literature [15,7,6, 21, 8].  

The main objectives of this study were to present in one applet java program the four approaches: 

 Interactive algorithmsI ( Interactive algorithmsII)[20]. 

 A fuzzy approach[1,16]. 

 Interactive a fuzzy goal programming[2,19].  

 Pareto-based approach[23].  

The study solved the MOTP and made a comparison between the four approaches . The program was built using 
the java programming language, to solve the MOTP and to visualize the solution steps. The study addressed the 
following steps: The first was to solve MOTP using the five approaches. The second was to combine the genetic 
algorithm and  the five approaches. The  third was to provide a visual solution which compare between the five 
approaches.  

The remainder of this paper is organized as follows. In section (2) some basic concepts and definitions about the 

MOTP and the genetic algorithm were introduced. In section (3) the study described five methods which have been 

used to solve the MOTP. Section (4) showed the implementation of the problem and results. Section (5) analysed 

the results and compared between the the different solutions of MOTP. Section (6) is the conclusion of this 

research. 

2. PRELIMINARIES 

Given a transportation model with m sources and n destinations, the amount of supply available at source i is ai, the 
demand required at destination j is bj, the cost of transporting one unit between source i and destination j is cij and 
xij denotes the quantity transported from source i to destination j so the cost associated with this movement is cost
 quantity

ij ijc x . The cost of transporting the commodity from source i to all destinations is given by 

1 1 2 2 3 3

1

...
n

ij ij i i i i i i in in

j

c x c x c x c x c x


                               (1) 

Thus, the total cost *( )F X of transporting the commodity from all the sources to     all the destinations is           

*

1 1

( )
m n

ij ij

i j

F X c x
 

                                             (2) 

The sources may be factories, warehouses, etc. and they are characterized by available quantities denoted

1  , ,  .ma a The destination may be warehouses, sales outlets, etc. and they are characterized by available 
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quantities denoted 1  , ,  .nb b  The transportation cost between a given source i to a given destination j pair is 

the penalty
ijc . The unknown quantity to be transported between the source-destination pair ( , )i j denoted

ijx . In 

the simplest case, the unit transportation cost is constant. The transportation problem is to find the optimal 

distribution plan for shipments from sources to destinations that minimizes the total transportation cost, in the same 

time, it seeks to find an optimal distribution plan for a single commodity. The mathematical form of MOTP can be 

stated as follows:  

1P  *

1 1

min          ( )
m n

k
ij ij

i j

F X c x
 

                  (3) 

                  Subject to      

                                       
1

        1,2,...,
n

ij i

j

x a i m


                                     (4) 

                                      
1

        1,2,...,
m

ij j

i

x b j n


                                       (5) 

0,      1,2,..., ,      1,2,..., ,      1,2,...,ijx i m j n k K                 (6) 

Where *( )kF X is the multiple objective functions, it is a vector of k objective functions and *X is a feasible vector 

solution of 1P . The above MOTP form is knewn as the canonical form, by changing the pair of equality in(4) and (5) 

to a pair of inequality, it results the equivalent problem which is in standard form. Every minimization problem can 
be appeared as a maximization problem and vice versa.  

Genetic algorithm has shown a great potential to work out several real-world problems in the point of optimization. 
One of these problems is MOTP. That algorithmic model begins with the creation of a set of solutions which are 
referred to as a population of individuals. Each individual in a population consists of a set of parameter values 
which completely describe a solution. A solution is encoded in a string called a chromosome, which consists of 
genes that can take a number of values. Initially, the collection of solutions (population) is generated randomly and 
at each iteration a new generation of solutions is formed by applying genetic operators (crossover, mutation, 
selection). Each solution is evaluated using an objective function called a fitness function and this process is 
repeated until some form of convergence in fitness is achieved. The goal of the optimization process is   to 
minimize or maximize the fitness.  

Dominated Solution: A solution X (1) is said to dominate the other solution X (2), if both conditions 1 and 2 are true: 
The solution X(1) is no worse than X(2) in all objectives, or no value of  F 

j
( X (1) ) is greater than any value of  F 

j
( X(2)) 

for all     j= 1,2…M. 

The solution X(1) is strictly better than X(2) in at least one objective, or F
 j
(X(1))   F j(X(2)) for at least one j{ 1,2…M}. 

Nondominated Set [20 ]: Among a set of solutions S of 1P , the non-dominated set of solutions 'S are those that 

are not dominated by any member of the set S . 

deal Solution [1]: For the MOTP, the ideal solution is the point in the outcome space which represents the vector
1 2

( ) ( ) ( )( ( ), ( ),..., ( ))k

o i o i o iF X F X F X where  ( )( )i

o iF X  denotes an optimal value for the i-th function ( )( )i

o iF X  

and 1 2

( ) ( ) ( ) ( )( , ,..., )n

o i o i o i o iX x x x is the vector of variables which optimizes ( )( )i

o iF X
 

Compromise Solution [7]: A feasible vector *X S is called a compromise solution of 1P  if and only if *X  have 

the minimum deviation from the ideal point than any other point in S . Thus, the compromise solution is the closest 

solution to the ideal one that maximizes the underlying utility function of the decision maker. If the compromise 
solution satisfies the decision maker’s preferences, then the solution is called the preferred compromise solution. 
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Distance Functions [1]: Assuming
1

1
K

kk 
 , where  1 2 K, ...      is the vector of objectives aspiration levels, 

the family of distance functions ( , )
p

kD   to measure the degree of closeness of the compromise solution to the 

ideal solution is stated as follows:    
( , ) (1 )

1

D k d
K

p
p kk

k

 
 
  
 
 


 

Where the power p represents a distance parameter 1≤ p ≤ ∞, dk  is the degree of closeness of the preferred 

compromise solution vector *X  to the optimal solution vector with respect to the k-th objective function, and in 

minimum problem dk  equals:           

The optimal solution of 

The preferred compromise solution of 

k

k k

F
d

F
  

The distance functions with 1,2,  and p    are  

1/2

2 2
1 2 inf

1 1

( , ) 1 ,   ( , ) (1 )  and  ( , ) max{ (1 )}

K K

k k k k k k
k

k k

D k d D k d D k d     

 

 
      
 
 

   

3. EXPERIMENTAL, RESULTS AND DISCUSSIONS 

The four solution’s approaches for solving MOTP and the genetic algorithm in java language were implemented to 
obtain the optimal solution for each approach. Also, practical comparisons between the four approaches were 
presented.  Figure 1( A) gives the user interface of the JAVA-APPLET program. The input to the frame shows 
transport products from three sources to four destinations center. The user started to input the general data of the 
problem that determines the size of the problem, the number of the multi-objective functions of the optimization 
problem and population size (the population size is the number of chromosomes in the population). The data that 
describe the details of the problem are entered through two buttons on this frame; data from frame and data from 
frame and file.  "Minimum or Maximum" buttons determine the type of the problem. This frame is revealing in the 
four solution approaches for the MOTP. 

A           B                                                                                                                
Fig 1: (A) The general data of MOTP                         (B) Example 1 in matrix notation 

Example1: Consider MOTP with the following characteristics.  

                   Supplies: 1 2 38, 19, 17a a a    Demands:  1 2 3 411, 3, 14, 16b b b b      

              Penalties :       
1

1  2  7  7

1  9  3  4

8  9  4  6

C

 
 


 
  

                
2

4  4  3  4

5  8  9  10

6  2  5  1

C

 
 


 
  

  

The optimal solution for each function and the corresponding point in the outcome space is:    1 2
1 2143,  167F FX X  ,

 1 5,3,0,0,6,0,0,13,0,0,14,3X  , and  2 0,0,8,0,11,2,6,0,0,1,0,16X  . 

Unknown variable xi  in the feasible solution of the problem represents a gene in the appropriate design of 

chromosomes (Figure 2). Each chromosome consists of a sequence of m sub-chromosomes (m is the number of 
supplies). Each sub-chromosome consists of n genes (n is the number of demands). In Example1, there are three 
supplies (m=3) and four demands (n=4), so the feasible solution is

1 2 12( ,  ,..., )x x x . 
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Table 1 Numerical values of F1; F2, D1, D2 and infD  in example 1 according to the four approaches 

 Interactive(I) 
approach 

Fuzzy approach Interactive Fuzzy goal 
programming approach 

Pareto-based 
approach 

Optimal 
solution 

F1 176 160 160 190 143 

F2 175 195 195 164 167 

D1 0.116607 0.12492 0.12492 0.124551 --- 

D2 0.096496 0.089313 0.089313 0.088105 --- 

infD  
0.09375 0.071795 0.071795 0.064024 --- 

The structure of the chromosome corresponding to this solution concatenated the twelve variable xi  in a binary 

numbers; 0101, 11, 0001, 1011, 0101, 11, 0111, 01111, 0101, 01, 0110, and 01011. These give one chromosome 
as; C:01011100011011010111011101111010101011001011. 

 

Fig 2 : Binary encoded chromosome 

The selection operator was intended to improve the average quality of the population by giving the high- quality 
chromosomes a better chance to get copied into the next generation. Selection chromosomes are selected as 
parents to produce children and the chromosome with the best fitness values get selected to become the parent. 
The Tournament selection technique was used to pick a small subset of chromosomes (two or three) from the 
mating pool randomly.  
Crossover exchanges information between two parent chromosomes in order to produce two new offsprings for the 
next population. A modified uniform crossover was presented, where one offspring was constructed by choosing 
every sub-chromosome with a probability P (= 0.64) from either parent, as shown in Figure 3. 

 

 

Fig 3: The first stage of crossover between two chromosomes. 

The mutation operator is a random process where one genotype is replaced by another to generate a new 
chromosome. A single point mutation changes a 1 to a 0, and vice versa. The mutation probability was 0.01. 
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Increasing the value of mutation probability increases the freedom to search outside the current feasible solution. 
The color of each mutated bit appeared as green impulse (Figure 4).  

 

Fig 4:   (a)     Offspring before mutation 

 

 

 

 

 

 

Fig 4:  (b) Offspring after mutation      

4. EXPERIMENTAL RESULTS 

Interactive algorithms (I & II): Interactive methods may be characterized by the following steps: First, one or more 
non-dominated solutions are generated. Second, the decision maker is required for tradeoff information concerning 
these solutions, and the problem is modified based on the decision maker’s responses. These two steps are then 
repeated iteratively until the decision maker is satisfied with the current solution. 
 
 

 

Fig 5: The chart represents the final solution using the Interactive Algorithms I 

A fuzzy approach: The approach determined the optimal compromise solution of MOTP and studied the effect of 
using fuzzy programming on the MOTP model. The approach solved the single objective sub-problems and 
determined the upper and the lower bounds of each objective to construct the membership function of the MOTP 
problem. The result of the fuzzy programming approach  showed the effect of using fuzzy programming on a 
special structure of the MOTP model. 
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Fig 6: The chart represents the final solution using the Fuzzy Approach 

1. Interactive fuzzy goal programming: This approach combined the goal programming, fuzzy programming and 

interactive programming in one methodology. Where, the basic idea of Goal Programming (GP) is a simple and 
easy to use. In GP, the decision maker should define the goal that he wants to accomplish.  The GP model 
converts all the objective functions to constraints with the input of deviation variables from the goals.  It can be 
expressed as the following:  

*

1

min     ( )
m

i

i

i

F X g


 
 

 
  

The function *( )kF X  is the linear function of the     goal, and ig  is the aspiration level of the     goal. The 

Interactive fuzzy goal programming approach controls the search direction via updating both upper bounds and 

aspiration level of each objective function. The solution results provide a preferred compromise solution which is 
more realistic from the decision maker perspective. The Interactive a fuzzy goal programming solution of MOTP can 

be summarized as; develop the MOTP as described in 1P , solve the first objective function as a single objective 

transportation problem, continue this process K times for the K objective functions. If all the solutions are the 
same, select one of them as an optimal compromise solution. Otherwise; determine the best lower bound and the 
worst upper bound to obtain a solution which is close to the best lower bound of each objective function. Develop 

problem 1P and solve it as a GP problem. 

 

Fig 7:  The chart represents the final solution using the Interactive Fuzzy Goal Programming Approach 

2. Pareto-Based Approach: Pareto-based approach used non-dominated ranking and selection to move a population 

toward the Pareto front in MOTP. Non-dominated Sorting Genetic Algorithm was proposed and was based on 
several layers of classifications of the individuals. Before selection and mutation are performed, the population is 
ranked on the basis of non-domination. The Non-dominated Sorting Genetic Algorithm solved the service 
restoration problem in power distribution systems. This algorithm did not need weighting factors which were 
required for conversion of multi-objective function into an equivalent single objective function. 
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Fig 8: The chart represents the final solution using the Pareto-Based Approach 

5. STRATEGY OF REANALYSIS 

Thirty example of MOTP with three objective functions
1 2 3,  and F F F were carried out using the four approachs; Pareto-

based approach, Interactive (I) approach, Fuzzy approach and Interactive Fuzzy goal approach. For each example, the 

program was run to obtain the compromise solution and calculate
1 2 3,  and F F F and the distance function

1 2 _ inf,  and D D D . 

Table 2 shows the the distance functions of the four approaches for solving MOTP. Regarding the distance function 1D , 

the Interactive (I) approach gave the least value (0.229709) followed by the Pareto-based approach, the Fuzzy approach 
and the Interactive Fuzzy goal approach (0.24328, 0.274459 and 0.246003 respectively). 

However, the Pareto-based approach gave the least values of the distance function 2 _ inf and D D  (0.148839 and 

0.109177 respectively) followed by the Interactive Fuzzy goal approach (0.153074), Interactive (I) approach (0.153254) 

and Fuzzy approach (0.163379) for the distance function 2D and the Fuzzy approach (0.116115), the Interactive Fuzzy 

goal approach (0.116964) and the Interactive (I) approach (0.122884) for _ infD  . 

Table 2: The distance functions of the four approaches for solving the MOTP 

 1D
 2D

 _ infD
 

Pareto-based approach 0.24328 0.148839 0.109177 

Interactive(I) approach 0.229709 0.153254 0.122884 

Fuzzy approach 0.274459 0.163379 0.116115 

Interactive Fuzzy goal approach 0.246003 0.153074 0.116964 

The results suggested that the Pareto-based approach gave a preferred compromise solution which was better than the 
solution by the Interactive (I) approach, Interactive Fuzzy goal programming approach and Fuzzy approach for the 

distance functions 2D  and _ infD . The good performance of the Pareto-based approach could be conveyed to the 

following reasons: Pareto-based approach aims to maintain diversity in the population instead of converging to a single 
solution and it uses non-domination to assess the fitness of individuals. This approach is dividing generation into a number 
of fronts. The best solution can be selected from the best front (the front that minimizes or maximizes the fittness 
function)[23].   

The Interactive Fuzzy goal programming approach was relatively better than the Interactive (I) approach and Fuzzy 

approach. This could be explained by the lower value of the distance functions 1 2andD D obtained using the Interactive 

Fuzzy goal approach compared to the Interactive (I) approach. Also the value of the distance functions 2 _ inf and D D

were lower for the Interactive Fuzzy goal approach than the Fuzzy approach. The good performance of the Interactive 
Fuzzy goal programming approach could be due to the fact that the Interactive Fuzzy goal programming approach is a 
compilation of goal programming approach and the fuzzy approach. Therefore, the Interactive Fuzzy goal programming 
approach is an improvement for Fuzzy approach. Moreover, the Interactive (I) approach was better than the Fuzzy 

approach based on the value of the distance functions 1 2andD D . 

6. CONCLUSIONS 

This paper introduced a visual emplementation for the four approaches; Pareto-based approach, Interactive (I) approach, 
Fuzzy approach and Interactive Fuzzy goal approach for solving MOTP by object-oriented programming (Java). After 
running the java program for the four methods it could be concluded that the Pareto-based approach gave the best 
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compromise solution followed by the Interactive Fuzzy goal approach, Interactive (I) approach and finally the Fuzzy 
approach.  
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