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ABSTRACT 
Information on suspended sediment load (SSL) is 

fundamental for numerous water resources 

management and environmental protection 

projects. This phenomenon has the inherent 

complexity due to a large number of vague 

parameters and existence of both spatial 

variability of the basin characteristics and 

temporal climatic patterns. This complexity turns 

into a barrier to get accurate prediction by 

conventional linear methods. On the other hand, 

the extent of the noise on hydrological data 

reduces the performance of data-driven models 

like Artificial Neural Networks (ANNs). Although 

ANNs could capture the complex nonlinear 

relationship between input and output parameters, 

being data-driven method positioned it in a state 

of need to preprocessed data. In this paper, the 

application of ANN approach focusing on 

wavelet- based denoising method for modeling 

daily streamflow-sediment relationship was 

proposed. The daily streamflow and SSL data 

observed at outlet of the Potomac River in USA 

were used as the case study. Achieving this 

purpose, Daubechies (db) was used as mother 

wavelet to decompose both streamflow and 

sediment time series into detailed and 

approximation subseries. Decomposition at level 

ten via db3 and at level eight via db5 were 

examined for streamflow and SSL time series, 

respectively. At first, the appropriate input 

combination with raw data to estimate current 

SSL was determined and re-imposed to ANN with 

denoised data.  The comparison of results reveals 

that in term of determination coefficient, the 

obtained result by denoised data was improved up 

to 23.2% with raged to use noisy, raw data and 

this exhibits that denoised data can be employed 

productively in ANN-based daily SSL forecasting. 

Keywords: Suspended Sediment Load (SSL), 

Artificial Neural Network (ANN), Wavelet de-

noising, Mother Wavelet, The Potomac River. 

1 INTRODUCTION 

River  water  quality  is  troubled  by  the  

existence  of  the suspended sediment  load (SSL)  

transported by  the  streamflow. The accurate 

estimation of the volume of sediment being 

transported by a river is a considerable issue for 

hydrologists as it affects the design, management 

and operation of water resources projects as well 

as it is essential for the study of various problems 

of river improvement and utilization. 

As stated by Jain and Ormsbee (2002), probably 

the most frequently used forecasting models for 

hydrological phenomenon are based on linear 

regression. Conventional time series models such 

as Auto Regressive Integrated Moving Average 

(ARIMA) models are widely used for 

hydrological time series forecasting (Salas et al., 

1980). However, they are basically linear 

assuming that data are stationary, and have a 

limited ability to capture non-stationarities and 

non-linearities involved in the hydrologic data. 

Artificial Neural Network (ANN) is one of the 

black box modeling tools which has been recently 

found good performance in modeling hydrological 

and environmental processes. Zhang et al. (1998), 

in a state-of-the-art survey, observed that although 

some contradicting reports exist in the literature, 
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ANN is a useful method for non-linear modeling 

whereas ARIMA approaches may be more proper 

for detecting linear relationships in the data. 

Currently, ANN as a self-learning and self-

adaptive function approximator, has exposed great 

capability in modeling and forecasting non-linear 

hydrologic time series. ANNs offer an effective 

approach for handling large amounts of dynamic, 

non-linear and noisy data, especially when the 

under- lying physical relationships are not fully 

understood, but there are enough data to train a 

network (Zhang et al., 1998). Several ANN 

configurations have been used for hydrological 

forecasting with good performance. In this 

respect, Jain and Ormsbee (2002), Bougadis et al. 

(2005), Adamowski (2008), Adamowski et al. 

(2010), Güldal and Tongal (2010) and Shirsath 

and Singh (2010) used ANNs to forecast various 

aspects of hydrological processes. Remarkable 

ANN models have been developed for modeling 

watersheds precipitation and rainfall-runoff 

processes (e.g., Hsu et al., 1995; Tokar and 

Johnson, 1999; Nourani et al., 2009a, b , 2012a; 

Rezaeian Zadeh et al., 2010). Abrahart et al. 

(2012) investigated studies about ANN 

applications on rainfall- runoff processes. 

Considering ANN success in modeling 

hydrological processes, some papers were also 

provided about SSL modeling.  Jain (2001) used 

the ANN approach to develop an integrated stage-

discharge-sediment concentration relation and 

showed the superiority of ANN over the 

conventional methods. Tayfur (2002) applied 

ANN for sheet sediment transport estimation. 

Agarwal et al. (2006) presented an ANN model 

for simulation of runoff and sediment yield and 

showed that daily time scale modeling performs 

well in both calibration and verification steps, and 

also pattern learning process of the model building 

is superior to batch learning process. Alp and 

Cigizoglu (2007) simulated SSL by two ANNs 

using rainfall, flow and sediment data. They used 

rainfall and water discharge as model inputs and 

SSL as output parameter. Rai and Mathur (2008) 

proposed a feed forward back propagation ANN 

for computing event-based temporal variation of 

sediment yield. Nourani (2009) used water 

discharge at current and previous time steps as 

input neurons for forecasting sediment load at 

current time step by ANN. Rajaee et al. (2010) 

used conjunction of wavelet and neuro-fuzzy for 

suspended sediment prediction. Nourani et al. 

(2012b) developed two ANN models for semi-

distributed modeling of the SSL the Eel River 

watershed at California. Efficiency of ANN 

method just like any other data-driven method 

largely depends on quantity and quality of the 

data. In physical systems, transmitted time series 

are usually distributed partially, or sometimes 

almost completely, by an additive noise from the 

transmitter, channel, and receiver. In general, 

there are two types of noise, measurement noise 

and dynamical noise. Measurement noise refers to 

the corruption of observations by errors, which are 

independent of the dynamics. Dynamical noise, in 

contrast to measurement noise, is a feedback 

process wherein the system is perturbed by a small 

random amount at each time step (Schouten et al., 

1994). The approach investigated in this work is 

to consider dynamical noise reduction as a 

fundamentally required process to enhance the 

estimation process of the captured time series. 

Noise reduction is considered as a continuous 

mapping process of the noisy input data to a noise 

free output data. The resulted enhanced time series 

can be then imposed to the estimation process by 

the ANN which can improve the performance of 

the model. 

Meantime, a diversity of noise reduction methods 

have been developed which are usually suitable 

for linear systems [(Wiener, 1949; Kalman, 1960). 

Regarding the fact that hydrological systems are 

nonlinear, these filters have limited applications in 

hydrological time series modeling. The extended 

Kalman filter, which can be used for nonlinear 

dynamics, becomes unstable when systemic 

nonlinearity is strong (Reichel et al., 2002; Hamid 

et al., 2004). Hence, the ensemble Kalman filter 

(EnKF), a Monte Carlo-based Kalman filter, was 

introduced and gained popularity in hydrology 

(Martyn et al., 2008). But in principle, the EnKF 

is suitable only for Gaussian error statistics and 

just propagates the first two moments of error 

statistics. Sivakumar et al. (1999) addressed some 

of the potential problems in applying such 

methods to chaotic hydrological data, and 

discussed the usefulness of estimating the noise 

level prior to noise reduction. Elshorbagy et al. 
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(2002) investigated commonly used algorithms for 

noise reduction in order to estimate chaotic 

hydrologic time series. Wiener and Kalman 

filtering methods are only capable of dealing with 

linear natural systems, and the results depend on 

the establishment of state space functions to a 

great extent (Sang, 2013). Compared with the so-

called methods, the threshold based wavelet de-

noising method is more capable, since it can 

illuminate the localized characteristics of non-

stationary time series both in the temporal and 

frequency domains (Janson, 2006). With specific 

regard to denoising methods based on wavelets, 

Cannas et al. (2006) and Nourani et al. (2009a) 

explored the multi-scaling property of wavelets 

for maximization of ANN forecasting accuracy in 

the context of flow forecasting. Guo et al. (2011) 

used the wavelet denoised method to reduce or 

eliminate the noise in runoff time series and 

improve the performance of Support Vector 

Machine (SVM) runoff prediction model. Nejad 

and Nourani (2012) applied global soft threshold 

based wavelet denoising method to denoise daily 

time series of river stream discharge. The 

denoised time series was then imposed into an 

ANN model to forecast flow discharge value on 

day ahead. Empirical results showed that networks 

trained with pre-processed data perform better 

than networks trained on un-decomposed, noisy 

raw time series. More recently, Nourani et al. 

(2013) used the wavelet transform to extract 

dynamic and multi-scale features of the non-

stationary runoff time series and removed the 

observed data noise. 

The aim of this study is to improve ANN 

modelling of runoff-sediment process by applying 

global soft threshold based wavelet denoising 

method to denoise daily time series of streamflow 

and suspended sediment, observed at outlet of the 

Potomac River in USA. In this way, four 

fundamental issues are addressed as i) the choice 

of appropriate wavelet, ii) the choice of 

decomposition level, iii) threshold value 

determination and iv) selection of thresholding 

rules.  

The remaining part of the paper has been 

organized as follows. First, a brief description of 

wavelet transform and ANN along with 

information of study area and utilized data are 

presented. Then, the proposed method is 

introduced and their performance results are 

presented and discussed in detail. The final section 

presents Conclusion. 

2 MATERIALS & METHODS 

2.1 Wavelet Denoising Procedure  

The wavelet transform has increased in usage and 

popularity in recent years since its inception in the 

early 1980s, yet still does not enjoy the wide 

spread usage of the Fourier transform. Fourier 

analysis has a serious drawback. In transforming 

to the frequency domain, time information is lost. 

When looking at a Fourier transform of signal, it 

is impossible to tell when a particular event took 

place but wavelet analysis allows the use of long 

time intervals where more precise low-frequency 

information and shorter regions are necessary 

where high-frequency information is wanted. In 

the field of earth sciences, Grossmann and Morlet 

(1984), who worked especially on geophysical 

seismic signals, introduced the wavelet transform 

application. A comprehensive literature survey of 

wavelet in geosciences can be found in Foufoula-

Georgiou and Kumar (1995) and the most recent 

hydrological contributions have been cited by 

Labat (2005) and Sang (2013). As there are many 

good books and articles introducing the wavelet 

transform, this paper will not delve into the theory 

behind wavelets and only the main concepts of the 

transform are briefly presented; recommended 

literature for the wavelet novice includes Mallat 

(1998) or Labat et al. (2000). The time-scale 

wavelet transform of a continuous time signal, 

x(t), is defined as (Mallat, 1998) : 

tdtx
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where * corresponds to the complex conjugate and 

g(t) is called wavelet function or mother wavelet. 

The parameter a acts as a dilation factor, while b 

corresponds to a temporal translation of the 

function g(t), which allows the study of the signal 

around b. The main property of wavelet transform 

is to provide a time-scale localization of process, 

which derives from the compact support of its 

basic function. This is opposed to the classical 
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trigonometric function of Fourier analysis. The 

wavelet transform searches for correlations 

between the signal and wavelet function. This 

calculation is done at different scales of a and 

locally around the time of b.  

For practical applications, the hydrologist does not 

have at his or her disposal a continuous – time 

signal process but rather a discrete – time signal. 

A discretization of Eq. (1) based on the 

trapezoidal rule maybe is the simplest 

discretization of the continuous wavelet transform. 

This transform produces N2 coefficients from a 

data set of length N; hence redundant information 

is locked up within the coefficients, which may or 

may not be a desirable property (Addison et al., 

2001). 

To overcome the mentioned redundancy, 

logarithmic uniform spacing can be used for the 

scale discretization with correspondingly coarser 

resolution of the b locations, which allows for N 

transform coefficients to completely describe a 

signal of length N. Such a discrete wavelet has the 

form (Mallat, 1998): 
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where m and n are integers that control the 

wavelet dilation and translation respectively; a0 is 

a specified fined dilation step greater than 1; and 

b0 is the location parameter and must be greater 

than zero. The most common and simplest choice 

for parameters are a0 = 2 and b0 = 1. This power-

of-two logarithmic scaling of the dilation and 

translation is known as the dyadic grid 

arrangement. The dyadic wavelet can be written in 

more compact notation as (Mallat, 1998): 
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(3)                                                                                                                            

Discrete dyadic wavelets of this form are 

commonly chosen to be orthonormal; i.e. (Mallat, 

1998): 
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which δ is Kronecker delta. 

This allows for the complete regeneration of the 

original signal as an expansion of a linear 

combination of translates and dilates orthonormal 

wavelets.                    

For a discrete time series, xi, the dyadic wavelet 

transform becomes (Mallat, 1998):      
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where Tm,n is wavelet coefficient for the discrete 

wavelet of scale a=2m and location b=2mn. Eq. (5) 

considers a finite time series, xi, i =0,1,2, ... , N-1; 

and N is an integer power of 2: N =2M. This gives 

the ranges of m and n as, respectively, 0 < n <2M-

m -1 and 1 < m < M. At the largest wavelet scale 

(i.e., 2m where m=M) only one wavelet is required 

to cover the time interval, and only one coefficient 

is produced. At the next scale (2m-1), two wavelets 

cover the time interval, hence two coefficients are 

produced, and so on down to m = 1. At m = 1, the 

a scale is 21 , i.e., 2M-1 or N/2 coefficients are 

required to describe the signal at this scale. The 

total number of wavelet coefficients for a discrete 

time series of length N=2M is then 1 + 2 + 4 + 8 

+...+2M-1 = N -1. 

In addition to this, a signal smoothed component, 

   is left, which is the signal mean. Thus, a time 

series of length N is broken into N components, 

i.e., with zero redundancy. The inverse discrete 

transform is given by (Mallat, 1998): 
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or in a simple format as (Mallat, 1998): 
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which       is called approximation sub-signal at 

level M and Wm(t) are details sub-signals at levels 

m = 1, 2, ... ,M.                                                                                                                                                         

 The wavelet coefficients, Wm(t)(m = 1, 2, ... ,M), 

provide the detail signals, which can capture small 

features of interpretational value in the data; the 

residual term,      , represents the background 

information of data. Because of simplicity of 

W1(t), W2(t), ... ,WM          , some interesting 

characteristics, such as period, hidden period, 

dependence and jump can be diagnosed easily 

through wavelet components.           
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   Wavelet denoising method based on threshold 

application was proposed for acquiring correct 

denoised results by Donoho (1995). This method, 

which is now the most common method of 

wavelet denoising, is performed as follows: 

(I) Choose an appropriate mother wavelet and 

number of resolution level l. The original one-

dimensional time series xi is decomposed into an 

approximation at resolution level l and detailed 

signals at various resolution levels up to level l , 

using the wavelet transform. 

(II) As a soft thresholding process, below certain 

threshold (T'), the absolute values of detailed 

signals, dj(t) (j= 1, 2,..., l), are set to zero at each 

resolution level. The subscript j represents the j th 

resolution level and sgn shows Signum function. 

The absolute values of detailed signals that exceed 

certain threshold are treated as the difference 

between the values of detailed signals and 

threshold by Eq. (8): 

 

 












'0

''
ˆ

T(t)d                    

      T(t)d)        -T(t)d(t)) (sgn (d
(t) d

j

jjj

j

(8) 

Eq. (8) gives the threshold quantifications used to 

obtain the processed detailed signals at each 

resolution level during wavelet denoising. The 

approximation usually does not perform threshold 

quantifications. 

(III) Wavelet reconstruction can derive the 

denoised time series data from the approximation 

at resolution level l and processed detailed signals 

( (t)d j
ˆ ) at all resolution levels. 

   Donoho (1995) derived a general optimal 

universal threshold for the white Gaussian noise 

under a mean square error criterion and its side 

condition that with high probability, the enhanced 

signal is at least as smooth as the clean signal. In 

this method, threshold is selected as Donoho 

(1995): 

(n)ln2σ̂'T 
             

(9) 

where n is number of samples in the noisy signal 

and ̂  is the standard deviation of noise that is 

estimated by Donoho (1995): 
















6745.0

)(t)d(median
ˆ

j
                   (10) 

 in which (t)d j  is the first level detail 

coefficients of wavelet transform of the signal. 

2.2 Artificial Neural Network (ANN) and 

Efficiency Criteria 

ANN is widely applied in hydrology and water 

resource studies as a forecasting tool. In ANN, 

feed forward (FF) back-propagation (BP) network 

models are common to engineers. It has proved 

that BP network model with three-layer is 

satisfied for the forecasting and simulating any 

engineering problem (Hornik, 1988; Nourani et 

al., 2008). Three-layered feed forward neural 

networks (FFNNs), which have been usually used 

for forecasting hydrologic time series, provide a 

general framework for representing nonlinear 

functional mapping between a set of input and 

output variables. Three-layered FFNNs are based 

on a linear combination of the input variables, 

which are transformed by a non-linear activation 

function as expressed by Eq. (11) where i, j and k 

denote input layer, hidden layer and output layer 

neurons, respectively and w is the applied weight 

by the neuron. The term ‘‘feed forward’’ means 

that a neuron connection only exists from a neuron 

in the input layer to other neurons in the hidden 

layer or from a neuron in the hidden layer to 

neurons in the output layer and the neurons within 

a layer are not interconnected to each other. The 

explicit expression for an output value of a three-

layered FFNN is given by Nourani et al. (2008): 
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where wi,j is a weight in the hidden layer 

connecting the i th neuron in the input layer and 

the j th neuron in the hidden layer, wjo is the bias 

for the j th hidden neuron, fh is the activation 

function of the hidden neuron, wkj is a weight in 

the output layer connecting the j th neuron in the 

hidden layer and the k th neuron in the output 

layer, wko is the bias for the k th output neuron, f0 

is the activation function for the output neuron, xi 
is i th input variable for input layer and ŷk, y are 
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computed and observed output variables, 

respectively. NN and MN are the number of the 

neurons in the input and hidden layers, 

respectively. The weights are different in the 

hidden and output layers, and their values can be 

changed during the process of the network 

training.  

   The model that yields the best results in terms of 

determination coefficient (R2) as Eq. (12) and root 

mean squared error (RMSE) as Eq. (13) in the 

training and verifying steps can be determined 

through trial and error process (Nourani et al., 

2009a). 
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where 
2R , RMSE , N , 

iobsO , 
icomO  and 

obsO  are determination coefficient, Root Mean 

Squared Error, number of observations, observed 

data, computed values and mean of observed data, 

respectively. 

The RMSE is used to measure forecast accuracy, 

which produces a positive value by squaring the 

errors. The RMSE increases from zero for perfect 

forecasts through large positive values as the 

discrepancies between forecasts and observations 

become increasingly large. Obviously high value 

for R2 (up to one) and small value for RMSE 

indicate high efficiency of the model. 

2.3 Case study and data 

Time series data of daily streamflow and SSL at 

outlet of the Potomac River located in Frederick 

County of Maryland State, USA (Latitude 

39°16'24.9", Longitude 77°32'35.2") were used in 

this study (Fig.1). The river forms part of the 

borders between Washington D.C., and Virginia 

on the left descending bank and Maryland and 

Virginia on the river's right descending bank, 33% 

is farmland and pasture and an estimated 27% is 

urban.  Approximately, 40% of the Potomac River 

basin is forested; gently sloping hills and valleys 

from Harpers Ferry to approximately 72.42 

kilometer downriver characterize the topography 

of the upper Piedmont region of the Potomac 

River sub-basin. In the central Piedmont area, the 

profile is rather flat until it nears the fall line at 

Great Falls, where the stream elevation rapidly 

descends from over 61 meter to sea level. 

Tributaries in the central Piedmont exhibit 

moderate and near constant profiles. Their flat 

slope largely characterizes streams in the Coastal 

Plain area. Approximately 40% of the Potomac 

River basin is forested33% is farmland and 

pasture and an estimated 27% is urban. The 

average flow of river observed at the outlet is 

306m³/s. The majority of the lower Potomac River 

is part of the State of Maryland. The upstream 

drainage area is 25996 Km2.The historical daily 

streamflow and SSL data for 20 years (from 1960 

to 1980, 7333 days) which were used in this 

research are available at the United States 

Geological Survey website 

(USGS,http://waterdata.usgs.gov/usa/nwis/uv?016

38500). The time series are presented in Figs. 2 

and 3 for streamflow and SSL, respectively. The 

75% part of total data (from 1960 to 1975) were 

used as training set and the rest 25% (from 1975 

to 1980) were used to determine how well the 

training model performed.

 

http://waterdata.usgs.gov/usa/nwis/uv?01638500
http://waterdata.usgs.gov/usa/nwis/uv?01638500
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Fig. 1 The Potomac River at Point of Rocks at Frederick County. 

 
Fig. 2 Streamflow time series observed at outlet of the Potomac River from 1960 to 1980 
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Fig. 3 Sediment time series observed at outlet of the Potomac River from 1960 to 1980 

Statistical 

Parameters 

All Data Training Data Verifying Data 

Q(m3/s) 
SSL 

(ton/d) 
Q(m3/s) 

SSL 

(ton/d) 
Q(m3/s) 

SSL 

(ton/d) 

Xmean 276.42 3144 266.94 3182.03 304.84 41885.46 

Xmax 8288 689000 8288 689000 4816 400000 

Xmin 15.316 2 15.316 2 30.8 3.7 

Sd 2324.3 19082.3 2271 18541 2469.8 20622 

Table 1. Statistics of time series for calibration, verification and all data sets. 

The statistical parameters of the streamflow and 

sediment data are given in Table 1. In Table1, the 

Xmean, Sd,  Xmax and Xmin denote the mean, 

standard deviation, maximum and minimum 

values, respectively. 

3. RESULTS & DISCUSSION 

At first, the SSL was modeled via ANN with raw, 

noisy data. Afterward, inputs were denoised by 

threshold based wavelet denoising method and re-

imposed into ANN. The Sediment- streamflow 

process usually behaves as a Markov chain 

process, so that the vakue of the parameter in the 

current time may be related to the previous time 

step condition.In this study, seven combinations of 

streamflow and SSL values as inputs for the ANN 

were examined as follows: 

Comb. (1): SSLt-1 

Comb. (2): SSLt-1, SSLt-2 

Comb. (3): Qt-1, Qt-2 

Comb. (4): SSLt-1,Qt-1 

Comb. (5): SSLt-1, SSLt-2,Qt-1 

Comb. (6): SSLt-1, SSLt-2,Qt-1,Qt-2 

Comb. (7): SSLt-1, SSLt-2, SSLt-3, Qt-1, Qt-2, Qt-3    

in all cases, t represent time step and the output 

layer was contained only one neuron, as the SSL 

at time t (SSLt). 

The network training process could be speeded up 

by normalizing the input and target data before 

training Rogers (1996). In this study, the input and 

target data were normalized to scale the data 

between the range 0 and 1 as: 

minmax

min

xx

xx
y i

i



    (14) 

 to normalized xi variable with minimum and 

maximum values of xmin and xmax, respectively.  yi 

is the normalized variable. 

   In this application, two sets of data were used. 

The first data set was 75% part of total data (from 

1960 to 1975) as training set. The rest 25% (from 

1975 to 1980) was used for verification purpose. 

According to Table 1, maximum values of the 

data were appeared in the training set because 

such data division scheme helps ANN, as a data 

interpolator, to learn the pattern of process much 
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better and leads to more accurate predictions in 

the validation step, so when data set is transferred 

between [0,1], a small change in ymax is the upper 

bound of the normalized interval  , a normalized 

input in the mentioned range, has a greater 

influence on the output which makes the training 

of the ANN more quickly (Nourani et al., 2012c). 

SSL predicting was performed with different 

inputs to determine the best input combination. 

Because of some financial and technical problems 

the exact measurement of the SSL is a very 

difficult matter and usually after several years 

measuring will be stopped. In such condition, a 

model which employs available streamflow data 

in order to estimate the SSL values can be reliable 

choice. So, Comb.3 is essential among other 

combinations. The values of R2 obtained using 

combs.1 and 4 inputs show that for achieving to 

good performance of model data with more than 

one time step lag are required. On the other hand, 

in combinations with one type variable 

(streamflow or SSL) combs.2 and 3 are suitable 

for SSL and streamflow, respectively. These 

combinations will be used in choosing parameters 

for threshold based wavelet denoising of SSL and 

discharge time series. However, when both 

variables take place in the input neurons, comb.6 

leads to the best performance. 

Table2. Results of ANNs for different input 

variables 

Input 

Comb

inatio

n 

Netw

ork 

Struct

urea 

RMSE 

(Normalized) 
R2 

Calib

ration 

Verifi

cation 

Calib

ration 

Verifi

cation 

Comb.

1 

(1-5-

1)b 

0.020

9 
0.022 0.396 0.365 

Comb.

2 

(2-10-

1) 

0.014

9 

0.018

9 
0.692 0.601 

Comb.

3 

(2-10-

1) 

0.016

2 

0.020

2 
0.635 0.543 

Comb.

4 

(2-10-

1) 

0.019

9 
0.022 0.449 0.374 

Comb.

5 

(3-7-

1) 

0.015

0 

0.018

1 
0.685 0.630 

Comb.

6 

(4-4-

1) 

0.015

3 

0.017

6 
0.674 0.651 

Comb.

7 

(6-6-

1) 

0.015

3 

0.018

5 
0.676 0.618 

a The results have been presented for the best 

structure 

b First number from left represents number of the 

input neurons, second one is the number of the 

hidden neurons and third shows the number of 

output neuron. 

In this study, the river daily suspended sediment 

was modeled via the multi-layer perceptron FF 

ANN without any data pre-processing. This kind 

of ANN model accompanied by BP training 

algorithm is extremely used in hydrologic 

modeling (ASCE, 2000). Selection of an 

appropriate mother wavelet is a substantial 

challenge in wavelet denoising issue, since the 

type of used mother wavelet can affect the 

modeling results remarkably (Nejad and Nourani 

2012). The essence of wavelet transform is to 

discover the similarity between the analyzed series 

and the wavelet used however in practice it can't 

be done easily. In discrete wavelet analysis, 

several ways to decomposition level choice have 

been suggested by Nourani et al. (2009a) and 

Sang(2009). The threshold based wavelet 

denoising has three important parameters: 

decomposition level, mother wavelet and 

threshold value. This paper's effort is to introduce 

a procedure to show how to choose appropriate 

mother wavelet, decomposition level and 

threshold value for denoising two different 

hydrological time series (i.e., streamflow and 

SSL) in predicting SSL.  

In this paper, a hydrological hypothesis was 

considered to pick out the minimum 

decomposition level. In this manner, the signal 

approximation which is the general aspect of SSL 

or discharge time series should be positive and 

doesn't include any negative data (Fig. 5). In view 

of the fact that negative data don’t have any 

physical meaning and can't represent considered 

hydrological processes (i.e., streamflow and SSL). 

Due to such a strict condition about values of 

approximation signal, decomposition levels less 

than eight were not chosen. Three decomposition 

levels (8, 9 and 10) were used to investigate 

decomposition level effect on denoising 

performance (Table 3). On the other hand, 

Daubechies family of wavelet (Haar, db2, db3, 

db4, db5) was examined as the mother wavelets 

(Fig. 4). Efficiency of the mother wavelets at 

different decomposition levels was compared 

using the universal thresholding method (see 
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Table 3). According to Table 3, it is noticeable 

that universal threshold based denoising value was 

effected by varying the mother wavelet i.e. each 

mother wavelet requires its own best universal 

threshold value. This procedure was performed for 

SSL time series by Comb.2 and for streamflow 

time series by Comb.3. The results in Table 3 

show that based on R2, mother wavelet db5 with l 

= 8 and mother wavelet db3 with l = 10 are 

appropriate for global denoising of SSL and river 

discharge time series, respectively.

 

  

 

 

 

Fig.4 a)Haar b)db2 c)db3 d)db4 e)db5 mother wavelets 

Table3. Results of ANNs for investigation of mother wavelet and resolution level impacts 

Mother 

Wavelet 

Input 

comb. 

Decomposition 

Level 

Network 

Structure 

RMSE 

(Normalized) 
R2 
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The presented values of threshold in Table 3 have 

been computed by Eq. (9). It is important to 

mention that Eq. (9) has been developed on the 

basis of the Gaussian noise involved in the signal. 

Moreover, the noise included in a complex 

hydrological process may not obey Gaussian 

noise. So, more trial-error procedure is needed to 

determine the appropriate threshold value. The 

threshold value influences denoising the 

hydrological time series in two different aspects. 

First, if threshold value be less, then noise 

reduction will be skimpy, inversely if threshold 

value is high, as a result, noise will be removed 

but on the other hand, main information of the 

time series will be also removed. Nevertheless, the 

appropriate threshold not only removes the noise 

Calibration Verification Calibration Verification 

Haar 

(Qt-

1,Qt-2) 

8 (2-4-1) 0.0165 0.0191 0.619 0.590 

9 (2-8-1) 0.0163 0.0191 0.663 0.593 

10 (2-10-1) 0.0151 0.0187 0.682 0.607 

(SSLt-

1,SSLt-

2) 

8 (2-5-1) 0.0161 0.0182 0.639 0.628 

9 (2-7-1) 0.0151 0.0185 0.684 0.616 

10 (2-9-1) 0.0144 0.0182 0.709 0.630 

db2 

(Qt-

1,Qt-2) 

8 (2-4-1) 0.0165 0.0193 0.621 0.584 

9 (2-4-1) 0.0165 0.0190 0.621 0.594 

10 (2-4-1) 0.0162 0.0185 0.635 0.615 

 

(SSLt-

1,SSLt-

2) 

8 (2-10-1) 0.0161 0.0219 0.639 0.603 

9 (2-10-1) 0.0147 0.0184 0.699 0.620 

10 (2-6-1) 0.0154 0.0187 0.668 0.608 

db3 

(Qt-

1,Qt-2) 

8 (2-7-1) 0.0161 0.0195 0.641 0.572 

9 (2-10-1) 0.0156 0.0189 0.662 0.597 

10 (2-8-1) 0.0153 0.0172 0.676 0.669 

 

(SSLt-

1,SSLt-

2) 

8 (2-10-1) 0.0154 0.0182 0.671 0.667 

9 (2-6-1) 0.0165 0.0189 0.620 0.601 

10 (2-7-1) 0.0164 0.0185 0.625 0.614 

db4 

(Qt-

1,Qt-2) 

8 (2-7-1) 0.0168 0.0189 0.610 0.600 

9 (2-5-1) 0.0155 0.0180 0.668 0.636 

10 (2-7-1) 0.0166 0.0191 0.625 0.591 

 

(SSLt-

1,SSLt-

2) 

8 (2-6-1) 0.0168 0.0187 0.608 0.608 

9 (2-7-1) 0.0151 0.0185 0.684 0.617 

10 (2-7-1) 0.0159 0.0182 0.648 0.626 

db5 

(Qt-

1,Qt-2) 

8 (2-4-1) 0.0169 0.0189 0.602 0.599 

9 (2-7-1) 0.0159 0.0193 0.650 0.583 

10 (2-6-1) 0.0166 0.0189 0.615 0.601 

 
(SSLt-

1,SSLt-

2) 

8 (2-4-1) 0.0145 0.0180 0.651 0.632 

9 (2-7-1) 0.0147 0.0186 0.698 0.611 

10 (2-6-1) 0.0168 0.0187 0.608 0.607 
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but also keeps the main part of the time series. So 

determination of the appropriate threshold value 

leads to achieve higher performance in the 

forecasting phase. The different threshold values 

around the threshold value computed by Eq. (9), 

were also examined for both streamflow and SSL 

time series to find the appropriate threshold value 

(See Tables 4 and 5). As it depicted in Tables 4 

and 5, by increasing the threshold value of the 

denoising, overall likewise R2 is increased but 

after a special threshold, R2 goes down. This 

special threshold can be considered as the 

"appropriate threshold" which in SSL and 

streamflow time series are 9000 (ton/day) and 

453.1 (m3/s), respectively. As it is clear, R2 for the 

noisy time series with the best combination is 

0.670 but just with streamflow time series 

denoising and using Comb.3 it is elevated to 

0.708. So, in the modeling, using only streamflow 

values as the inputs when there is a gap for SSL 

data, SSL could be predicted with acceptable 

accuracy (Table 4) 

Table4. Results of ANNs after denoising by db3 at level 10 for comb.3* 

Threshold 

Value(m3/s) 

Network 

Structure(Inputs=Qt-1,Qt-2) 

RMSE (Normalized) R2 

Calibration Verification Calibration Verification 

2.832 (2-9-1) 0.0162 0.0205 0.635 0.529 

19.822 (2-10-1) 0.0151 0.0176 0.685 0.653 

28.316 (2-10-1) 0.0154 0.0194 0.672 0.581 

42.475 (2-5-1) 0.0163 0.0182 0.633 0.628 

56.633 (2-7-1) 0.0164 0.0187 0.628 0.609 

84.950 (2-10-1) 0.0154 0.085 0.669 0.614 

113.267 (2-8-1) 0.0156 0.0174 0.663 0.662 

169.900 (2-4-1) 0.0149 0.0166 0.691 0.689 

226.534 (2-4-1) 0.0147 0.0164 0.699 0.698 

283.168 (2-10-1) 0.0144 0.0164 0.712 0.698 

339.802 (2-7-1) 0.0144 0.0164 0.713 0.698 

424.752 (2-10-1) 0.0147 0.0163 0.710 0.700 

453.068 (2-9-1) 0.0144 0.0162 0.713 0.708 

458.732 (2-7-1) 0.0144 0.0163 0.710 0.702 

481.385 (2-8-1) 0.0146 0.0163 0.704 0.702 

509.702 (2-9-1) 0.0146 0.0164 0.702 0.700 

566.336 (2-4-1) 0.0150 0.0168 0.688 0.683 

707.92 (2-7-1) 0.0155 0.0174 0.665 0.659 

849.504 (2-5-1) 0.0162 0.0182 0.636 0.631 

Table5. Results of ANNs after denoising by db5 at level 8 for comb.2* 

Threshold Value 

(ton/day) 

Network Structure 

(Inputs=St-1,St-2) 

RMSE (Normalized) R2 

Calibration Verification Calibration Verification 

50 (2-4-1) 0.0152 0.0182 0.681 0.632 



www.ijmit.com                                               International Journal of Management & Information Technology       

ISSN: 2278-5612                       Volume 3, No 1, January, 2013 
 

©
Council for Innovative Research                                                                      21 | P a g e  

4000 (2-6-1) 0.0149 0.0170 0.695 0.679 

5000 (2-8-1) 0.0145 0.0167 0.708 0.686 

5500 (2-9-1) 0.0146 0.0167 0.704 0.687 

6000 (2-7-1) 0.0145 0.0169 0.706 0.678 

6500 (2-8-1) 0.0146 0.0168 0.704 0.686 

7500 (2-9-1) 0.0147 0.0167 0.701 0.685 

8500 (2-7-1) 0.0147 0.0167 0.702 0.689 

9000 (2-9-1) 0.0148 0.0166 0.699 0.694 

10500 (2-8-1) 0.0151 0.0171 0.685 0.671 

11000 (2-6-1) 0.0148 0.0168 0.697 0.684 

12000 (2-9-1) 0.0148 0.0168 0.694 0.682 

13000 (2-8-1) 0.0149 0.0166 0.693 0.693 

13500 (2-6-1) 0.0147 0.0169 0.699 0.681 

14500 (2-8-1) 0.0153 0.0177 0.672 0.648 

16000 (2-7-1) 0.0145 0.0169 0.709 0.679 

16500 (2-7-1) 0.0148 0.0172 0.696 0.672 

17000 (2-5-1) 0.0145 0.0169 0.708 0.686 
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Fig. 5 a) decomposed SSL time series at level 8 via db5(a8: approximation signal, d1,d2,…d8: detailed signals)  

b) decomposed streamflow time series at level 8 via db3(a8:approximation signal, d1,d2,…d8: detailed signals) 

The proposed denoising scheme was also applied 

for input comb.6 (this input comb. was led to best 

performance when the raw, noisy data were used 

as inputs of ANN, Table 2) and results have been 

tabulated in Table 6. 

 
Fig. 6 Scatter plot for observed and computed 

sediment using ANN with noisy data at 

verification step 

 

Fig. 7 Scatter plot for observed and computed 

sediment using ANN with denoised data at 

verification step 

Table 6 shows the values of R2 and RMSE for 

three different input sets. i) Both denoised 

streamflow and SSL time series were considered 

as inputs. ii) Only one denoised time series 

(streamflow or SSL) was considered as input (the 

other time series were imposed without pre-

processing). iii) Both raw streamflow and SSL 

time series were imposed without denoising. With 

the respect to the result obtained in Table 6, it is 

obvious that denoised streamflow time series has 

fundamental effect on final result compared with 

denoised sediment time series and this shows that 

streamflow time series contains much noise than 

sediment time series.The absolute value for the R2 

criterion obtained by applying both denoised 

signals simultaneously into ANN (0.802) is 

significantly better than obtained by raw data 

(0.651). In term of the RMSE, the ANN result with 

denoised data (0.0133) outperforms the obtained 

result with raw data (0.0176). Figs 6 and 7 present 

scatter plots between observed and computed SSL 

using ANN method with raw and denoised data, 

respectively, at verification step. In Fig.8 observed 

noisy data was compared with computed SSL with 

denoised data. 

 

Table6. Final results and structures of ANN model for noisy and denoised inputs 

Input 

combination 

Mother 

wavelet 
Decomposition 

Network 

structure 

RMSE 

(Normalized) 
R2 

Calibration Verification Calibration Verification 

St-1,St-2, Qt-

1,Qt-2 

raw data 

imposed 

- 
(4-4-1) 0.0153 0.0176 0.674 0.651 

- 

St-1,St-2, Qt-

1,Qt-2 

Seda Db5 8 
(4-4-1) 0.0132 0.0162 0.756 0.704 

Strb -c - 

St-1,St-2, Qt-

1,Qt-2 

Sed - - 
(4-9-1) 0.0126 0.0145 0.764 0.726 

Str Db3 10 

St-1,St-2, Qt-

1,Qt-2 

Sed Db5 8 
(4-4-1) 0.0119 0.0133 0.802 0.802 

Str Db3 10 
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a: sediment 

b: streamflow 

c: without denoising(raw data) 

 

Fig. 8 Computed and observed data decomposed at db5 with L = 8 for SSL and  

db3 decomposed at L =10 for streamflow time series 

4. CONCLUSIONS 

Accurate prediction of suspended sediment load 

(SSL) is a significant key for computing and 

designing of the costly projects in both water 

resource management and envirmental aspects. An 

attempt was made in this paper to investigate the 

use of wavelet-based denoising technique as a 

preprocessing method for daily SSL prediction by 

Artificial Neural Network for the Potomac River 

at Maryland, USA. Opting the best combination 

was done for starting the denoising procedure. 

Through this procedure a suitable wavelet 

function and proper decomposition level for both 

streamflow and sediment time series was 

determined. Then decomposed time series was 

denoised by the universal thresholding method. 

The comparison results reveal that chosen mother 

wavelet and resolution level directly affect the 

prediction result. On the other hand, the threshold 

value, as well as so-called factors, is another 

challenging issue. According to obtained result 

high values of threshold didn’t mean accurate 

result and after a specific threshold value the 

reduction in performance of the model was 

occured. So, this specific threshold value was 

called “appropriate threshold” (Nejad and Nourani 

2012). Meanwhile, the same mother wavelet and 

resolution level can be employed for denoising 

streamflow and sediment time series and got the 

capable result with slightly difference with the 

best result. At the end, result presented that this 

procedure extensively enhanced accuracy when 

modeling streamflow-SSL process. In order to 

complete current study, it is suggested to use 

level-dependent soft threshold based wavelet 

denoising and also to do this work for monthly 

time series and the results to be compared with 

other modeling methods as Auto Regressive 

Integrated Moving Average and Support Vector 

Machine. 
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