
Council for Innovative Research International Journal of Management & Information Technology
www.cirworld.com Volume 3 No.3, 2013, ISSN 2278-5612

1 | P a g e www.ijmit.com

An extension to l-calculus for Distributed Functional Actor Programming

Najat Rafalia, Jaafar Abouchabaka
Faculté des sciences, Kénitra, BP. 133, Maroc

Département d’Informatique
Labo de Recherche en Informatique et télécommunication

arafalia@yahoo.com, abouchabaka3@yahoo.fr

ABSTRACT

In this paper, we present the lAD-calculus witch is an elementary functional distributed actor language with a new approach
of message communication between actors in a distributed environment. This strategy is based on a static analysis which
allows determining the parts of a message that must be transmitted. The actors we consider have a functional script and
manipulate the terms of the lAD-calculus. The expressions of this language correspond to those of the l-calculus extent by
some actor primitives.

General Terms: Algorithms, Information Treatment, Computer Sciences.

Keywords: Actor Model, Communication, Distributed System, Concurrent Programming, Functional Programming.

Academic Discipline: Computer Sciences.

1. INTRODUCTION

We consider a distributed system of actors. The actors we consider have a functional script and manipulate the terms of
the lAD-calculus which is an elementary functional distributed actor language, described in section3. The expressions of
this language correspond to those of the l-calculus extent by some actor primitives.
Actors communicate by exchanging messages. A message is a functional term. The message transmission causes the
message address to be put in the receiver mail queue. This implantation doesn’t involve any problem when the actors are
in the same site because they share the common memory. If the actors are in some distant sites, they could not get to
each other site memory. So, sending the message reference is insufficient.
We can code and send all the message by tram of octets. This strategy presents some inconveniences in particular for the
manipulation of complex linear structures. This is the case of the languages using a lazy evaluation. Although we can omit
the cost of coding, decoding and sending these structures, we can’t omit the difficulty to represent them as a linear stream
of characters: consider a tree. To transform a tree into a stream of data, one must specify a traversal order (usually a
preorder, depth-first, left-to-right traversal of the tree). A consumer that only needs a portion of the tree may be forced to
examine useless portions before it can receive the needed portion. In case in which unneeded portions of the tree are
infinities, the consumer may never receive the portion of the tree it needs. Therefore, it’s imperative to be sure that all
which is sent, will be exploited at most.
We think on a lazy strategy of message communication between actors in a distributed environment.
For each actor susceptible of receiving a message m which is a functional term, we determine the part of m, that must be

sent. This is accomplished by a static analysis of the application code.
When a transmission of a message m is valued, we first transmit which the static analysis has detected necessary. During

the execution, if other portions are detected necessaries to pursue the treatment, the consumer asks for them dynamically
and the producer sends them.
The organization of this paper is as follow:
In the next section, we present the actor model. In section 3, we describe the lAD-calculus. We present our lazy strategy of
term communication in section 4. Finally, we conclude by the related work in the last section.

2. THE ACTOR MODEL

The actor model is a model of concurrent computation. It was first described by the group of Massachusetts Institute of
Technology (MIT)[7].
Actors

Actors are independent concurrent objects that cooperate and interact by sending asynchronous messages.
An actor is completely described by :

 Its mail address, to which there correspond a sufficiently large mail queue, and

 Its behavior, which is a function of the accepted messages
Abstractly, we may picture an actor with a mail queue on which all communication are placed in the order in which they
arrive, and an actor machine which points to a particular cell in the mail queue. We represent this as in figure 1.

When an actor machine accepts the n
th

 communication in a mail queue, it will create a new actor machine,
Xn+1(become(Xn+1). This new machine will carry out the replacement of the actor. The replacement behavior will process

the (n+1)
th

communication. The mail address of the actor remains invariant.

The actor may also send a communication (m) to a specific target actor (a) (send(a,m)). It also creates a new actor with
an initial behavior X0(create(X00)). We represent this pictorially as in figure1:

mailto:arafalia@yahoo.com
mailto:abouchabaka3@yahoo.fr

Council for Innovative Research International Journal of Management & Information Technology
www.cirworld.com Volume 3 No.3, 2013, ISSN 2278-5612

2 | P a g e www.ijmit.com

Figure 1: Abstract representation of an actor and its possible actions

3. DISTRIBUTED IMPLEMENTATION OF THE MODEL

The actors constitute a concurrent model for programming. Actors could be distributed on several sites. These sites are
joined by a mechanism of communication like in figure 2.
The create primitive (create(X00)) allocates a unique mail address to the newly created actor, and creates a process which

represents the computation potency of this created actor. The system makes an adequacy between the actor and its mail
queue. So, the name of an actor and its mail queue address become synonymous.
Each new actor is created in the site having the minimal number of process. It’s important to allow the programmer to
ignore the details concerning the physical location of the actors in different processors which constitute the network of the
program execution. To that effect, every site has a server actor (or actor of communication). This actor manages the

distribution of the actors and the communication between sites. The messages towards distant sites are addressed to the
server actor of the sender site in order to treat and send them to their destination.
In the receiver site, the server actor treats the external messages that arrive and transmit them to their receivers (see
figure 2).

Figure 2: General architecture of communication system

4. lAD-CALCULUS: AN ELEMENTARY FUNCTIONAL DISTRIBUTED ACTOR
LANGUAGE

We present the lAD-calculus, a distributed extension of the l-calculus, for the actor model. The l-calculus is an elementary
functional language [3].The lAD-calculus constitutes a low level functional distributed actor language to which the high level
actor languages could be compiled.
To represent data and the messages, lAD-calculus integrates a structure of term which corresponds to a tree. It also
integrates a pattern-matching mechanism in order to recognize the messages.
The actor behavior is an expression of the lA-calculus extended by the primitives for the creation and the manipulation of
the actors and those for the pattern matching and the construction of the terms.
lAD-calculus Syntax

The lAD-calculus expressions are constructed by the terms of the algebra engendered by a set of constructors, a set of
variables and the mechanisms of abstraction and application.
The abstraction on a variable of the lAD-calculus is generalized to an abstraction on a pattern which is a term of the
algebra engendered by the constructors. The lAD-calculus contains also the primitives send, create and become for the

manipulation of the actors.

 send(a,m) to send the message m to the actor a.

 become(b) to replace the behavior of the actor executing this primitive, by the behavior b.

 create(b) to create a new actor with an initial behavior b.

In the expressions of the lAD-calculus, it’s necessary to distinguish the actor behaviors which could contain functional
computations, the primitives send and become, from the messages or communicable values which are the results of a

pure functional computation. These values could be described by the following syntax:
m = x variables, symbols, address, numbers
 | C(m,m,….,m) construction of terms

Council for Innovative Research International Journal of Management & Information Technology
www.cirworld.com Volume 3 No.3, 2013, ISSN 2278-5612

3 | P a g e www.ijmit.com

 |Create(B{Acquaintances}) creation of an actor
 | self the individual actor address
Note that the messages must be partially valued in order to be filtered. The mechanism of patter-matching takes charge of
this lazy valuation.
The result of the create operation is an actor address which is a communicable value.
The self variable designates implicitly the actor which executes the behavior and allows to this actor to send to himself a

message.
The behaviors have the following syntax:
B{acquaintances}= lP.Fa abstraction on a pattern
 |lP.Fa, lP.Fa, …., lP.Fa composition of abstractions on several patterns
The actions Fa have the following syntax:
Fa = send(m,m); Fa
 | create(B{f’{acquaintances}) ; Fa
 | become(B{acquaintances})
Example 1: consultation and change of the cell value
The following behavior Cell{v} is a behavior of an actor Cell which sends the initial value “v” to an actor a when it receives
the message Pair(Get,a). When Cell receives the message Pair(Set,n), it changes its initial value ”v” by the value ”n”.
Cell{v} = lPair(Get, a). send(a,v); become(Cell{v})
 lPair(Set, n). become(Cell{n})

The following expression creates an actor ‘A’ and sends him the message pair(Set,4) :
A = create(Cellf{0}), send (A, Pair(Set,4))

5. LAZY STRATEGY OF MESSAGE COMMUNICATION

The execution of a transmission send(a,m), consists of the valuation of the receiver actor a and that of the message m.
If the valuation of the actor a, detects that this later is in a distant site, then, the transmission of the message address is

not sufficient because distant actors could not get to each other site memory. In this case we opt for a lazy transmission
between distant sites.
The general problem is presented as follow:
Given a message C(C1,;C2;..., Cn) destined to an actor a, what are in this message the necessary levels to accomplish the
pattern-matching and the treatment of the message by the actor a.

Our lazy communication strategy consists of two phases:

 Static analysis phase: it’s accomplished at the time of the compilation. It allows determining the parts of the

message, that are necessaries for the pattern-matching and the treatment of this message. These parts are
expressed in the level number of the tree which represents the message.

 Dynamic transmission phase: because the static analysis is not always informative, several parts of the

message are not detected necessary at the time of the compilation. So, this phase allows completing these
needs in the execution.

Static Analysis

The static analysis concerns in fact, all the patterns of the application behaviors. The analysis of an initial behavior
involves, through the become primitive, to analysis the replacement behaviors starting by this initial behavior. It consists

of four principal steps:

 Marking : through each pattern, the marking phase marks the necessary parts in a message which will be filtered

by this pattern and treated by the action corresponding to the successful pattern-matching. An action
corresponds to a sequence of several send and several create, ended by a become.

 Flattening : marking is don behavior by behavior. A part can be necessary in a behavior and not necessary in
other one. The flattening step allows to “flatten” the results of marking concerning the same pattern which

appears in an initial behavior and in other replacement behaviors from this initial behavior. The ended set of
replacement behaviors can be determined through the application code. This warrants the termination of our
algorithms.

 Compilation of the patterns: the necessary in a pattern is expressed by a number of levels. This phase consists

of associating to each pattern the number of its necessary levels.

 Compilation of the send: the ad-equation between the patterns and the messages m figuring in the send(a,m),
and the use of the precedent phase results, allow to compile the transmissions send(a,m) into send(a,m,L),
where L is the number of m levels which are necessaries to accomplish the pattern-matching and the treatment
of m by a. In the following, we detail each step.

Marking
The marking step consists of mark “necessary” or “not necessary” each variable of the pattern. In order to formulate
the notion of necessary and not necessary, we conceive an abstract domain AbsP, which is composed by the abstract

values of the patterns.
AbsP := 0 Abstract value of a necessary pattern variable
| 1 Abstract value of a not necessary pattern variable
| AbsP(AbsP, …, AbsP) Abstract value of a construction of patterns
We also define a function of abstraction bb0 relatively to an initial behavior b0. bb0 associates to each pattern which
appears in b0 its abstract value bb0(p). bb0(p) corresponds to the marking result of p when this marking starts from the

initial behavior b0. bb0 is defined as follows:
bb0: P AbsP

Council for Innovative Research International Journal of Management & Information Technology
www.cirworld.com Volume 3 No.3, 2013, ISSN 2278-5612

4 | P a g e www.ijmit.com

bb0 (x) = 1 ; x is an elementary pattern (or variable of pattern)
bb0(C(C1, C2,..., Cn)) = bb0(C)(bb0(C1), bb0(C2),..., bb0(Cn))
bb0(C)(bb0(C1), bb0(C2),..., bb0(Cn)) is an abstract constructor which represents the abstract value of the constructor C(C1,
C2, ..., Cn). bb0(C) = 1 because the rat C of the pattern C(C1, C2, ..., Cn) is necessary at least for the pattern-matching.
Ci(i=...n) can be an elementary field whose abstract value is 0 or 1, or a constructor Ci(Ci1,Ci2,...,Cin) whose abstract value
is an abstract constructor bb0(Ci)(bb0(Ci1),bb0(Ci2),...,bb0(Cin)). The abstract value bb0(Ci) is 0 or 1, it’s determined by the

marking algorithms which we summarize as follow :
We consider the marking of a pattern C(C1, C2, ..., Cn) in an initial behavior b0.
Marking of the necessary to perform the pattern-matching

A message is a functional term which corresponds to a tree. The necessary for its pattern-matching by a given behavior is
determined by comparing breadth wise from left to right, the different patterns of this behavior. Therefore, each pattern

is also a tree, so, this comparison allows determining the level where we can distinguish a pattern from the other ones and
then decide which pattern will filter a given message.
Marking the necessary for a message processing
After the pattern matching of a message, the action of the receiver actor consists of a sequence of some create and send
primitives ended by a become primitive. So that, we must determine in this message the necessary fields for the
processing of the send, the create and the become primitives.
Execution of a send primitive
In order to execute a send(a,m) primitive, we must value the receiver actor a and the message m. The message m can
depend on the fields of the pattern which we are marking, i.e. m=f(Ci,..,Cp) (p<=n) (where Ci,..., Cp are among C1,...,Cn or
among some fields of C1,...,Cn). So, the valuation of m consists of the function f valuation. The fields among Ci,...,Cp,
which are necessaries to value f, are determined by the strictness analysis of f in its arguments.
Execution of a create primitive (create(b1{Ci,...,Cp})
We are interested in the create primitive like create(b1{Cii,...,Cp} i.e. in the case where several acquaintances of b1 are
fields of the patterns which we are marking, (the same remark is valid in the case of a become primitive). The newly

created actor can be in the same site as the creator actor or in a distant site, this depends on the number of the process in
the creator actor site. In the second case, we send the initial behavior b1{Ci,...,Cp}. An environment composed by a set of

closures which bind the acquaintances to their values, is associated with this initial behavior. We send with
b1{C1,...,Cp}only the address of this environment, the receiver actor will ask for the values of some acquaintances if need

be. So, at this level the (Ci)i are not marked necessaries or not necessaries.
Execution of a become primitive (become(b1{Ci,...,Cp}))
In order to determine the need in the fields Ci,...,Cp we analyse the behavior b1{Ci,...,Cp}). This analyses is made
recursively through the cases (1), (2) and (3). It concerns only the send(a,m) primitives and the become(b2{C’j,...,C’q})
primitives which appear in the actions of the behavior b1, but it don’t concern the patterns in b1, because at this level we
are still marking the pattern C(C1,C2,...,Cn) in b0. At lest one field among Ci,...,Cp must appear among the (C’i)i and m must

be a function of some fields among Ci,...,Cp.
In fact the analysis is done recursively through the become primitives. We begin by an initial behavior and we pass to the
replacement behaviors from this initial behavior. The elementary fields of the patterns are marked necessaries or not
necessaries at the time of the strictness analysis of the messages m which appear in the send(a,m) primitives.
Formulation of the marking analysis
The marking analysis is in fact done by a strictness analysis of the send(a,m) and become(b{...}) primitives in their
arguments. So, we formulate this analysis by giving an appropriate abstraction to each one of those primitives. We note f#
the abstract version of f, f can be a function, a constant, a variable, or an operator,

 Abstraction of a send(a,m) primitive
send# = & x# m#
We define respectively the abstract operator & and | | as the Boolean operators AND and OR.
We consider m as a function of the fields C1,...,Cp (m=f(C1...,Cp)). We are limited to the simple and “first order” functions.
In order to obtain the abstract version f# of the
function f, we replace every “predefined” function by its abstract version in the script of f. Consider f as a function with tow
arguments f(x,y), f is strict in x or x is necessary to value f if f#(0,1)=0, f isn’t strict in y if f#(1,0)=1. The abstract versions
of the arithmetic operator and the IF function are given as follows :
=# p q = +# p q = -# p q = ÷# p q = *# p q=& p q
IF# p q r = & p (|| q r)
x = constant
 | variable
| create(b{acquaintances}) valued in to a

 constant (the adress of the creator actor)
 | self considered as a constant

We also use the following rules:
<constant># = 1
v# = v (v is a variable).
So, send(x,m=f(C1,..., Ci , ..., Cp)) is strict in the argument Ci if send#(x#,f#(1,...,1,0,1,...1))=0.

 Abstraction of a become(b{…}) primitive
A behavior is a set of couples including a pattern Pi and, the action Ai corresponding to this pattern.
b{...}= {<P1,A1>,<P2,A2>,...,<<Pn,An>}
Each action is a sequence of some create and send primitives ended by a become primitive.
Ai={pc1,...pcm,ps1,....,psq,pb}

Council for Innovative Research International Journal of Management & Information Technology
www.cirworld.com Volume 3 No.3, 2013, ISSN 2278-5612

5 | P a g e www.ijmit.com

become#(b{...}) = & A1#, A2#, ...,An#
Ai# = & ps1#, ..., psqq#,pb#
Flattening

The flattening phase consists of mark as necessary a variable of pattern if it’s marked necessary in at least one behavior
where appear this pattern. We formulate this by a flattening function FIb0 relatively to an initial behavior b0.
When a pattern p appears in an initial behavior b0 and in q different replacement behaviors b1,b2,...,bq(q>=1), the result of
flattening for the pattern p is given by the value of the flattening function Fib0 applied to p. Fib0 is defined as follow:
FIb0(bb0(p),.. bb.,q(p)) = Flb0(FIb0(bb0(p),..., bb(q-1)(p)), bbq(p))
The function Fl is defined as follow:
Fl : AbsP X AbsP AbsP
FI(bb

(x), bb’(x)) =: 1 if bb(x) ≠ 0 or bb’(x)) ≠ 0

 //x is an elementary pattern
 else 0
Fl(bb(C(C1, C2, ..., Cn)), bb’(C(C1, C2, ..., Cn))) = Fl(bb(C), bb’((C))(Fl(bb(C1), bb’(C1)),...,Fl(bb(Cn), bb’(Cn))).
where bb(C(C1, C2, ...,Cn)) and bb’(C(C1, C2, ..., Cn)) are the marking results of the same pattern C(C1, C2, ..., Cn)

respectively relatives to the behaviors b and b’ which contain C(C1,C2,...,Cn). We represent an example of flattening in
fig.3.

Figure 3: An example of flattening

6. COMPILATION OF PATTERNS

Relatively to an initial behavior b0and at the end of the flattening phase, we know for each knot of the pattern C(C1,C2,
...,Cn), its abstract value, 0 or 1. The number NecLev(b0,C(...)) of the necessary levels in the pattern C(C11, C2, ..., Cn), is
defined by the maximum depth of the knots that are marked necessaries in this pattern. For example in fig. 3,
NecLev(b0,C(...))=3.
If we associate the minimum depth as value to NecLev(b0,C(...)) then this later will always be equal to 1 because the rat

of the pattern is always marked necessary.
This will increase the number of messages which are necessaries to accomplish the dialogue between the consumer and
the producer.
In the code of the application, each pattern [C(...)] of each initial behavior b0 , will be compiled into
[C(...),NecLev(b0,C(...))].

Table of needs
The static analysis determines for each class of actors having the same initial behavior bi, the number of necessary levels
in a message m which can be filtered and treated by the behavior bi.
We group the different values of NecLev in a table called table of needs (see table 1). In this table, each value
L=NecLev(bii,[m]) corresponds to the number of levels in the message m, which, each actor having the initial behavior bi,
needs in order to value (bi m).
m is the message filtered by the pattern [m].
If the message m is not filtered neither by bi nor by any replacement behavior obtained from bi then NecLev(bi,[m])=0.

Table1: Table of needs

 [m1] [m2] [m3]

b1

b2

b3

L1

0

0

0

L2

L’2

0

L3

0

7. COMPILATION OF THE SEND

The ultimate phase of our static analysis concerns the compilation of all the send of the application. At the end of this
phase each send(a,m) is compiled into send(a,m,L), where L is the number of necessary levels of the message m in
order to be filtered and treated by the receiver actor a. L is determined by the table of needs according to the initial
behavior of a. For example, if the initial behavior of a is b1 1then send(a,m11) is compiled into send(a,m11,L1).

Council for Innovative Research International Journal of Management & Information Technology
www.cirworld.com Volume 3 No.3, 2013, ISSN 2278-5612

6 | P a g e www.ijmit.com

Note that if the initial behavior of a or the structure of m are not known then send(a,m) is compiled into send(a,m,1). We

send one level because the rat of the message is necessary at least for the pattern-matching. We can’t send more
because, in this case, we haven’t any more information concerning the necessary.
The compilation function S is given as follow:
Algorithm 1
S(send(a,m)) =
if a=create(b) initial behavior of a is b and NecLev(b,m)≠0
then send(a,m,NecLev(b,m))

else
if the initial behavior of a, Binit(a), is known
and NecLev(Binit(a),m) ≠ 0
then send(a,m,NecLev(Binit(a),m))
else send(a,m,1)

8. THE DYNAMIC TRANSMISSION ALGORITHM

At the end of the static analysis, each send(a,m) is compiled into send(a,m L). The execution of send(a,m,L) consists of
sending L levels and the address of the remain fields of m. These addresses are called distant address. They allow to the

server actor to manage the transmission and the concurrent use of the terms which they address.
If one ask for a term through its address, we can send it entirely. When this term has a large or an infinite depth, this
transmission will be slow or handicapped. To avoid this problem, we present an algorithm of dynamic transmission in
which we distinguish two cases: the term is necessary to finish the pattern-matching or to pursue the treatment of a filtered
message.
Algorithm 2
Consider a distant term whose address is ptr.

 If this term is necessary to finish the treatment then the term will be completely sent because this necessity was
detected during the compilation by the strictness analysis of the treated message.

 If the term is necessary to finish the pattern-matching then we must specify in the request the number
DNecLev(ptr), of the necessary levels. This number is given by:
DNecLev=min – filterlevel
where min is the minimum of the level numbers associated, during the compilation, to the patterns which are susceptible

of filtering the term.
filterlevel is the level reached by the pattern-matching.
Where the static analysis is not informative min - filterlevel can be ≤ 0. In this case, we complete the pattern matching by
asking for one level at time. We use the min in order to transmit just the necessary. If the pattern-matching is not yet

finished then the same procedure is repeated for the next distant address.

9. CONCLUSION

We have presented a lazy strategy of term communication in a distributed environment of actors. It presents the following
advantages:

 Use of a reduced number of messages during the dialogue between the consumer and the producer.

 Allow to manipulate infinities structures.

 Uniformity of the transmitted data and the received data.

 Simplicity of the communication: the producer and the consumer exchange the same type of data, so, they will
easily communicate.

We have also realized an implementation, a simulation of the static analysis and the dynamic transmission is operational.
We simulate in particular, the management of the transmission and the concurrent use of the distant terms.
We are testing it on some consistent benchmarks cost concerning the execution time and the memory space of our
communication strategy. This work combines into a global system for the valuation of the actor languages through a
distributed virtual machine MVAD. It concerns the definition of the necessary primitives in order to integrate the lazy
communication in the MVAD.

REFERENCES:

[1] Kang Lianghan, Cao Donggang. An extension to Computing Element in Erlang for Actor Based Concurrent
Program+ming 2012 IEEE, 15

th
International Symposium on Object/Component/Service-Oriented Real-Time

Distributed Computing Workshops.
[2] Ruben Vermeech, Concurrency in Erlang!§§ & Scala: The actor model. Retrieved from:

http://ruben.savane.be/articles/concurency-in-erlang-scala. Last modified January 2012.
[3] Greg Michaelson. An Introduction to Functional Programming Through Lambda Calculus. (first published 1989).

Published at August 2011 by Dover Publications.
[4] A.Elfaker, M. Pantel, P. Sallé and X. Massoutié. Vers une Machine Virtuelle pour l’évaluation des langages

d’acteurs. LMO’95, Nancy pages 221-239, Octobre 1995.
[5] Gul Agha,Chris Houck and Rajenda Panwar, University of Illinois at Urbana, II 61801, USA. Distributed Execution

of Actor Programs Sciences Forth workshop on language and compiler for parallel computing. August 1991.

http://ruben.savane.be/articles/concurency-in-erlang-scala

Council for Innovative Research International Journal of Management & Information Technology
www.cirworld.com Volume 3 No.3, 2013, ISSN 2278-5612

7 | P a g e www.ijmit.com

[6] Henry E.Bal, Adrew S. Tanenbaum, Department of Mathematics and Computer Sciences, Vrije University,
Amsterdam, Jennifer G. Steiner, centrum voor wiskinde en Informatica, Amsterdam, the Netherlands.
Programming Language for Distributed System. ACM Computing Surveys, Vol 21, September 1989.

[7] Gul Agha (1986), Doctoral Dissertation, Mit Press. Actors: a Model of Concurrent Computation in Distributed-
Systems. https://dspace.mit.edu/handle/1721.1/6952.Osl.cs.uiuc.edu.http://osl.cs.uiuc.edu. Retrieved 2012-12-
02.

AUTHOR PROFILES

Dr. Najat Rafalia, she has obtained her doctorate in Computer Sciences at Mohammed V University, Rabat, Morocco.

Currently she is a professor at Ibn Tofail University, Department of Computer Sciences, Kénitra, Morocco. Her research
interests are in distributed systems, concurrent and parallel programming, communication and multi agent systems.
Dr. Jaafar Abouchabaka, he has obtained two doctorates in Computer Sciences applied to mathematics at Mohammed

V University, Rabat, Morocco. Currently he is a professor at Ibn Tofail University, Department of computer Sciences,
Kénitra, Morocco. His research interests are in concurrent and parallel programming, distributed systems, and multi agent
systems.

https://dspace.mit.edu/handle/1721.1/6952.Osl.cs.uiuc.edu
http://osl.cs.uiuc.edu/

