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ABSTRACT 

By applying Residue Number System (RNS) to 

Montgomery modular multiplication the delay of 

modular multiplication will be decreased. 

Modular multiplication over large number is 

frequently used in some application such as 

Elliptic Curve Cryptography. By choosing 

appropriate RNS moduli sets the time consuming 

operation of multiplication can be replaced by 

smaller operations.  In addition because of the 

property of RNS, arithmetic operations are done 

over  smaller numbers called residues. In this 

paper by choosing appropriate moduli sets the 

efficiency of conversion from RNS to RNS that is 

the most time consuming part of the Montgomery 

modular multiplication will be increased.     

General Terms Algorithm. 

Keywords Residue Number System, 

Montgomery Multiplication, Modular 

Multiplication, Moduli set. 

1. INTRODUCTION 

Residue number system is a carry free system that 

performs arithmetic operation on residues instead 

of the weighted binary number. This property 

leads to fast operation over smaller numbers. RNS 

has been used in some applications such as public 

key cryptography [1], digital signal processing [2], 

and digital image processing [3] which requires 

fast arithmetic unit and less power consumption. 

Forward converter, reverse converter and 

arithmetic unit are the components of RNS. 

Appropriate moduli selection, dependent to the 

application, plays an important role in efficiency 

of RNS system. The most prominent moduli set 

that have been introduced is {2k-1, 2k, 2k+1} [4]. 

Efficient Reverse converter for this moduli set has 

been proposed but dynamic range of this moduli 

set for modern applications that require high 

dynamic range was not enough. So moduli sets 

with higher dynamic rage like [5] and [6] were 

proposed. Modular multiplication is the main part 

of application like ECC [7] and RSA[1]. 

Montgomery modular multiplication needs two 

moduli set that called bases. These two bases 

determine the architecture and delay of the RNS 

Montgomery modular multiplication. Several 

moduli set for RNS Montgomery multiplication 

have been introduced till now, in [8] moduli in the 

form of and   are selected for first and second 

basis, respectively. Although the arithmetic 

operation in modulo 2k±1 is simple, but due to 

unbalanced moduli, the efficiency of arithmetic 

unit is inapplicable. In [9] RNS bases in the form 

of 2k-ci were 0 ≤ ci ≤ 2k/2 were proposed and 

exhaustive search to find moduli with small 

Hamming weight was done. The advantage of this 

work is small Hamming weight of moduli set that 

leads to simple multiplicative inverses and finally 

modular multiplication can be replace by some 

shift and addition. In this paper, in order to 

improve the efficiency of RNS Montgomery 

multiplication, the second basis in [9] are replaced 

by moduli set {22k+1-1, 2k/2-1, 2k/2+1, 2k+1, 2k} 

[10] and the required conversion between basis 

are designed.  

This paper organized as follows: section 2 

includes a brief background about RNS and 

Montgomery modular multiplication. In section 3, 

RNS bases are discussed. Conversion of RNS to 

RNS between bases is detailed in section 4. In 

section 5, the proposed reduction methods are 

proposed. Section 6 includes the comparison with 
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state-of-the-art works and finally section 7 

concludes the paper.  

2. BACHGROUND MATERIAL 

2.1 Residue Number System 
A residue number system is introduced by a set of 

integer number {P1, P2,…, Pn} that are relatively 

prime. In residue representation each number X is 

shown by a set of n small integer (x1, x2,…, xn) for 

i = 1 to n; where xi = (X mod Pi). Dynamic range 

M is multiplication of moduli Pi (M  = 

P1×P2×…×Pn). There are some algorithms for 

converting residue numbers into their binary 

equivalent, one of them is Mix-Radix Conversion 

(MRC). In MRC method, a binary number X is 

obtained from its residue by the below formula: 
1

3 2 1 2 1 1
1

...
n

n i
i

X v P v P P v P v




    
     

(1)   

Where
1 1v x

  
                              (2)   

2
2

1

2 2 1 1( )
P

P

v x v P


                        (3)   

3 3
3

1 1

3 3 1 1 2 2(( ) )
P P

P

v x v P v P
 

               (4)   

In general 

1 1 1
((( ) ) )1 1 2 2 1 1x v P v P v Pn n n n

P P Pn n n Pn

v
  

         
(5)   

1

j
i P

P


Denotes the multiplicative inverse of Pi in 

modulus Pj. 

2.2 MRS Representation 
In MRC algorithm, the intermediate number vi is 

MRS representation and (v1, v2,…, vn) is the MRS 

representation of X where vi is obtained by Eq. (2-

5). According to Honor's scheme Eq.(1) is 

converted to: 

X= v1+P1 (v2+P2 (v3 +…+P n-1vn)…)                (6) 

2.3 Montgomery Modular 

Multiplication 
One of the most efficient algorithms for modular 

multiplication is Montgomery algorithm that was 

reported in [11]. By using Montgomery 

multiplication, modular multiplication can be 

done without any division. Adopting Montgomery 

algorithm to RNS leads to benefit from both 

Montgomery method and properties of RNS. The 

RNS version of Montgomery modular 

multiplication is as follow: 

Suppose X and Y are two large numbers that are 

multiplied to each other in modulo N. For 

implementing Montgomery multiplication in RNS 

two moduli set are needed (two basis). let 

s1={P1,P2,…,Pn} with dynamic range M1  be the 

first base and s2={P'1,P'2,…,P'n} with dynamic 

range M2 second base where  N < M1 < M2  and  

gcd(M1, M2) = gcd(M1, N) =  gcd(M2, N) = 1. 

X and Y have the RNS representation (x1, x2,…, 

xn) , (y1, y2,…, yn) and (x'1, x'2,…, x'n) , (y'1,  y'2,…, 

y'n) in first and second basis respectively. Modular 

multiplication computes X×Y ×M-1 mod N 

according to the following algorithm: 
Algorithm 1: Montgomery Modular Multiplication in 

RNS 

Step 1: Let D=X × Y in both basis(

i
i i i P

d x y  in first base and 

i
i i i P

d x y


     in second base ) 

Step 2: Calculation of Q as 

1

1

iP
M

Q D N


   

in first base (
1

i
i

i i P
P

q d N


  ) 

Step 3: Converting the representation of Q from first 

to second basis(base extension) 
Step 4: Calculation of  

2

1

1( )
M

R D Q N M


     in second basis 

where 1

1( )
i

i

i i i i P
P

r d q n M





        

Step 5: Converting the representation of R from 

second to first basis(base extension) 
 

In algorithm 1, first step consists of two modular 

multiplications in both basis, second step has one 

RNS product in first basis, in step 3 and 5 of 

algorithm 1, two conversions from first basis to 

second basis and second base to first base are 

done. In step 4, two RNS product and one addition 

in second basis is comprised. We can divide the 

arithmetic operation in two sections, one section is 

consisting of operations in three steps 1, 2 and 4 
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and another section contains base extension or 

RNS to RNS conversion. Selection of the moduli 

with appropriate arithmetic unit play an important 

role in efficiency of modular multiplication, on the 

other hand base extensions improvement due to 

the complicity in term of delay and hardware cost 

is important issue in Mont. Modular 

multiplication. By reducing the delay of third and 

fifth step overall delay of multiplication will be 

improved. 

3. OPTIMAL RNS BASIS FOR 

MODULAR MULTIPLICATION 

Efficiency of modular multiplication by RNS 

Montgomery algorithm is dramatically dependent 

to moduli selection. As mentioned in section 2, for 

RNS Montgomery modular multiplication two 

bases are needed. The efficiency of arithmetic 

operation and revere converters of these two bases 

determine the overall performance of the modular 

multiplication.  In first base, moduli are selected 

in the form of 2k-ci where 0< ci <2k/2  [9]. By 

considering ci=2t-1, moduli in the form of 2k-ci 

benefit from small hamming weight that results in 

simple multiplicative inverses. Based on [9] 

multiplicative inverses for moduli in the form of 

Pi=2k-2t-1 are simple and this property leads to 

replacing multiplication by some shifts and 

additions.  To achieve proper moduli set an 

exhaustive search is done to find the moduli that 

are pair wise relatively primes to other moduli in 

first and second basis, in addition the selected 

moduli must have a less Hamming weight for 

calculating multiplicative inverses. For 

cryptographic system with key length of 256 and 

320 two moduli set is obtained that are shown in 

Table 1.  

Another base is needed in second part of RNS 

Montgomery modular multiplication. For these 

second base five moduli set s2={22k+1-1, 2k/2-1, 

2k/2+1, 2k+1, 2k}[10]  is employed. The second 

base has the advantages of efficient arithmetic 

operation, forward and reverse converter. In [10] 

the efficient reverse converter for these moduli set 

is introduced that is used in this work. Dynamic 

range is equal to 5k so for key length 256 and 320, 

k is considered 52 and 64 respectively. As 

mentioned before the dynamic range of first base 

must be less than second  base, because  in second 

base there is a moduli 22k+1-1we can consider k 

equal for both base and the condition of  M1<M2 

will be satisfied. 

Table 1. Proposed RNS bases 

4. RNS to RNS CONVERSION 

In step 3 of the algorithm RNS to RNS conversion 

from first to second basis and in step 5 conversion 

from second to first basis are done. 

4.1 Conversion from First to 

Second Basis 
As mentioned before in first basis moduli are in 

the form of  2k-ci  where 0< ci <2k/2  . To achieve 

small hamming weight ci is considered as 2 1it 

where 0 / 2it k  . Conversion from first basis to 

second basis is done in two steps. In first step 

numbers in modulo  2 2 1itk   convert to mixed 

radix representation, and in next step MRS 

numbers are reduced to second basis. So the total 

delay of the conversion from first to second basis 

is:
  

RNS RNS RNS MRS MRS RNSDelay Delay Delay     

4.1.1 RNS to MRS delay 
As proved in [9] the total delay of conversion 

from RNS to MRS is terms of k-bit delay FA is 

equivalent to: 
1

1

,
2, ;

1

max ( ( ) 2 ( ) 4)
n

RNS MRS i j j
j n i j

i

Delay w P w c





 



  
   (7)  

w(m) is the hamming weight of m and n is the 

number of moduli. In this paper with five moduli 

set n=5. Table 2 shows the delay of RNS to MRS 

conversion. 

Proposed 

RNS 

bases 

256 Key length 320 key length 

First 

Base 

Second 

base 
First Base 

Second 

base 

 

5Moduli  

RNS 

bases 

 

 

252-27-1 
252-28-1 

252-216-1 

252-217-1 
252-219-1 

2105-1 
226-1 

226+1 

252+1 
252 

264-216-1 
264-219-1 

264-228-1 

264-220-1 
264-231-1 

2129-1 
232-1 

232+1 

264+1 
264 
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Table 2:Delay of RNS to MRS conversion for 

k=64 and 52 

Key length Delay of RNS to MRS 

conversion 

256 93 k DFA=4836 DFA 

320 86 k DFA=5504 DFA 

4.1.2 MRS to RNS delay 
After calculation of mixed radix number 

conversion from MRS to RNS will be completed.  

This conversion is done according to Eq.(8) 

(1) 
1 1 2 2 3 1( ( )...)

i
i n n P

x v P v P v P v 
   

 
In Eq. (8) Pi is moduli in first basis that is in the 

form of 2k-2t-1 and P'i is moduli in second basis 

{22k+1-1, 2k/2-1, 2k/2+1, 2k+1, 2k}. Eq.(8) is done 

over all five moduli in parallel so In this step the 

worst case delay  determines the delay of MRS to 

RNS conversion.  Moduli (22k+1-1) is a critical 

moduli and reduction in modulo 22k+1-1 has more 

delay in compare with other moduli so this moduli 

defines the delay of MRS to RNS conversion. The 

reduction circuit for third moduli was reported in 

[12]. We have: 

 
1

2 1

1

(2 1) 2
n

k

MRS RNS

i

Delay MA








 
   
 


 

In terms of delay FA where n- the number of 

moduli- is 5.  By considering the delay of 

MA1(22k+1-1) equal to delay  of (2k+1) full adder, 

the total delay of conversion from MRS to RNS is 

(8k+12)DFA. So the total delay of conversion first 

to second basis is equal to (93k+(8k+12)) DFA and 

(86k+(8k+12)) DFA  for key length 256 and 320  

respectively . Table 3 shows the delay for two key 

lengths 256 and 320. The reduction in modulo 

2k+1 is reported in [12] which can be used in this 

work and reduction in modulo 2k/2±1 is presented 

in section 5. 

Table 3:total delay of conversion from first to 

second basis 

Key 

length 

Delay of RNS to RNS 

conversion from first to 

second basis 

256 5268 DFA 

320 6028 DFA 

                                                 
1
 Modular Adder 

4.2 Conversion from Second to 

First Basis 

4.2.1 Conversion delay of  RNS to weighted  
Delay of conversion from second to first basis 

consists of two parts, first conversion from second 

basis to weighted number. 

RNS RNS RNS weighted wieghted RNSDelay Delay Delay   

For first part efficient reverse converter was 

designed in[10] thus  

(10 9) RNS weighted FADelay k D    

 Table 4 shows the area and delay of first part. 

Table 4: Delay and area of conversion 

from RNS to weighted 
Proposed 

moduli 
Area Delay 

{22k+1-1, 2k/2-1, 

2k/2+1, 2k+1, 
2k} 

(20k +k/2+2)AFA+(k-
1)AXNOR 

+(k-1)AOR +(2k+3)AXOR 

+(2k+3)AAND+(9k/2)ANOT 

 

(10k+9)tFA 

4.2.2 Conversion delay of weighted to RNS  
Second part in conversion from second to first 

basis is reduction of a weighted (binary) number 

to modulo 2k-ci , where  2 1it

ic   . According to 

[9] cost of reduction in the moduli in the form of 

2k-ci is equal to 2w(ci)+2 in terms of addition of k-

bit word where ci is the Hamming weight of ci. For 

converting binary number to second basis a 

reduction in modulo (2 2 1)itk   must be done. 

According to [9] delay of reduction |ai+Pi×y|P'j is 

evaluated with w(ci)+2w'(ci)+2 addition of  k-bit 

words. For converting MRS to RNS, Eq. (8) must 

be done. In [9] the total delay for Eq. (8) is 

considered as: 

(9) 1

2, ;1

( ( ) 2 ( ) 2)max

n

MRS RNS i j FA
j n i ji

Delay w c w c kD



 

  
  

A 5k-bit binary number X can be rewritten as 

X=x0+2k(2k(2k(2kx4+x3)+x2)+x1) . The reduction of 

X in modulo (2 2 1)itk    (second basis) is: 

   0 4 3 2 12 2 2 2
i

k k k k

i
P

x x x x x x    
             (10) 

Eq.(10) is similar to Eq.(8) but in Eq.(10) 

Hamming weight of ci=0, because the 

2 2 1itk

iP    in Eq.(8) is changed to 2k in 
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Eq.(10) ( 2 1it

ic   ) thus Eq.(9) can be rewritten 

as below: 

(2) 1

1

(2 ( ) 2)
n

weighted RNS j FA

i

Delay w c kD






 
   

Table 5 shows the total delay of conversion from 

second to first basis 

Table 5: Total Delay of conversion from 

second to first basis 

Delay of conversion from 

second to first basis 

Key length 

1777 DFA 256 

2185 DFA 320 

5. REDUCTION of MRS 

NUMBERS IN MODULO 2
k/2

+1, 

2
k/2

-1, 2
k
 

By reduction in modulo 2k, 2k/2+1, 2k/2-1 MRS 

representation of numbers will convert to RNS 

representation in second basis. By using Eq.(8) we 

have 

  1 1 2 2 3 3 1
i

i n n
P

x v P v P v P P v 
       

 

Where 2 2 1itk

iP    and P'i is moduli 2k/2-1, 

2k/2+1, 2k.  By replacing these moduli in Eq. (8) it 

can be rewritten as 

(12) 

     31 2

1 2 3 42 2 1 2 2 1 2 2 1

i

tt tk k k

i

I
p

x v v v v



  
            
   

  

  

  

Calculation of I is the main process in determining 

xi. Realization of delay and architecture of I leads 

to the obtainment of total delay and architecture of 

xi. By considering P'i=2k, the reduced number in 

this moduli is equivalent to k-bit LSB of the 

number. 

5.1 Reduction in Modulo 2
k/2

+1 
Eq.(12) for P'i=2k/2+1and five moduli is rewritten 

as 

 
        31 2 4

/2

1 2 3 4 5

2 1

2 2 1 2 2 1 2 2 1 2 2 1

k

tt t tk k k k

i

I

x v v v v v



  
              
    

  

  (3) 

I is the main operation in Eq.(13) so by 

considering that  (2 2 1)itk   in modulo 2k/2+1 is 

equal to 2 it  , we have 

/2/2

/2

1 1 1 2 3 4 2 12 1

2 1

2 00 0i
kk

k

t

i i i i

t

I v v v v v v v v  



            

    (4)  

Where 

1 /2 ,0k iv v v  

2 , 1 , /2 1000 i k i kv v v   

3 1, /2 1,0 00 0i k t i

t

v v v    

4 1, /2 1, /2 1

/2 2

00 0 i k i k t

k t

v v v   

 

  

Lemma1: in modulo 2k+1 the negative of a 

number is equal to one's complement of the 

number add to 2  

2 1 2 12 1
2 1 2k kk

k

i i iv v v
 

           
 

So Eq.(14) can be rewritten as:
 

/21 2 3 4 2 1
4 kI v v v v


                             (5)  

              
As mentioned in section 5.1, I is the fundamental 

part in calculation of xi , and for achieving the 

final result, I must be repeated n times, which n is 

the number of moduli in first basis. So the total 

delay of calculation of xi is 
1

1

n

MRS RNS FA

l

Delay I D






 
  
 


                             (16)
                         

Figure 1 illustrates hardware implementation of  I: 

k/2+1 bit CSA 

v4 v3 v2 v1

k/2+1 bit CSA

k/2+1 bit CSA

MA(2k/2+1)

4

I
 

Fig 1:Hardware implementation of I 

By considering the delay of Carry Save Adder 

equal to delay of one bit full adder cell, delay of I 

is equal to MA(2k/2+1)+3, and the total delay is 

calculated as: 
1

/2

1

(2 1) 3
n

k

MRS RNS FA

l

Delay MA D






 
   
 


                (6)  
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5.2 Reduction in Modulo 2
k/2

-1 
Like section 5.1 we have 

(7)

 
        

/2

1 2 3 4 5

2 1

2 2 1 2 2 1 2 2 1 2 2 1

k

k t k t k t k t

i

J

x v v v v v



  
              
    

  

  

Same as previous section J is a core for 

calculation of xi , by considering that (2 2 1)itk    

in modulo 2k/2-1 is equal to  2 it , J  can be 

rewritten as 
/21 2 1

2 i

k

t

i iJ v v  
   then we have 

/2

/2

1 1 2 3 4 2 1

2 1

00 0 k

ki

i i

t

I v v v v v v 



         
   (8)   

where 

1 /2 1 ,0k iv v v
 

2 , 1 , /2i k i kv v v  

3 1, /2 1 1,0 00 0i k t i

t

v v v     

4 1, /2 1, /2

/2

00 0 i k i k t

k t

v v v  



  

Lemma2: the negative of residue number a in 

modulo 2k-1 is equal to one's complement of the 

number a. 

Using Lemma 2 we have 

                    (20) 
/21 2 3 4 2 1kI v v v v


     
 

Figure 2 shows hardware implementation of j. 

Based on Eq.(20) the delay of conversion from 

MRS to RNS for moduli 2k/2-1 is equal to  

            (21)

 1
/2

1

(2 1) 2
n

k

MRS RNS FA

l

Delay MA D






 
   
 


 

k/2-1 bit CSA 

v4 v3 v2 v1

k/2-1 bit CSA 

MA(2k/2-1)

J
 

Fig 3. Hardware implementation of J 2 

6. COMPARISON 

This work is an effort to speed up conversion from 

RNS to RNS that is the critical part of a 

Montgomery modular multiplication. By selecting 

the appropriate moduli set the delay of the base 

extension can be reduced but in other side it must 

be noticed that the efficiency of arithmetic 

operation must be preserved.  So for the second 

basis the moduli set {22k+1-1,2k/2-1,2k/2+1,2k+1,2k} 

was selected, because this moduli set benefit from 

simple process of reduction (for MRS to RNS 

conversion) and simple hardware implementation 

of arithmetic unit. Table 5 shows the improvement 

for base extension. In this work we have a 

remarkable improvement in delay of base 

extension. 

Table 5 . Comparison of the delay of base 

extension for key lenght 256 

improvement Total delay(in 

terms of Full-

adder delay) 

RNS base 

40 percent 11840 [9] 

17 percent 8502 [13] 

- 7561 Proposed 

7. CONCLUSION 

In cryptographic systems like ECC, modular 

multiplications over large numbers are frequently 

used. Montgomery modular multiplication in RNS 

was introduced as an approach to increase the 

efficiency of modular multiplication which needs 

two moduli set called bases. In this work, efficient 

bases which provides suitable arithmetic unit. 

Moreover this moduli set selection benefit from 

high dynamic range and speeding up RNS to RNS 

conversion that is proper for ECC. Comparison 

with literature shows 40% and 17% improvement 

in delay of RNS to RNS conversion. Therefore by 

speeding up the RNS to RNS conversion the total 

speed of the modular multiplication is increased 

by proposed RNS bases. 
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