
www.ijmit.com International Journal of Management & Information Technology

ISSN: 2278-5612 Volume 2, No 1, November, 2012

©
Council for Innovative Research 24 | P a g e

RBAC
+
: Protecting Web Databases with

Access Control Mechanism

Archana Arudkar
1
, Prof. Vimla Jethani

1

1
Mumbai University

ABSTRACT

With the wide adoption of Internet, security of web

database is a key issue. In web-based

applications, due to the use of n-tier architecture,

the database server has no knowledge of the web

application user and hence all authorization

decisions are based upon execution of specific

web application. Application server has full

access privileges to delegate to the end user based

upon the user requirement. The identity of the end

user is hidden , subsequently database server fails

to assign proper authorizations to the end user.

Hence, current approaches to access control on

databases do not fit for web databases because

they are mostly based on individual user

identities. To fill this security gap, the definition of

application aware access control system is

needed. In this paper, RBAC+ Model, an

extension of NIST RBAC provides a application

aware access control system to prevent attacks

with the notion of application, application profile

and sub-application session.

General Terms Preventing Attacks on Web

databases by means of Access control mechanism.

Keywords Application Profile, Access

control, Sub-application session.

1. INTRODUCTION

Web applications are extremely popular today,

due to the simplicity of web brower and

convenience of using web brower as a end user.

The web applications have direct access to back

end, called web databases, which contain sensitive

and personal information of the end user. This

information, if compromised can have a very

serious impact on the organizations that deploy

them and on the users who access them Thus,

protecting data stored in web databases has

become a strong need. Access control and views

are primary means of attack prevention for

databases. In case of web databases it is useless,

because of the three or n-tier architecture, where

real user’s identity is hidden. So proper

authorization cannot take place. In three tiers, all

the requests are send by application server to the

database server, so to fulfill the request,

application server has given full privileges and the

principle of minimal privilege is violated. It is

impossible to authorized web application users

with proper privileges at database level. Attackers

can exploit these flaws to view sensitive data.

Proper access control policies can not be

implemented for databases. Therefore, web

applications are exposed to many illegal access

and attacks that are very hard to prevent and

detect. Besides the famous SQL injection attacks

there is one more kind of attack ,the Business

Logic Violation attack for which satisfactory

solutions are still lacking.

The central idea of RBAC+ is including the

concepts of application, application profile and

sub-application session when controlling the

access to web databases. The application profile is

necessary to track the user behavior throughout a

whole session and mainly to prevent business

logic violation attacks by enforcing access

control.RBAC+ focuses on detection and

prevention of malicious transactions by

continuously monitoring the sequence of SQL

statements issued by users. It monitors the

malicious transactions and if identified cancels the

transactions before it succeeds thus minimize the

damage [1].

2. RELATED WORK

The problem of access control to database

accessible over the web is very important. This

www.ijmit.com International Journal of Management & Information Technology

ISSN: 2278-5612 Volume 2, No 1, November, 2012

©
Council for Innovative Research 25 | P a g e

problem is known to web developers and security

specialist. But little work has addressed it. Web

databases are vulnerable to attacks like SQL

injection, business logic violation and insider

attack.Roichman and E.Gudes in [2] proposed a

parameterized view with built-in access control

mechanism to work with web applications to

prevent intrusions. In this method, parameter is

used to transfer the identity of user working with

databases. So the requirement for this is the

parameter should be difficulty to fake. One way to

protect web databases from attack like SQL

injection is to use ad-hoc tools which are used to

detect the attack[3]. Another way is to use

Intrusion Detection System (IDS)[4],[5].IDS is a

good solution for detecting anomalous behaviors

and thus play an important role in database

security. IDS can not be used with proper internal

access control and views to restrict the data access

of web database.IDS focus on detecting attacks

after the intruder has accessed the database.

Another problem with IDS is that the detection

phase of IDS contains the normal activities for

anomaly detection purpose, which is only a subset

of normal activities since the transaction learning

depends on the utilization profile of the database.

In many applications some transactions are

performed only fort- night or at the end of the

month. There is a coverage problem since it

contains only frequently executed transactions.

This gives false positives of anomaly detection

based IDS.

One solution to this problem is to profile user

behavior based on application logic. In web

system, application interfaces are provided

according to the business logic. This way it is

possible to profile application features and

reduced the risk of false alarm. By strengthening

access control and continuously monitoring users,

we can stopped many attacks from the access

control stage.IDS can be used to detect attacks

which are escaped from access control

stage.Intrution detection without enforcing access

control is not as efficient and effective.IDS alone

can not protect databases from attacks.

3. RBAC MODEL

Role-Based Access Control (RBAC) is used for

controlling access to computer resources. In

RBAC, roles are created based on job functions of

users. Permissions are assigned to roles based on

the requirements of job functions. Users are made

members of roles based on the job responsibilities

and thereby gaining permissions assigned to the

roles. This way in RBAC, users are granted

permissions based on their roles, not on individual

basis. This abstraction provided by role simplifies

the management of permissions and thus helps to

implement the principle of least privilege.

Fig 1 Core RBAC [1]

Core RBAC model is shown in figure 1 with

following components.

The sets of USERS, ROLES, PRMS and

SESSIONS represent the set of users, roles,

permissions, sessions respectively.

 UA ⊆ Users x ROLES .The user-

assignment relation that assign users to

roles.

 Assign user: ROLES →2 USERS .The

mapping from role to a set of users.

 PA ⊆ ROLES x PRMS.The permission

assignment relation that assigns

permissions to roles.

 Prms Assignment: ROLES →2 PRMS .The

mapping of a role into a set of permissions.

 Session User: SESSIONS→USERS.The

mapping from a session to a user.

 Session Role: SESSIONS→2ROLES. The

mapping from a session to set of roles.[1]

www.ijmit.com International Journal of Management & Information Technology

ISSN: 2278-5612 Volume 2, No 1, November, 2012

©
Council for Innovative Research 26 | P a g e

4. OVERVIEW OF THE

APPROACH

In web system, access to data occurs through

several layers, starting with end users, web server,

application server and then databases. It is

difficult to grant permissions to the user since end

users identity is hidden. All the requests of end

users are submitted by application server. Another

problem is single user’s transactions cannot be

trace to seek signs of anomalous behavior. The

solution to these problems is RBAC+, an extension

of NIST RBAC, able to detect malicious

transaction and stop the attack before it succeeds.

Assuming that the database management system

(DBMS) has an RBAC model in place, the

concept of the approach is as follows. Here

application profile represents, an execution path, a

sequence of SQL queries for the execution of a

task.

Necessary permissions are given to the application

for execution and set of roles are authorized to

database users(DBU),for each pair

of(application,DBU) the subset of roles are

activated in a user’s session, called sub-

application session. A sub-application session

contains only permissions needed to execute a

created task and take advantage of RBAC asset

such as least privilege and separation of duty. A

sub-application session allows DBMS to

distinguish between web users working with

database, thus solving the first major problem of

fine grained authorization at the database level. It

will also allow distinguish the requests of different

web users having same database session, thus

solving second problem of user’s session

traceability for web applications.

When user logs in, the SQL queries that he

submits are associated with database session, an

application and the database user that issued them.

All the queries of a sub-application session must

match an application execution path else access is

denied because the transaction is considered as

malicious and rolled back. Privileges are limited

only to legitimate actions. The important of this

solution is that it enforces access control based on

business application logic rather than primitive

reads and writes. A users can access and

manipulate data depends on the application

function they execute. This drastically reducing

attack like business logic violation attack. Take

example of online shopping application. The

process involves following stages: 1) Browse the

product list and add items to the basket.2) Finalize

the order.3) Submit credit card details.4) Enter

delivery information.
When an employee wants to attack enterprise

resources, and if he submits SQL injection

attack.SQL injection is entirely fail or at least its

effect is very limited because the user’s database

privileges are limited to legal actions only.

If the intruder submits insert statement into Orders

table without submitting an insert into Credit card

table, then he buys goods without paying. This

violates the business rule and it can be detected at

session level since each statement is valid

statement. Database cannot stop such attack

because authorization is on the basis of user’s

identity not on the basis of business logic of an

organization. The developers assume that users

will follow the stages in sequencer and

navigational links and form interfaces are

provided according to sequence of stages to the

web browser. But navigational flow is under the

control of user and may access the stages in any

sequence.

When multistage functions are accepted in out of

expected sequence, it is common to encounter a

variety of anomalous conditions within the

application, such as variables with null or
uninitialized values, a partially defined or

inconsistent state, and other unpredictable
behavior. In this situation application may return

error messages and debug output, which can be

used to better understand its internal working and

thereby fine tune the current or a different attack.

Sometimes the application may get into a state

entirely unanticipated by developers, which may

lead by serious security flaws [7].

5. THE CORE RBAC
+
 MODEL

The RBAC+ model has major components such as

application, sub-application session and

application profile. The model is shown in the

fig.2 below. This graphical representation is

adopted from NIST RBAC model. In this APPS,

www.ijmit.com International Journal of Management & Information Technology

ISSN: 2278-5612 Volume 2, No 1, November, 2012

©
Council for Innovative Research 27 | P a g e

AP, SASES represents sets of applications,

application profiles and sub-application session

respectively.

 Fig 2 Core RBAC+ Model [1]

5.1 Application profile
An application can be executed in many possible

ways which is nothing but an application profile.

An application profile can be defined as sequences

of selects, inserts, updates and deletes to perform a

specific task of an application. An application

profile is a sequence of nodes and edges between

the nodes. Each node represents a SQL statement.

Web application by using DML operations

interacts with databases. Therefore application

profiles are built by analyzing application code.

From the model, we can define:

 AAP: APPS→AP, the mapping of an

application onto its corresponding application

profiles. Formally, APPS_profiles (apps) =

{apЄAP|(ap,apps) Є AAP}.

 RAP ⊆ AP x ROLES, a many to many

mapping of role to application profile

assignment relation.

 AP_roles (ap) = {r Є ROLES| (r, ap) Є RAP}

[1].

5.2 Sub-application session
An application session is set of all transactions of

all its user. A sub-application session (SASES) is

subset of transaction of one user. Formally,

 app_sas: APPS → 2 SASES .The mapping of

an application onto a set of sub-application

session.

 Ses_sas: SESSION→2SASES.The mapping of

a session onto a set of sub-application

sessions [1].

5.3 Permissions
Permissions are associated with roles and

application profiles. Applications are associated

with the appropriate roles based on the set of

permissions assigned to application profiles. This

is given by two functions: PAA and RAA.

PRMS is defined as PRMS= 2 OPS x OBJ

 PAA ⊆ PRMS x AP, a many to many

mapping of Permission to Application profile

assignment relation.

 AP_perms: AP → 2 PRMS, the mapping of an

application profile onto set of permissions.

Formally, AP_perms (ap) = {pЄPRMS| (p,

ap) ЄPAA}.

 RAA ⊆ ROLES x APPS, a many to many

mapping of Role to application assignment

relation.

 APPS_roles: APPS → ROLES, the mapping

of an application to a set of roles. Formally,

APPS_roles (app) ={r Є ROLES | (r, app)

ЄRAA}.[1]

5.4 Users
Each user is aassociated with a set of applications

.Given set of users, the following relations are

defined:

 AA ⊆ APPS x USERS, a many to many

mapping of application to user assignment

relation.

 USER_AssignmentApps: USERS → 2 APPS,

the mapping of a set of applications.

Formally,

USER_AssignApps(u)={u Є USERS |

(app,u) Є AA}.[1]

5.5 Sessions
When a user logs in, a new session is activated

and a set of roles are selected .For a given session

s, three functions are defined:session_user (s)

corresponds to the user of the session;

session_roles (s) corresponds to the roles activated

in a session;session_applications (s) corresponds

to the applications using this session; Given a

session and application two function are

www.ijmit.com International Journal of Management & Information Technology

ISSN: 2278-5612 Volume 2, No 1, November, 2012

©
Council for Innovative Research 28 | P a g e

defined:avail_app_roles (s,app) corresponds to

roles available for an application.;

avail_app_perms (s,app) corresponds to the

permissions available to an application in a

session. Formally defined as:

 Session_user(s): SESSION → USERS, the

mapping from a session s to the user of s.

 Session_roles(s): SESSION → 2 ROLES, the

mapping of session s onto a set of roles.

Formally: session_roles(s) ⊆ {r Є ROLES |

(session_user(s), r) Є UA}.

 Session_application: SESSION → 2 APPS, the

mapping of session onto a set of applications.

 avail_app_roles : (SESSION,APPS) → 2
ROLES, the

roles.Formally,avail_app_roles(s,app) ⊆ {r Є

ROLES | r = session_roles(s) ∩

app_roles(app)}

 avail_app_perms: (SESSION, APPS) → 2
PRMS, the permissions available to an

application in a

session.Formally,avail_app_roles(s,app)=UrЄ

avail_app_roles(s,app) assigned_permissions(r)[1].

6. BUILDING APPLICATION

PROFILE

In database environment, transactions are fixed till

the application is not change. For example, in an

online banking application, users can only

perform the operation like withdraw money and

check balance. No other operations are allowed to

the end users. An application profile is nothing but

a sequence of DML operations related to each

other in terms of business logic. Build the

application profiles and use it for access control.

The application profiles can be build by using

following three ways:

 Manual profiling can be used to build

application profile if the transaction is not

large.

 Running application test. By using testing

tools can generate all application

functionalities.

 By analyzing code of application program

can generate application profile. Because

application interacts with databases using

DML commands.

Example:

 Consider a web application of brokerage firm

having following roles:

 Guest users can go through security details

and can read market news.

 Customers can submit trade request on her

account.

 Brokers can submit trades to the market on

behalf of customers.

 Newsman can update news of the market.

 Markets a group of users can actually submit

the transaction and updates the status of the

transaction.

Each role has different permissions at database

levels: Newsman has insert permission on News

table, but all others have select permissions.

Customers have insert, update, and delete

permissions on Trade table. Brokers have update

permission and all other roles have no

permissions. Node 1 represents select,

Security_details; Node 2 represents select, News;

Node 3 for insert, Trade; Node 4 for update,

Trade; Node 5 for delete, Trade.

 Fig 3 Application profile for Guest user

Fig 4 Application profile for Customers

7. ACCESS CONTROL

The session roles are the roles that are assign to

the user of the session. So the application has set

of roles that the database user is authorized for. A

user session contains many sessions belonging to

the same or different applications. If it is of same

application then the roles assigned to user is same

as that of application and if it belongs to different

application then needs to activate subset of roles.

To enable the roles, PAA function accepts as a

input the set of roles assigned to users and

 1

 2

 2
 3 4

 2 5 3

www.ijmit.com International Journal of Management & Information Technology

ISSN: 2278-5612 Volume 2, No 1, November, 2012

©
Council for Innovative Research 29 | P a g e

permissions covering the application profiles of an

application and tries to find out optimal set of

roles covering application profiles permission and

all role constraints within the system. To activate

set of roles in a session covering requested

permissions, satisfying role constraints that

prevent activation of conflicting roles in a session

and following principal of least privileges a Role

Mapping algorithm is given which is inspired by

[6].In order to improve the performance, roles

with extra permissions than requested permissions

are removed in the beginning of the search.

7.1 Access Control Policies
Application profiles are used to detect the

unauthorized SQL statements. which are

considered as invalid based on the application

logic. The authorization control function is

defined as follows:

 An access request ar is a tuple ar = < U.is, app, p,

o> Є USERS x SASES x APPS x OPS x OBJ [1].ar

can be satisfied if (p, o) Є avail_app_prms(s, a)

and is Є session_sas(s).The above function is

repeated as many permissions as the SQL query

requires permissions to be executed. To protect

the information stored in databases which are

accessed by web users, the access control policies

must be flexible enough. Two access control

policies can be used.

7.2 Policy 1
This policy monitors all transactions of a user. If a

transaction is a new transaction, tool searches all

the application profiles starting with first

requested command of the newly entered

transaction. If the application profile starting with

requested command is found, it will be considered

as candidate application profile. The next

command is matched with the command in

candidate profile. This process is repeated till the

end of the transaction. If no candidate profile is

found for the transaction, it is considered as

malicious transaction and rolled back.

7.3 Policy 2
Under this policy, all the SQL statements

submitted by the user are stored as user context.

Access is granted to the user until she submits

critical point. Here critical point is SQL

statements which change the state of the database

i.e. (insert, delete, update)

8. CONCLUSION

RBAC+, an extension of RBAC model, suggests

access control mechanisms for RBAC

implemented web databases. This model not only

detects the attacks but also stop the attacks when

they are detected and thus minimized the losses

caused by the attacks. Access control policies can

be implemented by using PL/SQL language. The

primary requirement for this approach is the

source code of web application to build

application profile. The defense-in-depth

technique means the multilayer system, can be

implemented. In this, first layer and second layer

are used to prevent and detect the attacks

respectively.

9. REFERENCES

[1] Ahlem Bouchahd A.,Nhan le Thanh Adel

bouhoula,Faten Labbene,”Enforcing access

control to web databases”,2010 10th IEEE

International Conference on Computer and

Information Technology(CIT 2010).

[2] Roichman and E.Gudes,”Fine-grained access

control to web databases”, in ACMAT 07 :

Proceedings of the 12th ACM Symposium on

Access Control Models and

Technologies,AC,2007,pp.31-40.

[3] W. G. Halfond, J. Viegas and A. Orso.”A

classification of sql-injection attacks and

countermeasures”, in Proceedings of the

IEEE International Symposium on Secure

Software

Engineering,Arlington,VA,USA,2006.

[4] S. Y. Lee, L. Low and P. Y. Wong,”

Learning fingerprints for a database intrusion

detection system”, in ESORICS 02:

Proceedings of the 7th European Symposium

on Research in computer security.London,

UK: Springer-Verlag.2002, pp.64-280.

[5] E. Bertino,A. Kamra,E. Terzi and A.

Vakali.”Intrusion detection in rbac-

administered databases”, in ACSAC 05:

Proceedings of the 21st Annual Computer

Security Applications Conference.

www.ijmit.com International Journal of Management & Information Technology

ISSN: 2278-5612 Volume 2, No 1, November, 2012

©
Council for Innovative Research 30 | P a g e

Washington, DC, USA: IEEE Computer

Society, 2005, pp.170-182.

[6] G. T. Wickramaarachchi.W. H. Qardaji and

N. Li,”An efficient framework for user

authorization queries in rbac systems”, in

SACMAT 09: Proceedings of the 14th ACM

Symposium on Access Control Models and

Technologies. New York, NY, USA: ACM,

2009, pp.23-32.

[7] Faisal Nabi,”Designing a Framework Method

for Secure Business Application Logic

Integrity in E-Commerce Systems”,

International Journal of Network Security,

Vol.12, No.1, PP.29-41, Jan.2011.

