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ABSTRACT 

In this paper we are performing the evaluation of Hopfield 

neural network as Associative memory for recalling of 

memorized patterns from the Sub-optimal genetic algorithm for 

Handwritten ‘SWARS’ of Hindi language. In this process the 

genetic algorithm is employed from sub-optimal form for 

recalling of memorized patterns corresponding to the presented 

noisy prototype input patterns. The sub-optimal form of GA is 

considered as the non-random initial population or solution. So, 

rather than random start, the GA explores from the sum of 

correlated weight matrices for the input patterns of training set. 

The objective of this study is to determine the optimal weight 

matrix for correct recalling corresponds to approximate 

prototype input pattern of Hindi ‘SWARS’. In this study the 

performance of neural network is evaluated in terms of the rate 

of success for recalling of memorized Hindi ‘SWARS’ for 

presented approximate prototype input pattern with GA in two 

aspects. The first aspect reflects the random nature of the GA 

and the second one exhibit the suboptimal nature of the GA for 

its exploration.  The simulated results demonstrate the better 

performance of network for recalling of the memorized Hindi 

SWARS using genetic algorithm to evolve the population of 

weights from sub-optimal weight matrix.   

Keywords: Hopfield neural networks, Associative memory, 

Pattern Storage, Genetic algorithm, Evolutionary Algorithm. 

1. INTRODUCTION 

Pattern storage & recalling i.e. pattern association is one of 

prominent method for the pattern recognition task that one 

would like to realize using an artificial neural network (ANN) 

as associative memory feature. Pattern storage is generally 

accomplished by a feedback network consisting of processing 

units with non-linear bipolar output functions. The Hopfield 

neural network is a simple feedback neural network (NN) which 

is able to store patterns locally in the form of connection 

strengths between the processing units. This network can also 

work for the pattern completion on the presentation of partial 

information or prototype input pattern. The stable states of the 

network represent the memorized or stored patterns. Since the 

Hopfield neural network with associative memory [1-2] was 

introduced, various modifications [3-10] are developed for the 

purpose of storing and retrieving memory patterns as fixed-

point attractors. The dynamics of these networks have been 

studied extensively because of their potential applications [21-

24]. The dynamics determines the retrieval quality of the 

associative memories corresponding to already stored patterns. 

The pattern information in an unsupervised manner is encoded 

as sum of correlation weight matrices in the connection 

strengths between the proceeding units of feedback neural 

network using the locally available information of the pre and 

post synaptic units which is considered as final or parent weight 

matrix.  

Hopfield [1] proposed a fully connected neural network model 

of associative memory in which we can store information by 

distributing it among neurons, and recall it from the 

dynamically relaxed neuron states. If we map these states 

corresponding to certain desired memory vectors, then the time 

evolution of dynamics leads to a stable state. These stable states 

of the networks represent the stored patterns. Hopfield used the 

Hebbian learning rule [25] to prescribe the weight matrix for 

establishing these stable states. A major drawback of this type 

of neural networks is that the memory attractors are constantly 

accompanied with a huge number of spurious memory 

attractors so that the network dynamics is very likely to be 

trapped in these attractors [6], and thereby prevents the retrieval 

of the memory attractors. Hopfield type networks also likely be 

trapped in non-optimal local minima close to the starting point, 

which is not desired. The presence of false minima will increase 

the probability of error in recall of the stored pattern. The 

problem of false minima can be reduced by adopting the 

evolutionary algorithm to accomplish the search for global 

minima. There have been a lot of researchers who apply 

evolutionary techniques (simulated annealing and Genetic 

algorithm) to minimize the problem of false minima [10]. 

Imades & Akira [10-19] have applied evolutionary computation 

to Hopfield neural networks in various ways. A rigorous 

treatment of the capacity of the Hopfield associative memory 

can be found in [20].  The Genetic algorithm has been identified 

as one of prominent search technique for exploring the global 

minima in Hopfield neural network [24]. 

Developed by Holland [26], a Genetic algorithm is a 

biologically inspired search technique. In simple terms, the 

technique involves generating a random initial population of 

individuals, each of which represents a potential solution to a 

problem. Each member of this population evaluates from a 

fitness function which is selected against some known criteria. 

The selected members of the population from the fitness 

function are used to generate the new population as the 

members of the population are then selected for reproduction 

based potential solutions from the operations of the genetic 

algorithm. The process of evaluation, selection, and 

recombination is iterated until the population converges to an 

acceptable optimal solution. Genetic algorithms (GAs) require 

only fitness information, not gradient information or other 

internal knowledge of a problem as in case of neural networks. 

Genetic algorithms have traditionally been used in optimization 

but, with a few enhancements, can perform classification, 

prediction and pattern association as well [27-29]. The GA has 

been used very effectively for function optimization and it can 

perform efficient searching for approximate global minima. It 

has been observed that the pattern recalling in the Hopfield type 

neural networks can be performed efficiently with GA [13]. The 

GA in this case is expected to yield alternative global optimal 

values of the weight matrix corresponding to all stored patterns. 
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The conventional Hopfield neural network suffers from the 

problem of non-convergence and local minima on increasing 

the complexity of the network. However, GA is particularly 

good to perform efficient searching in large and complex space 

to find out the global optima and for convergence. Considerable 

research into the Hopfield network has shown that the model 

may trap into four types of spurious attractors. Four well 

identified classes of these attractors are mixture states [4], spin 

glass states [58], compliment states and alien attractors [59]. As 

the complexity of the of the search space increases, GA presents 

an increasingly attractive alternative for pattern storage & 

recalling in Hopfield type neural networks of associative 

memory. 

The neural network applications address problems in pattern 

classification, prediction, financial analysis, and control and 

optimization [30]. In most current applications, neural networks 

are best used as aids to human decision makers instead of 

substitutes for them. Genetic algorithms have helped market 

researchers performing market segmentation analysis [31]. 

Genetic algorithms and neural networks can be integrated into a 

single application to take advantage of the best features of these 

technologies [32].  

Much work has been done on the evolution of neural networks 

with GA [33-37]. There have been a lot of researches which 

apply evolutionary techniques to layered neural networks. 

However, their applications to fully connected neural networks 

remain few so far. The first attempt to conjugate evolutionary 

algorithms with Hopfield neural networks dealt with training of 

connection weights [45] and design of the neural network 

architecture [46,47], or both [48-51]. Evolution has been 

introduced in neural networks at three levels: architectures, 

connection weights and learning rules [38]. The evolution of 

connection weights proceeds at the lowest level on the fastest 

time scale in an environment determined by architecture, a 

learning rule, and learning tasks. The evolution of connection 

weights introduces an adaptive and global approach to training, 

especially in the reinforcement learning and recurrent network 

learning paradigm. Training of neural networks using 

evolutionary algorithms started in the beginning of 90’s [16,52]. 

Reviews can be found in [24,27-29,35]. Cardenas et al. [53] 

presented the architecture optimization of neural networks using 

parallel genetic algorithms for pattern recognition based on 

person faces. They compared the results of the training stage for 

sequential and parallel implementations. The genetic evolution 

has been used as data structures processing for image 

classification [54]. 

 In this paper we are exploring the GA for efficient 

recalling of memorized patterns as auto associative memory 

from the Hopfield neural network corresponding to the 

presented input pattern vector of handwritten Hindi ‘SWARS’ 

characters. The recalling in this associative memory network is 

performed under the consideration of reducing the effect of 

false minima by using evolutionary searching method like 

genetic algorithm. In this approach the GA starts from the 

suboptimal weight matrix as the initial population of solution. 

The suboptimal weight matrix reflects the encoded patterns 

information of the training set by using unsupervised Hebbian 

learning rule i.e. sum of correlation weight matrices. Each 

correlation term is corresponding to individual pattern 

information. Hence, the GA starts from the sum of correlation 

matrices for training set which we call as parent weight matrix, 

and it determines the optimal weight matrix for the presented 

noisy prototype input patterns of the handwritten ‘SWARS’ of 

Hindi language. The performance of pattern storage network is 

evaluated as rate of success in recalling of correct memorized 

pattern correspond to the presented prototype input pattern of 

handwritten ‘SWARS’ with GA which starts from sub-optimal 

solution i.e. sub-optimal GA. The simulated results indicate the 

better performance of the suboptimal genetic algorithm (SGA) 

as compared with Hebbian rule in success rate for recalling of 

correct memorized ‘SWARS’ characters.  

In the following sections we will present the description of 

patterns used for training, the Hopfield neural network used for 

storing the patterns, the GA used for recalling the already stored 

patterns, experiments detail, discussion of our results obtained 

through simulation, and the conclusion of our investigations. 

2.  SAMPLE PATTERN REPRESENTATION 

The patterns used for the simulations are shown in Figure 1. 

Each pattern consists of a 5 X 5 pixel matrix representing a 

handwritten character of Hindi ‘SWARS’. White and black 

pixels are respectively assigned corresponding values of -1 and 

+1.  

       

      
 

Figure 1: The set of patterns used for training 
Now, the input pattern vector for the storage corresponding to 

hand written character of Hindi ‘SWARS’ is constituted with the 

series of bipolar values +1 and -1. For example, the pattern 

vector for character v can be written as: 

[1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1 1 1 1] 

In the general form we can represent the lth   pattern vector as: 

],,[ 2521

llll aaax      (1) 

 where l= 1 to 13 and i, j= 1 to 25 

3. THE HOPFIELD NEURAL NETWORK 

The proposed Hopfield model consists of N (25 = 5 X 5) 

neurons and NN   connection strengths. Each neuron can be 

in one of the two states i.e. ±1, and )13(L  bipolar patterns 

have to be memorized in the Hopfield neural network of 

associative memory. 

Hence, to store )13(L number of patterns in this pattern 

storage network, the weight matrix w is usually determined by 

the Hebbian rule as follows:  
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where { LlNial

i  3,2,1;3,2,1,   

and ;ji   with set of   L patterns to be memorized and N is 

the number of processing units}. The network is initialized as: 

   00 l

i

l

i as    for all    1i    to  N       (6) 

The activation value and output of every unit in Hopfield model 
can represent as: 

 



N

j

iiji tswy
1

  ;  jiNji  ;3,2,1,    (7) 

and      ii yts sgn1     (8) 

where    1sgn iy    for  0iy and   0iy  

respectively 

Associative memory involves the retrieval of a memorized 

pattern in response to the presentation of some prototype input 

patterns as the arbitrary initial states of the network. These 

initial states have a certain degree of similarity with the 

memorized patterns and will be attracted towards them with the 

evaluation of the neural network. 

Hence, in order to memorize 13 handwritten Hindi 

‘SWARS’ of in a 25-unit bipolar Hopfield neural network, there 

should be one stable state corresponding to each stored pattern. 

Thus at the end, the memory pattern should be fixed-point 

attractors of the network and must satisfy the fixed-point 

condition as: 
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Therefore, the following activation dynamics equation must 
satisfy to accomplish the pattern storage: 
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where jiNji  ;,,2,1,   

Let the pattern set be  },,,{ 21 LxxxP                       
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2

1
1

1
Naaax   

    ),,,,( 22
2

2
1

2
Naaax   

    - 

      - 

    - 

  ),,,( 21
L
N

LLL aaax   
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     and ]13,,2,1 L .           (12) 

Now, the initial weights have been considered as 0ijw (near 

to zero) for all si' and sj' . From the synaptic dynamics as 

vectors we have the following equation for encoding the 
patterns information as:   

 XXWW Toldnew .    (13) 

and   
newold WW      (14) 

similarly for the Lth  patterns, we have: 

  

  LTLLL XXWW  1
  (15) 

Thus, after the learning for all the patterns, the final parent 

weight matrix can be represented as: 
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Now, to represent 
LW  in the convenient representation 

form, let us assume following notations: 
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So that, from equation (16) & (17) , we get: 
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This square matrix is considered as the parent eight matrix 

because it represents the partial solution or sub-optimal solution 

for the pattern recalling corresponding to the presented 

prototype input pattern vector. The next generation population 

of solutions will be evolved from this sub-optimal weight 

matrix. Thus, we consider that the GA will now start from this 

sub-optimal initial solution rather than random one. So, we 

consider this as sub-optimal GA. Hopfield suggested that the 

maximum limit for the storage is N15.0  in a network with N 

neurons, if a small error in recalling is allowed. Later, this was 

theoretically calculated as Np 14.0  by using replica 

method [3]. Wasserman [39] showed that the maximum number 

of memories ‘ m ’ that can be stored in a network of 

‘ n ’neurons and recalled exactly is less that 
2cn where ‘ c ’is a 

positive constant greater than one. It has been identified that the 

storage capacity strongly depends on learning scheme. 

Researchers have proposed different learning schemes, instead 

of the Hebbian rule to increase the storage capacity of the 

Hopfield neural network [55,56] Gardner showed that the 

ultimate capacity will be Np 2  as a function of the size of 

the basin of attraction [57]. Imada and Akira [10] applied the 

genetic algorithm to the Hopfield model as an associative 

memory, and obtained the capacity of 33% of the number of 

neurons. It has also been observed that the possibility of false 

minima may occur during the recalling of memorized patterns. 

However the GA has been identified as being particularly good 

at performing efficient searching in large and complex spaces to 

determine the global optima or minimize the possibility of false 

minima.  Kumar and Singh investigated [24] that the GA of the 

evolutionary algorithms is much suitable choice to reduce the 

affect of false minima from the Hopfield neural network during 

the recalling of memorized patterns. 

4. PATTERN RECALLING WITH GENETIC 

ALGORITHM 

In GA implementation we consider the cycle of generating the 

new population with better individuals and restart the search 

until an optimum solution is found. In this process the two 

fitness evaluation functions have been used. The first fitness 

function is determining the best matrices of the weight 

populations those settle the network in a stable state 

corresponds to correct memorized pattern for presented input 

pattern. This input pattern is one of the memorized patterns.  

The second fitness evaluation function is selecting the weight 

matrices from the populations of the network in a stable state 

correspond to the correct memorized pattern for presented 

prototype noisy or approximate input pattern. It indicates that 

the stable states of the network will use for the evaluation of 

weight populations. Thus in the recalling process, stable state of 

the network correspond to the stored pattern should retain for 

the selected weight matrix on the presentation of prototype 

input pattern. 
In this implementation process the two fitness evaluation 

functions are used. The first fitness evaluation function 

determines the suitable weight matrices which are responsible 

to generate the correct recalling of the memorized pattern for 

the error-free or exact input pattern that has been used in the 

training set. It means that, at the first level of filtering only 

those weight matrices will select which provide the correct 

pattern auto-association for the samples of training pattern set. 

Thus, at this level no approximate prototype input pattern is 

presented. It represents only weight matrices those exhibit the 

pattern association during the training of the network and 

should carry in the next generation of population, whereas the 

second fitness evaluation function is used after the crossover 

operator. The crossover operator is applied only to 

chromosomes those have been passed from the first fitness 

evaluation function. The second fitness evaluation function 

applies to determine the population of weight matrices those are 

responsible for recalling of correct memorized pattern for 

presented approximate or noisy prototype input pattern. Thus, 

the second fitness evaluation function is actually selecting the 

final population of chromosomes which are required for 

obtaining the optimal solution.   The parameters used for 

genetic algorithm are summarized in Table 1. 

Table 1:  Parameter used for genetic algorithm. 

Parameter/

Operation/ 

procedure 

Suboptimal Genetic 

Algorithm 
Random 

Genetic 

Algorith

m 

001.0mp

 

500.0mp

 

Chromosom

e length 
NN   NN   NN   

Mutation 

probability 
0.001 0.500 1.000 

Mutation 

population 

size 
N  N  N  

Crossover  

population 

size 
NN   NN   NN   

Crossover 

type 
Uniform Uniform Uniform 

Number of 

fitness 

functions 

2 2 2 

Initial 

population 

Suboptimal 

weight matrix 

Suboptimal 

weight matrix 

Random 

weight 

matrix 

4.1. The Mutation Operator  

The mutation operator plays a secondary role in the genetic 

algorithm. Mutation performs the modification of the value of 

each gene of a solution with some probability mp . 

Nevertheless the choice of  mp  is critical to GA performance 

and has been studied by DeJong [40]. The typical value of 

mutation probability is in the range 0.005-0.05.  The idea of 

adapting mutation and crossover to improve the performance of 

GAs   has been used by researchers using the different criterion 
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[41-42]. Whitely et al. [43] idea for adaptation is based on the 

Hamming distance between solutions; while in Srinivas et al. 

[44] approach mp  is based on fitness values of the solutions. 

The mutation operator produces the population of N  weight 

matrices or chromosomes of same order as the original parent 

matrix on applying it N  times. Thus, each chromosome is 

having a fixed length of NN   genes or alleles. In this 

process of mutation we select randomly any genes i.e. 
r

j

r

i ss from parent chromosome. In which r  is the position of 

the gene in the parent chromosome or weight matrix. We 

consider another randomly generated chromosome of the same 

order as NN   in which on the same randomly selected 

position i.e. r , the allele values are non zero in the interval -1 

and +1 and for other positions the values are zero i.e. 

00  o

ij

r

ij AandA , where 
r

ijA  is the value of the gene 

at the position r  in the generated chromosome of order 

NN  and 
o

ijA  is the value of the gene at the position ''o  in 

the generated chromosome of order NN  . Now, we add this 

randomly generated chromosome with the parent chromosome 

and generate the new chromosome or weight matrix as: 

r

ij

r

j

r

i

new

ij Assw   

and,  
o

ij

o

j

o

i

new

ij Assw     (19) 

where 0)(0  o

ii

r

ij AandroA .  

The steps for mutation operator: 

Step 1: Generate the mutation positions in the chromosome 

randomly. 

Step 2: Modify the parent chromosome at the positions 
generated in step 1, using equation (19). 

Step 3:  Repeat step 1 and 2 until a number N  of mutated 

chromosome populations have been created. 

4.2. Elitism 
Elitism is used when creating each generation so that the 

genetic operators do not loose good solutions. This involves 

copying the Hebbian-encoded weight matrix i.e., the suboptimal 

solution unchanged in the new population, which includes 

LW for creating the total number M (i.e. 1N ) of 

chromosomes. 

4.3. The First Fitness Evaluation 

The first fitness evaluation function ( f ) is used for selecting a 

good or efficient next generation of weight matrices. Evaluation 

of f for each individual weight matrix is carried out with a set 

of randomly pre – determined patterns
Lx . When one of the 

stored patterns
lx  is given to the network as an initial state, the 

state of neurons varies over time until 
lx  becomes a fixed 

point. In order to store the pattern in the network, these two 

states must be similar. The similarity as a function of time is 

defined by [10] 


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
N

i

l

i

l

iN

l tsxz
1

1 )(     (20) 

Here )(ts l

i is the state of the 
thi neuron at time t . In 

evaluating the fitness value, the temporal average overlap 

z  is calculated for each stored pattern, as follows. First the 

total of the inner products of the initial states and states is 

calculated at each time of update not greater than a certain 

time 0t . After that, these values are summed up over whole set 

of initial patterns [10]  i.e., 


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
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0

1 1

1 )(
t

t

L

l

l

Lt
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Here 0t  has been set to N  (the number of processing units). 

We must note that fitness 1 implies that all the initial patterns 

have been stored as fixed points. Thus, we consider only those 

generated weight matrices that have the fitness evaluation value 

1. Hence, all the selected weight matrices will be considered as 

the new generation of the population. This new population will 

be used for generating the next better population of weight 

matrices with the crossover operator. 

4.4. The Crossover Operator 
The power of GAs arises from crossover.  Crossover is a 

structured and randomized exchange of genetic material 

between solutions, with the probability that ‘good’ solutions can 

generate ‘better’ ones. Thus, crossover is an operation which 

may be used to combine multiple parents and make off spring. 

This operator is responsible for the recombination of the 

selected population of weight matrices. This operator forms a 

new solution by taking some parameters from one parent and 

exchanging them with ones from another at the very same point. 

Here, we are applying the recombination with the uniform 

crossover. In this process, the network selects randomly (with 

uniform distribution) a string of non – zero chromosomes from 

a selected weight matrix and exchanges it with string of non – 

zero chromosomes from another selected weight matrix. Thus, a 

large population of the weight matrices will be generated. 

Hence, on applying this crossover operator with the constraint 

that the numbers of genes or alleles selected for exchange 

should be equal for the two weight matrices, the modification 

has been made in the selected weight matrices as follows: 

][ ,2,1,1,1

sel

ut

sel

utold

new

NN wwww     

And ][ ,1,2,2,2
sel

ut
sel

utold
new

NN wwww     (22) 

where  Nut ,  

Here 
new

NNw ,1 & 
new

NNw ,2 are newly generated weight 

matrices after crossover operator, oldw ,1 & oldw ,2  are two 

selected weight matrices randomly from mutated population to 
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perform the crossover operator, 
sel

utw ,1 &
sel

utw ,2 are the 

selected sub matrices randomly from oldw ,1 & oldw ,2  

respectively for exchange to perform crossover operator, and 

 is the operator for construction of new weight matrix 

through crossover operator.  

In this way, we can generate the population of K weight 

matrices i.e. NN   by applying the crossover operator on the 

population of M chromosomes. 

Thus, we have the new large population of K  weight 
matrices from the crossover operator as follows: 

 new

NNK

new

NN

new

NN www   ,,2,1 ,,,     (23) 

Steps for Crossover Operation 

Step 1: Initialize the crossover population size limit 

with value NN  . 

Step 2: Extract two chromosomes from among the 

)1..( NeiM  chromosomes randomly. 

Step 3: Obtain a sub matrix of order ut   randomly 

in each extracted chromosome for 
exchanging the values. 

Step 4: Exchange the sub matrices between the 
chromosomes. 

Step 5: Include both chromosomes in the crossover 
population. 

Step 6: Check whether the population size is equal to NN  . 

If not, go to step 2 again. 

4.5. The Second Fitness Evaluation 
In the process of recalling the stored pattern, corresponding to a 

approximate prototype input pattern of handwritten Hindi 

‘SWARS’, the best suitable weight matrix is selected from the 

generated population of K weight matrices.  

Let the state of the network corresponding to the already stored 

lth pattern be  

},,{)( 21

l

N

lll ssssN     (24) 

This represents one of the stable states of the network for the 

memorized
thl pattern.  

Let the prototype of presented input pattern be
lx . This 

pattern represents the noisy or distorted form of the already 

stored pattern
lx in the network. We have the population K of 

weight matrices after the crossover operation. Now, we select 

the weight matrices from this population to evaluate its fitness. 

Let 
kPOPw ,

 be the 
thF weight matrix from the generated 

population K of weight matrices. Now, we assign this selected 

weight matrix to the network and use the activation dynamics to 

determine the output state of the network as 




 
N

j

l

j

kPOP

ij

l

i tsws
1

, )1(
   (25)

  

If,  )()1( tsts l

i

l

i 
;   Ni :1   (26) 

It implies that the network settles in the same stable state 

which corresponds to the already stored pattern, so that
kPOPw ,

, 

is selected from the fitness function if it is able to settle the 

network in the stable state corresponding to the already stored 
thl pattern, i.e. 

 )()( ll sNsN 
    (27) 

This process will continue for all the weight matrices from 

the K population. It is possible to obtain more than one 

optimal weight matrices for the recalling of prototype input 

pattern. 

5.  EXPERIMENTS DETAIL 

To do the simulation we are considering the Hopfield 

neural network of 25 neurons. This neural network is trained for 

pattern storage with the Hebbian learning rule for given training 

set of handwritten ‘SWARS’ of Hindi language. In the training 

set every pattern consists with 25 bipolar features. The pattern 

information of the training set is encoded in the form of 

connection strengths of interconnections between the neurons of 

the network. In this way the parent weight matrix is constructed 

which represents the encoded pattern information of memorized 

patterns. 

Now we start with the process of recalling for any 

presented noisy prototype input pattern of already memorized 

pattern. The process of recalling is accomplished with two 

different methods namely the Hebbian rule and the sub optimal 

GA. The implementation of above stated methods is performed 

with experiments to study the performance behavior of these 

methods.  

The recalling through Hebbian rule starts by applying the 

presented prototype input pattern to the Hopfield network and 

then we continue to iterate the network till it reaches to 

stability. The stable state of the network reflects any one of the 

memorized pattern. In this method the possibility of false 

recalling or false minima is likely to occur in most of the cases 

if the presented input pattern is a noisy pattern.  

The recalling process through the suboptimal GA can be 

described in the algorithmic form as: 

Sub Optimal Genetic Algorithm () 

{ 

read suboptimal parent weight matrix; 

initialize input pattern to the network; 
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  do 

{ 

      perform mutataion and elitism; 

 select solutions for next population by first fitness 
function ; 

      perform crossover; 

evaluate population by second fitness function; 

 } 

while (convergence not achieved OR 20 times) 

 } 

6. RESULTS AND DISCUSSION 

The results presented in this section are demonstrating that, 

within the simulation framework presented above, large 

significant difference exists between the performance of genetic 

algorithm and the Hebbian rule for recalling of memorized 

handwritten ‘SWARS’ of Hindi language in  Hopfield neural 

network using the Hebbian learning rule.  

 The results are indicating about the difference 

between sub-optimal GA and Hebbian rule for rate of success to 

evaluate the performance of these two techniques for 

associative memory feature. In the experiments, the prototype 

input patterns used for recalling purpose consists the error 

which has been generated randomly with respect to memorized 

patterns. Tables 2-7 show the results of recalling the patterns 

which containing zero-,one-,two-,three-,four-,and five-bit errors 

from stored patterns in the Hopfield neural network.  The 

performance of sub optimal GA corresponding to zero-bit, and 

one-bit error in prototype input patterns is found much better 

with respect to conventional technique. The results clearly 

indicate that the Hebbian rule works well for a noiseless pattern, 

for most of the cases, but its performance degrades substantially 

and recalling success goes down to a maximum of 1.30% in the 

case of one-bit error, 0.20% in the case of two-bit error, 0.01% 

in the case of three-bit error, and 0.000% in the cases of four- 

and five bit errors. On the other hand, GA recall the pattern 

successfully even when high noise is presented in the input test 

pattern i.e. four-bit and five-bit errors. It is observed that in 

most of the cases the performance of the suboptimal GA 

outperform the conventional Hebbian method. It is also 

observed that variance in the mutation probability in sub 

optimal GA does not have any substantial impact in the 

performance of this algorithm.   

Table .2:  Results for recalling Hindi ‘SWARS’ which 

involve zero-bit error from the memorized ‘SWARS’. 

‘SWARS’ 

Recalling Success (in %) 

Hebbian Rule 
Sub-optimal GA 

mp =0.001 mp =0.40 

v 94.20 100 100 
vk 87.10 100 100 
b 89.20 100 100 

bZ 83.60 100 100 

m 92.60 100 100 
Å 88.60 100 100 
_ 82.00 100 100 
, 100.80 100 100 

,s 86.8 100 100 
vks 85.60 100 100 
vkS 92.20 100 100 
va 85.20 100 100 
v% 81.60 100 100 

Table 3:  Results for recalling Hindi ‘SWARS’ which involve 

one-bit error from the memorized ‘SWARS’. 

‘SWARS’ 

Recalling Success (in %) 

Hebbian Rule 
Sub-optimal GA 

mp =0.001 mp =0.40 

v 0.50 100 100 
vk 1.02 100 100 
b 2.10 100 100 
bZ 2.30 100 100 
m 2.01 100 100 

Å 1.08 100 100 
_ 1.03 100 100 
, 1.11 100 100 
,s 1.09 100 100 
vks 2.10 100 100 
vkS 0.90 100 100 
va 0.81 100 100 

v% 1.25 100 100 

Table 4: Results for recalling Hindi ‘SWARS’ which involve 

two-bit error from the memorized ‘SWARS’ 

‘SWARS’ 

Recalling Success (in %) 

Hebbian 

Rule 

Sub-optimal GA 

mp =0.001 mp =0.40 

v 0.00 81.25 97.50 
vk 0.20 87.19 90.10 
b 0.03 100 99.20 
bZ 0.10 95.38 98.10 

m 0.16 75.73 85.20 
Å 0.10 98.20 89.20 
_ 0.19 89.44 98.10 
, 0.09 87.30 99.50 
,s 0.19 99.50 100.00 

vks 0.02 86.50 95.50 

vkS 0.00 70.00 80.58 
va 0.10 70.53 83.76 
v% 0.11 82.60 84.40 

Table 5: Results for recalling Hindi ‘SWARS’ which involve 

three-bit error from the memorized ‘SWARS’. 

‘SWARS’ 

Recalling Success (in %) 

Hebbian 

Rule 

Sub-optimal GA 

mp =0.001 mp =0.40 

v 0.00 30.95 38.40 

vk 0.00 76.50 73.73 
b 0.00 87.95 84.94 
bZ 0.00 90.09 90.21 
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m 0.00 69.40 71.04 
Å 0.00 66.67 66.40 
_ 0.00 77.53 80.05 
, 0.00 73.50 74.20 

,s 0.00 95.30 98.10 
vks 0.00 70.39 64.23 
vkS 0.00 50.02 54.88 
va 0.00 44.04 51.57 
v% 0.00 60.75 62.19 

Table 6: Results for recalling Hindi ‘SWARS’ which involve 

four-bit error from the memorized ‘SWARS’. 

‘SWARS’ 

Recalling Success (in %) 

Hebbian 

Rule 

Sub-optimal GA 

mp =0.001 mp =0.40 

v 0.00 08.70 10.68 
vk 0.00 21.28 23.59 
b 0.00 22.62 20.54 
bZ 0.00 29.94 21.90 
m 0.00 16.04 13.15 

Å 0.00 16.71 12.08 
_ 0.00 19.68 19.74 
, 0.00 19.77 17.41 
,s 0.00 29.23 25.98 
vks 0.00 20.41 19.49 
vkS 0.00 08.89 07.75 
va 0.00 10.61 08.88 

v% 0.00 16.18 14.03 

Table 7: Results for recalling Hindi ‘SWARS’ which involve 

five-bit error from the memorized ‘SWARS’. 

‘SWARS’ 

Recalling Success (in %) 

Hebbian 

Rule 

Sub-optimal GA 

mp =0.001        mp =0.40 

v 0.00 0.08 0.60 

vk 0.00 1.90 2.00 

b 0.00 1.70 1.76 

bZ 0.00 2.01 3.08 

m 0.00 0.56 1.06 

Å 0.00 2.50 1.59 

_ 0.00 3.50 2.58 

, 0.00 3.08 1.98 

,s 0.00 3.80 2.80 

vks 0.00 2.30 0.80 

vkS 0.00 1.00 0.78 

va 0.00 1.80 2.60 

v% 0.00 2.61 1.98 

Amit [3] claimed that the capacity of deterministic 

Hopfield model with the Hebbian rule is about 0.15N for the 

noisy prototype input patterns, where N the number of nodes 

in the network is. If such a network is overloaded with a 

number of patterns exceeding its capacity, its performance 

rapidly deteriorates toward zero. Here, we have stored the 13 

handwritten ‘SWARS’ of Hindi language in a network of 25 

nodes and the performance of the GA suggests that on inducing 

5-bit error in presented prototype input pattern the network is 

able to recall the stored patterns. It implies that the network 

capacity has increased up to 0.45N. Thus, the numbers of 

attractors are existing here and successfully explored during the 

recalling process. It is quit obvious to understand that the GA 

has searched the suitable optimal weight matrices which are 

responsible to generate sufficiently large number of attractions. 

Hence, the Hebbian rule which has been used to encode the 

pattern information is not the optimal weight matrix for finding 

the global minima of the problem due to the limited capacity of 

the Hopfield model. Thus capacity has been increased with GA 

by exploring the optimal weight matrices for the encoded 

patterns. 

The simulation program, which is developed in MATLAB-

7, to test the Hebbian rule, the suboptimal GA, and the random 

GA for the recalling of handwritten ‘SWARS’ of Hindi language, 

stores the patterns in the Hopfield neural network of 25 neurons. 

It is to note that during suboptimal GA, the success is 

considered only if the recalling is done within 20-iterations. 

7.  CONCLUSION 

The simulation results i.e. Tables 2-7 indicates that the sub 

optimal genetic algorithm has more success rate than the  

Hebbian rule for the stated problem. It has been found that 

suboptimal GA can give more than one convergent weight 

matrices for any prototype input pattern in comparison to the 

Hebbian rule, if the prototype input pattern is correctly 

recognized. This shows the more chances for GAs to explore 

better solution than the Hebbian rule. Further the sub optimal 

GA is starting from sub optimal weight matrix so it has more 

chances to explore more number of convergent weight matrices 

with respect to random GA. In the purposed method it can be 

seen that the two fitness evaluation functions are used. There 

are two basic advantages of the two fitness evaluation 

functions: 

1. The randomness of the GA has minimized, because 

the population is filtered twice. Hence, the less 

number of populations will be generated and the 

generated population will be more fitted for the 

solution. 

2. As the number of population has minimized, the 

searching time will also be reduced. Thus, the GA has 

improved in its implementation because it is less 

random and consuming less time for searching the 

optimal solution. 

The direct application of GA to the pattern association has 

been explored in this research. The aim is to introduce an 

alternative approach to solve the pattern association problem. 

The results from the experiments conducted on the algorithm 

are quite encouraging. Nevertheless more work needs to be 

perform especially on the tests for noisy input patterns. We can 

also use this concept for pattern recognition for hand written 

‘VYANJANS’ of Hindi language, overlapped alphabet and curve 

scripts. It is also proposed to undertake the following problems 

in future research program. 

1. We would like to train the Hopfield neural network 

with the genetic algorithm and then the pattern 

recalling with genetic algorithm. 

2. We would like to apply the same approach on the 

quantum Hopfield neural network. 

3. We would like to introduce other types of sigmoid 

function, chromosome, fitness function, crossover to 

change the weight values through evolution. 
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