
www.ijmit.com International Journal of Management & Information Technology

ISSN: 2278-5612 Volume 3, No 1, January, 2013

©
Council for Innovative Research 83 | P a g e

Performance Evaluation of Pattern Storage Network of

Associative memory with Sub-optimal GA for Hand written

Hindi ‘SWARS’

Rajesh Lavania
1
, Manu Pratap Singh

2

Assistant Professor
1
 , Reader

2

Department of Computer Science Engineering, Institute of Engineering & Technology,

Dr. B. R. Ambedkar University, Khandari, Agra

ABSTRACT

In this paper we are performing the evaluation of Hopfield

neural network as Associative memory for recalling of

memorized patterns from the Sub-optimal genetic algorithm for

Handwritten ‘SWARS’ of Hindi language. In this process the

genetic algorithm is employed from sub-optimal form for

recalling of memorized patterns corresponding to the presented

noisy prototype input patterns. The sub-optimal form of GA is

considered as the non-random initial population or solution. So,

rather than random start, the GA explores from the sum of

correlated weight matrices for the input patterns of training set.

The objective of this study is to determine the optimal weight

matrix for correct recalling corresponds to approximate

prototype input pattern of Hindi ‘SWARS’. In this study the

performance of neural network is evaluated in terms of the rate

of success for recalling of memorized Hindi ‘SWARS’ for

presented approximate prototype input pattern with GA in two

aspects. The first aspect reflects the random nature of the GA

and the second one exhibit the suboptimal nature of the GA for

its exploration. The simulated results demonstrate the better

performance of network for recalling of the memorized Hindi

SWARS using genetic algorithm to evolve the population of

weights from sub-optimal weight matrix.

Keywords: Hopfield neural networks, Associative memory,

Pattern Storage, Genetic algorithm, Evolutionary Algorithm.

1. INTRODUCTION

Pattern storage & recalling i.e. pattern association is one of

prominent method for the pattern recognition task that one

would like to realize using an artificial neural network (ANN)

as associative memory feature. Pattern storage is generally

accomplished by a feedback network consisting of processing

units with non-linear bipolar output functions. The Hopfield

neural network is a simple feedback neural network (NN) which

is able to store patterns locally in the form of connection

strengths between the processing units. This network can also

work for the pattern completion on the presentation of partial

information or prototype input pattern. The stable states of the

network represent the memorized or stored patterns. Since the

Hopfield neural network with associative memory [1-2] was

introduced, various modifications [3-10] are developed for the

purpose of storing and retrieving memory patterns as fixed-

point attractors. The dynamics of these networks have been

studied extensively because of their potential applications [21-

24]. The dynamics determines the retrieval quality of the

associative memories corresponding to already stored patterns.

The pattern information in an unsupervised manner is encoded

as sum of correlation weight matrices in the connection

strengths between the proceeding units of feedback neural

network using the locally available information of the pre and

post synaptic units which is considered as final or parent weight

matrix.

Hopfield [1] proposed a fully connected neural network model

of associative memory in which we can store information by

distributing it among neurons, and recall it from the

dynamically relaxed neuron states. If we map these states

corresponding to certain desired memory vectors, then the time

evolution of dynamics leads to a stable state. These stable states

of the networks represent the stored patterns. Hopfield used the

Hebbian learning rule [25] to prescribe the weight matrix for

establishing these stable states. A major drawback of this type

of neural networks is that the memory attractors are constantly

accompanied with a huge number of spurious memory

attractors so that the network dynamics is very likely to be

trapped in these attractors [6], and thereby prevents the retrieval

of the memory attractors. Hopfield type networks also likely be

trapped in non-optimal local minima close to the starting point,

which is not desired. The presence of false minima will increase

the probability of error in recall of the stored pattern. The

problem of false minima can be reduced by adopting the

evolutionary algorithm to accomplish the search for global

minima. There have been a lot of researchers who apply

evolutionary techniques (simulated annealing and Genetic

algorithm) to minimize the problem of false minima [10].

Imades & Akira [10-19] have applied evolutionary computation

to Hopfield neural networks in various ways. A rigorous

treatment of the capacity of the Hopfield associative memory

can be found in [20]. The Genetic algorithm has been identified

as one of prominent search technique for exploring the global

minima in Hopfield neural network [24].

Developed by Holland [26], a Genetic algorithm is a

biologically inspired search technique. In simple terms, the

technique involves generating a random initial population of

individuals, each of which represents a potential solution to a

problem. Each member of this population evaluates from a

fitness function which is selected against some known criteria.

The selected members of the population from the fitness

function are used to generate the new population as the

members of the population are then selected for reproduction

based potential solutions from the operations of the genetic

algorithm. The process of evaluation, selection, and

recombination is iterated until the population converges to an

acceptable optimal solution. Genetic algorithms (GAs) require

only fitness information, not gradient information or other

internal knowledge of a problem as in case of neural networks.

Genetic algorithms have traditionally been used in optimization

but, with a few enhancements, can perform classification,

prediction and pattern association as well [27-29]. The GA has

been used very effectively for function optimization and it can

perform efficient searching for approximate global minima. It

has been observed that the pattern recalling in the Hopfield type

neural networks can be performed efficiently with GA [13]. The

GA in this case is expected to yield alternative global optimal

values of the weight matrix corresponding to all stored patterns.

www.ijmit.com International Journal of Management & Information Technology

ISSN: 2278-5612 Volume 3, No 1, January, 2013

©
Council for Innovative Research 84 | P a g e

The conventional Hopfield neural network suffers from the

problem of non-convergence and local minima on increasing

the complexity of the network. However, GA is particularly

good to perform efficient searching in large and complex space

to find out the global optima and for convergence. Considerable

research into the Hopfield network has shown that the model

may trap into four types of spurious attractors. Four well

identified classes of these attractors are mixture states [4], spin

glass states [58], compliment states and alien attractors [59]. As

the complexity of the of the search space increases, GA presents

an increasingly attractive alternative for pattern storage &

recalling in Hopfield type neural networks of associative

memory.

The neural network applications address problems in pattern

classification, prediction, financial analysis, and control and

optimization [30]. In most current applications, neural networks

are best used as aids to human decision makers instead of

substitutes for them. Genetic algorithms have helped market

researchers performing market segmentation analysis [31].

Genetic algorithms and neural networks can be integrated into a

single application to take advantage of the best features of these

technologies [32].

Much work has been done on the evolution of neural networks

with GA [33-37]. There have been a lot of researches which

apply evolutionary techniques to layered neural networks.

However, their applications to fully connected neural networks

remain few so far. The first attempt to conjugate evolutionary

algorithms with Hopfield neural networks dealt with training of

connection weights [45] and design of the neural network

architecture [46,47], or both [48-51]. Evolution has been

introduced in neural networks at three levels: architectures,

connection weights and learning rules [38]. The evolution of

connection weights proceeds at the lowest level on the fastest

time scale in an environment determined by architecture, a

learning rule, and learning tasks. The evolution of connection

weights introduces an adaptive and global approach to training,

especially in the reinforcement learning and recurrent network

learning paradigm. Training of neural networks using

evolutionary algorithms started in the beginning of 90’s [16,52].

Reviews can be found in [24,27-29,35]. Cardenas et al. [53]

presented the architecture optimization of neural networks using

parallel genetic algorithms for pattern recognition based on

person faces. They compared the results of the training stage for

sequential and parallel implementations. The genetic evolution

has been used as data structures processing for image

classification [54].

 In this paper we are exploring the GA for efficient

recalling of memorized patterns as auto associative memory

from the Hopfield neural network corresponding to the

presented input pattern vector of handwritten Hindi ‘SWARS’

characters. The recalling in this associative memory network is

performed under the consideration of reducing the effect of

false minima by using evolutionary searching method like

genetic algorithm. In this approach the GA starts from the

suboptimal weight matrix as the initial population of solution.

The suboptimal weight matrix reflects the encoded patterns

information of the training set by using unsupervised Hebbian

learning rule i.e. sum of correlation weight matrices. Each

correlation term is corresponding to individual pattern

information. Hence, the GA starts from the sum of correlation

matrices for training set which we call as parent weight matrix,

and it determines the optimal weight matrix for the presented

noisy prototype input patterns of the handwritten ‘SWARS’ of

Hindi language. The performance of pattern storage network is

evaluated as rate of success in recalling of correct memorized

pattern correspond to the presented prototype input pattern of

handwritten ‘SWARS’ with GA which starts from sub-optimal

solution i.e. sub-optimal GA. The simulated results indicate the

better performance of the suboptimal genetic algorithm (SGA)

as compared with Hebbian rule in success rate for recalling of

correct memorized ‘SWARS’ characters.

In the following sections we will present the description of

patterns used for training, the Hopfield neural network used for

storing the patterns, the GA used for recalling the already stored

patterns, experiments detail, discussion of our results obtained

through simulation, and the conclusion of our investigations.

2. SAMPLE PATTERN REPRESENTATION

The patterns used for the simulations are shown in Figure 1.

Each pattern consists of a 5 X 5 pixel matrix representing a

handwritten character of Hindi ‘SWARS’. White and black

pixels are respectively assigned corresponding values of -1 and

+1.

Figure 1: The set of patterns used for training
Now, the input pattern vector for the storage corresponding to

hand written character of Hindi ‘SWARS’ is constituted with the

series of bipolar values +1 and -1. For example, the pattern

vector for character v can be written as:

[1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1 1 1 1]

In the general form we can represent the lth pattern vector as:

],,[2521

llll aaax  (1)

 where l= 1 to 13 and i, j= 1 to 25

3. THE HOPFIELD NEURAL NETWORK

The proposed Hopfield model consists of N (25 = 5 X 5)

neurons and NN  connection strengths. Each neuron can be

in one of the two states i.e. ±1, and)13(L bipolar patterns

have to be memorized in the Hopfield neural network of

associative memory.

Hence, to store)13(L number of patterns in this pattern

storage network, the weight matrix w is usually determined by

the Hebbian rule as follows:

 



L

l

l

T

l xxw
1

 (2)

or,  l

j

l

iN

l

ij aaw 1 (3)

and, 
N

ji

l

j

l

i

l aa
N

w
,

1
 (4)

or, 



L

l

l

j

l

iij aa
N

w
1

1
)(ji  and 0iiw (5)

www.ijmit.com International Journal of Management & Information Technology

ISSN: 2278-5612 Volume 3, No 1, January, 2013

©
Council for Innovative Research 85 | P a g e

where { LlNial

i  3,2,1;3,2,1,

and ;ji  with set of L patterns to be memorized and N is

the number of processing units}. The network is initialized as:

   00 l

i

l

i as  for all 1i to N (6)

The activation value and output of every unit in Hopfield model
can represent as:

 



N

j

iiji tswy
1

 ; jiNji  ;3,2,1, (7)

and    ii yts sgn1  (8)

where   1sgn iy for 0iy and 0iy

respectively

Associative memory involves the retrieval of a memorized

pattern in response to the presentation of some prototype input

patterns as the arbitrary initial states of the network. These

initial states have a certain degree of similarity with the

memorized patterns and will be attracted towards them with the

evaluation of the neural network.

Hence, in order to memorize 13 handwritten Hindi

‘SWARS’ of in a 25-unit bipolar Hopfield neural network, there

should be one stable state corresponding to each stored pattern.

Thus at the end, the memory pattern should be fixed-point

attractors of the network and must satisfy the fixed-point

condition as:






N

ji
j

l

jij

l

i

l

i swsy
1

 (9)

 or, 



N

j

l

jij

l

i

l

i swsy
1

 where 0l

iy (10)

Therefore, the following activation dynamics equation must
satisfy to accomplish the pattern storage:

;)(l

i

N

ij

l

jij sswf 


 (11)

where jiNji  ;,,2,1,

Let the pattern set be },,,{ 21 LxxxP 

where),,,,([11
2

1
1

1
Naaax 

),,,,(22
2

2
1

2
Naaax 

 -

 -

 -

),,,(21
L
N

LLL aaax 

 with 25,,2,1 N

 and]13,,2,1 L . (12)

Now, the initial weights have been considered as 0ijw (near

to zero) for all si' and sj' . From the synaptic dynamics as

vectors we have the following equation for encoding the
patterns information as:

 XXWW Toldnew . (13)

and
newold WW  (14)

similarly for the Lth patterns, we have:

  LTLLL XXWW  1
 (15)

Thus, after the learning for all the patterns, the final parent

weight matrix can be represented as:

















































0
111

|||||

|||||

11
0

1

111
0

1

3

1

2

1

1

1

2

1

32

1

12

1

1

1

31

1

21

L

l

ll

N

L

l

ll

N

L

l

ll

N

L

l

l

N

l
L

l

ll
L

l

ll

L

l

l

N

l
L

l

ll
L

l

ll

L

aa
N

aa
N

aa
N

aa
N

aa
N

aa
N

aa
N

aa
N

aa
N

W

 (16)

Now, to represent
LW in the convenient representation

form, let us assume following notations:





L

l

ll aaSS
1

2121
, 




L

l

ll aaSS
1

3131
, 




L

l

l

N

l

N aaSS
1

11
 ,





L

l

ll aaSS
1

1212
, 




L

l

ll aaSS
1

3232
, 




L

l

l

N

l

N aaSS
1

22
,

www.ijmit.com International Journal of Management & Information Technology

ISSN: 2278-5612 Volume 3, No 1, January, 2013

©
Council for Innovative Research 86 | P a g e





L

l

ll

NN aaSS
1

11
, 




L

l

ll

NN aaSS
1

22
--, 




L

l

ll

NN aaSS
1

33

 (17)

So that, from equation (16) & (17) , we get:































0

|||||

|||||

0

0

1

321

23212

13121

ssssss

ssssss

ssssss

N
W

NNN

N

N

L (18)

This square matrix is considered as the parent eight matrix

because it represents the partial solution or sub-optimal solution

for the pattern recalling corresponding to the presented

prototype input pattern vector. The next generation population

of solutions will be evolved from this sub-optimal weight

matrix. Thus, we consider that the GA will now start from this

sub-optimal initial solution rather than random one. So, we

consider this as sub-optimal GA. Hopfield suggested that the

maximum limit for the storage is N15.0 in a network with N

neurons, if a small error in recalling is allowed. Later, this was

theoretically calculated as Np 14.0 by using replica

method [3]. Wasserman [39] showed that the maximum number

of memories ‘ m ’ that can be stored in a network of

‘ n ’neurons and recalled exactly is less that
2cn where ‘ c ’is a

positive constant greater than one. It has been identified that the

storage capacity strongly depends on learning scheme.

Researchers have proposed different learning schemes, instead

of the Hebbian rule to increase the storage capacity of the

Hopfield neural network [55,56] Gardner showed that the

ultimate capacity will be Np 2 as a function of the size of

the basin of attraction [57]. Imada and Akira [10] applied the

genetic algorithm to the Hopfield model as an associative

memory, and obtained the capacity of 33% of the number of

neurons. It has also been observed that the possibility of false

minima may occur during the recalling of memorized patterns.

However the GA has been identified as being particularly good

at performing efficient searching in large and complex spaces to

determine the global optima or minimize the possibility of false

minima. Kumar and Singh investigated [24] that the GA of the

evolutionary algorithms is much suitable choice to reduce the

affect of false minima from the Hopfield neural network during

the recalling of memorized patterns.

4. PATTERN RECALLING WITH GENETIC

ALGORITHM

In GA implementation we consider the cycle of generating the

new population with better individuals and restart the search

until an optimum solution is found. In this process the two

fitness evaluation functions have been used. The first fitness

function is determining the best matrices of the weight

populations those settle the network in a stable state

corresponds to correct memorized pattern for presented input

pattern. This input pattern is one of the memorized patterns.

The second fitness evaluation function is selecting the weight

matrices from the populations of the network in a stable state

correspond to the correct memorized pattern for presented

prototype noisy or approximate input pattern. It indicates that

the stable states of the network will use for the evaluation of

weight populations. Thus in the recalling process, stable state of

the network correspond to the stored pattern should retain for

the selected weight matrix on the presentation of prototype

input pattern.
In this implementation process the two fitness evaluation

functions are used. The first fitness evaluation function

determines the suitable weight matrices which are responsible

to generate the correct recalling of the memorized pattern for

the error-free or exact input pattern that has been used in the

training set. It means that, at the first level of filtering only

those weight matrices will select which provide the correct

pattern auto-association for the samples of training pattern set.

Thus, at this level no approximate prototype input pattern is

presented. It represents only weight matrices those exhibit the

pattern association during the training of the network and

should carry in the next generation of population, whereas the

second fitness evaluation function is used after the crossover

operator. The crossover operator is applied only to

chromosomes those have been passed from the first fitness

evaluation function. The second fitness evaluation function

applies to determine the population of weight matrices those are

responsible for recalling of correct memorized pattern for

presented approximate or noisy prototype input pattern. Thus,

the second fitness evaluation function is actually selecting the

final population of chromosomes which are required for

obtaining the optimal solution. The parameters used for

genetic algorithm are summarized in Table 1.

Table 1: Parameter used for genetic algorithm.

Parameter/

Operation/

procedure

Suboptimal Genetic

Algorithm
Random

Genetic

Algorith

m

001.0mp

500.0mp

Chromosom

e length
NN  NN  NN 

Mutation

probability
0.001 0.500 1.000

Mutation

population

size
N N N

Crossover

population

size
NN  NN  NN 

Crossover

type
Uniform Uniform Uniform

Number of

fitness

functions

2 2 2

Initial

population

Suboptimal

weight matrix

Suboptimal

weight matrix

Random

weight

matrix

4.1. The Mutation Operator

The mutation operator plays a secondary role in the genetic

algorithm. Mutation performs the modification of the value of

each gene of a solution with some probability mp .

Nevertheless the choice of mp is critical to GA performance

and has been studied by DeJong [40]. The typical value of

mutation probability is in the range 0.005-0.05. The idea of

adapting mutation and crossover to improve the performance of

GAs has been used by researchers using the different criterion

www.ijmit.com International Journal of Management & Information Technology

ISSN: 2278-5612 Volume 3, No 1, January, 2013

©
Council for Innovative Research 87 | P a g e

[41-42]. Whitely et al. [43] idea for adaptation is based on the

Hamming distance between solutions; while in Srinivas et al.

[44] approach mp is based on fitness values of the solutions.

The mutation operator produces the population of N weight

matrices or chromosomes of same order as the original parent

matrix on applying it N times. Thus, each chromosome is

having a fixed length of NN  genes or alleles. In this

process of mutation we select randomly any genes i.e.
r

j

r

i ss from parent chromosome. In which r is the position of

the gene in the parent chromosome or weight matrix. We

consider another randomly generated chromosome of the same

order as NN  in which on the same randomly selected

position i.e. r , the allele values are non zero in the interval -1

and +1 and for other positions the values are zero i.e.

00  o

ij

r

ij AandA , where
r

ijA is the value of the gene

at the position r in the generated chromosome of order

NN  and
o

ijA is the value of the gene at the position ''o in

the generated chromosome of order NN  . Now, we add this

randomly generated chromosome with the parent chromosome

and generate the new chromosome or weight matrix as:

r

ij

r

j

r

i

new

ij Assw 

and,
o

ij

o

j

o

i

new

ij Assw  (19)

where 0)(0  o

ii

r

ij AandroA .

The steps for mutation operator:

Step 1: Generate the mutation positions in the chromosome

randomly.

Step 2: Modify the parent chromosome at the positions
generated in step 1, using equation (19).

Step 3: Repeat step 1 and 2 until a number N of mutated

chromosome populations have been created.

4.2. Elitism
Elitism is used when creating each generation so that the

genetic operators do not loose good solutions. This involves

copying the Hebbian-encoded weight matrix i.e., the suboptimal

solution unchanged in the new population, which includes

LW for creating the total number M (i.e. 1N) of

chromosomes.

4.3. The First Fitness Evaluation

The first fitness evaluation function (f) is used for selecting a

good or efficient next generation of weight matrices. Evaluation

of f for each individual weight matrix is carried out with a set

of randomly pre – determined patterns
Lx . When one of the

stored patterns
lx is given to the network as an initial state, the

state of neurons varies over time until
lx becomes a fixed

point. In order to store the pattern in the network, these two

states must be similar. The similarity as a function of time is

defined by [10]





N

i

l

i

l

iN

l tsxz
1

1)((20)

Here)(ts l

i is the state of the
thi neuron at time t . In

evaluating the fitness value, the temporal average overlap

z is calculated for each stored pattern, as follows. First the

total of the inner products of the initial states and states is

calculated at each time of update not greater than a certain

time 0t . After that, these values are summed up over whole set

of initial patterns [10] i.e.,


 


0

0

1 1

1)(
t

t

L

l

l

Lt
tzf (21)

Here 0t has been set to N (the number of processing units).

We must note that fitness 1 implies that all the initial patterns

have been stored as fixed points. Thus, we consider only those

generated weight matrices that have the fitness evaluation value

1. Hence, all the selected weight matrices will be considered as

the new generation of the population. This new population will

be used for generating the next better population of weight

matrices with the crossover operator.

4.4. The Crossover Operator
The power of GAs arises from crossover. Crossover is a

structured and randomized exchange of genetic material

between solutions, with the probability that ‘good’ solutions can

generate ‘better’ ones. Thus, crossover is an operation which

may be used to combine multiple parents and make off spring.

This operator is responsible for the recombination of the

selected population of weight matrices. This operator forms a

new solution by taking some parameters from one parent and

exchanging them with ones from another at the very same point.

Here, we are applying the recombination with the uniform

crossover. In this process, the network selects randomly (with

uniform distribution) a string of non – zero chromosomes from

a selected weight matrix and exchanges it with string of non –

zero chromosomes from another selected weight matrix. Thus, a

large population of the weight matrices will be generated.

Hence, on applying this crossover operator with the constraint

that the numbers of genes or alleles selected for exchange

should be equal for the two weight matrices, the modification

has been made in the selected weight matrices as follows:

][,2,1,1,1

sel

ut

sel

utold

new

NN wwww   

And][,1,2,2,2
sel

ut
sel

utold
new

NN wwww    (22)

where Nut ,

Here
new

NNw ,1 &
new

NNw ,2 are newly generated weight

matrices after crossover operator, oldw ,1 & oldw ,2 are two

selected weight matrices randomly from mutated population to

www.ijmit.com International Journal of Management & Information Technology

ISSN: 2278-5612 Volume 3, No 1, January, 2013

©
Council for Innovative Research 88 | P a g e

perform the crossover operator,
sel

utw ,1 &
sel

utw ,2 are the

selected sub matrices randomly from oldw ,1 & oldw ,2

respectively for exchange to perform crossover operator, and

 is the operator for construction of new weight matrix

through crossover operator.

In this way, we can generate the population of K weight

matrices i.e. NN  by applying the crossover operator on the

population of M chromosomes.

Thus, we have the new large population of K weight
matrices from the crossover operator as follows:

 new

NNK

new

NN

new

NN www   ,,2,1 ,,, (23)

Steps for Crossover Operation

Step 1: Initialize the crossover population size limit

with value NN  .

Step 2: Extract two chromosomes from among the

)1..(NeiM chromosomes randomly.

Step 3: Obtain a sub matrix of order ut  randomly

in each extracted chromosome for
exchanging the values.

Step 4: Exchange the sub matrices between the
chromosomes.

Step 5: Include both chromosomes in the crossover
population.

Step 6: Check whether the population size is equal to NN  .

If not, go to step 2 again.

4.5. The Second Fitness Evaluation
In the process of recalling the stored pattern, corresponding to a

approximate prototype input pattern of handwritten Hindi

‘SWARS’, the best suitable weight matrix is selected from the

generated population of K weight matrices.

Let the state of the network corresponding to the already stored

lth pattern be

},,{)(21

l

N

lll ssssN  (24)

This represents one of the stable states of the network for the

memorized
thl pattern.

Let the prototype of presented input pattern be
lx . This

pattern represents the noisy or distorted form of the already

stored pattern
lx in the network. We have the population K of

weight matrices after the crossover operation. Now, we select

the weight matrices from this population to evaluate its fitness.

Let
kPOPw ,

 be the
thF weight matrix from the generated

population K of weight matrices. Now, we assign this selected

weight matrix to the network and use the activation dynamics to

determine the output state of the network as




 
N

j

l

j

kPOP

ij

l

i tsws
1

,)1(
 (25)

If,)()1(tsts l

i

l

i 
; Ni :1 (26)

It implies that the network settles in the same stable state

which corresponds to the already stored pattern, so that
kPOPw ,

,

is selected from the fitness function if it is able to settle the

network in the stable state corresponding to the already stored
thl pattern, i.e.

)()(ll sNsN 
 (27)

This process will continue for all the weight matrices from

the K population. It is possible to obtain more than one

optimal weight matrices for the recalling of prototype input

pattern.

5. EXPERIMENTS DETAIL

To do the simulation we are considering the Hopfield

neural network of 25 neurons. This neural network is trained for

pattern storage with the Hebbian learning rule for given training

set of handwritten ‘SWARS’ of Hindi language. In the training

set every pattern consists with 25 bipolar features. The pattern

information of the training set is encoded in the form of

connection strengths of interconnections between the neurons of

the network. In this way the parent weight matrix is constructed

which represents the encoded pattern information of memorized

patterns.

Now we start with the process of recalling for any

presented noisy prototype input pattern of already memorized

pattern. The process of recalling is accomplished with two

different methods namely the Hebbian rule and the sub optimal

GA. The implementation of above stated methods is performed

with experiments to study the performance behavior of these

methods.

The recalling through Hebbian rule starts by applying the

presented prototype input pattern to the Hopfield network and

then we continue to iterate the network till it reaches to

stability. The stable state of the network reflects any one of the

memorized pattern. In this method the possibility of false

recalling or false minima is likely to occur in most of the cases

if the presented input pattern is a noisy pattern.

The recalling process through the suboptimal GA can be

described in the algorithmic form as:

Sub Optimal Genetic Algorithm ()

{

read suboptimal parent weight matrix;

initialize input pattern to the network;

www.ijmit.com International Journal of Management & Information Technology

ISSN: 2278-5612 Volume 3, No 1, January, 2013

©
Council for Innovative Research 89 | P a g e

 do

{

 perform mutataion and elitism;

 select solutions for next population by first fitness
function ;

 perform crossover;

evaluate population by second fitness function;

 }

while (convergence not achieved OR 20 times)

 }

6. RESULTS AND DISCUSSION

The results presented in this section are demonstrating that,

within the simulation framework presented above, large

significant difference exists between the performance of genetic

algorithm and the Hebbian rule for recalling of memorized

handwritten ‘SWARS’ of Hindi language in Hopfield neural

network using the Hebbian learning rule.

 The results are indicating about the difference

between sub-optimal GA and Hebbian rule for rate of success to

evaluate the performance of these two techniques for

associative memory feature. In the experiments, the prototype

input patterns used for recalling purpose consists the error

which has been generated randomly with respect to memorized

patterns. Tables 2-7 show the results of recalling the patterns

which containing zero-,one-,two-,three-,four-,and five-bit errors

from stored patterns in the Hopfield neural network. The

performance of sub optimal GA corresponding to zero-bit, and

one-bit error in prototype input patterns is found much better

with respect to conventional technique. The results clearly

indicate that the Hebbian rule works well for a noiseless pattern,

for most of the cases, but its performance degrades substantially

and recalling success goes down to a maximum of 1.30% in the

case of one-bit error, 0.20% in the case of two-bit error, 0.01%

in the case of three-bit error, and 0.000% in the cases of four-

and five bit errors. On the other hand, GA recall the pattern

successfully even when high noise is presented in the input test

pattern i.e. four-bit and five-bit errors. It is observed that in

most of the cases the performance of the suboptimal GA

outperform the conventional Hebbian method. It is also

observed that variance in the mutation probability in sub

optimal GA does not have any substantial impact in the

performance of this algorithm.

Table .2: Results for recalling Hindi ‘SWARS’ which

involve zero-bit error from the memorized ‘SWARS’.

‘SWARS’

Recalling Success (in %)

Hebbian Rule
Sub-optimal GA

mp =0.001 mp =0.40

v 94.20 100 100
vk 87.10 100 100
b 89.20 100 100

bZ 83.60 100 100

m 92.60 100 100
Å 88.60 100 100
_ 82.00 100 100
, 100.80 100 100

,s 86.8 100 100
vks 85.60 100 100
vkS 92.20 100 100
va 85.20 100 100
v% 81.60 100 100

Table 3: Results for recalling Hindi ‘SWARS’ which involve

one-bit error from the memorized ‘SWARS’.

‘SWARS’

Recalling Success (in %)

Hebbian Rule
Sub-optimal GA

mp =0.001 mp =0.40

v 0.50 100 100
vk 1.02 100 100
b 2.10 100 100
bZ 2.30 100 100
m 2.01 100 100

Å 1.08 100 100
_ 1.03 100 100
, 1.11 100 100
,s 1.09 100 100
vks 2.10 100 100
vkS 0.90 100 100
va 0.81 100 100

v% 1.25 100 100

Table 4: Results for recalling Hindi ‘SWARS’ which involve

two-bit error from the memorized ‘SWARS’

‘SWARS’

Recalling Success (in %)

Hebbian

Rule

Sub-optimal GA

mp =0.001 mp =0.40

v 0.00 81.25 97.50
vk 0.20 87.19 90.10
b 0.03 100 99.20
bZ 0.10 95.38 98.10

m 0.16 75.73 85.20
Å 0.10 98.20 89.20
_ 0.19 89.44 98.10
, 0.09 87.30 99.50
,s 0.19 99.50 100.00

vks 0.02 86.50 95.50

vkS 0.00 70.00 80.58
va 0.10 70.53 83.76
v% 0.11 82.60 84.40

Table 5: Results for recalling Hindi ‘SWARS’ which involve

three-bit error from the memorized ‘SWARS’.

‘SWARS’

Recalling Success (in %)

Hebbian

Rule

Sub-optimal GA

mp =0.001 mp =0.40

v 0.00 30.95 38.40

vk 0.00 76.50 73.73
b 0.00 87.95 84.94
bZ 0.00 90.09 90.21

www.ijmit.com International Journal of Management & Information Technology

ISSN: 2278-5612 Volume 3, No 1, January, 2013

©
Council for Innovative Research 90 | P a g e

m 0.00 69.40 71.04
Å 0.00 66.67 66.40
_ 0.00 77.53 80.05
, 0.00 73.50 74.20

,s 0.00 95.30 98.10
vks 0.00 70.39 64.23
vkS 0.00 50.02 54.88
va 0.00 44.04 51.57
v% 0.00 60.75 62.19

Table 6: Results for recalling Hindi ‘SWARS’ which involve

four-bit error from the memorized ‘SWARS’.

‘SWARS’

Recalling Success (in %)

Hebbian

Rule

Sub-optimal GA

mp =0.001 mp =0.40

v 0.00 08.70 10.68
vk 0.00 21.28 23.59
b 0.00 22.62 20.54
bZ 0.00 29.94 21.90
m 0.00 16.04 13.15

Å 0.00 16.71 12.08
_ 0.00 19.68 19.74
, 0.00 19.77 17.41
,s 0.00 29.23 25.98
vks 0.00 20.41 19.49
vkS 0.00 08.89 07.75
va 0.00 10.61 08.88

v% 0.00 16.18 14.03

Table 7: Results for recalling Hindi ‘SWARS’ which involve

five-bit error from the memorized ‘SWARS’.

‘SWARS’

Recalling Success (in %)

Hebbian

Rule

Sub-optimal GA

mp =0.001 mp =0.40

v 0.00 0.08 0.60

vk 0.00 1.90 2.00

b 0.00 1.70 1.76

bZ 0.00 2.01 3.08

m 0.00 0.56 1.06

Å 0.00 2.50 1.59

_ 0.00 3.50 2.58

, 0.00 3.08 1.98

,s 0.00 3.80 2.80

vks 0.00 2.30 0.80

vkS 0.00 1.00 0.78

va 0.00 1.80 2.60

v% 0.00 2.61 1.98

Amit [3] claimed that the capacity of deterministic

Hopfield model with the Hebbian rule is about 0.15N for the

noisy prototype input patterns, where N the number of nodes

in the network is. If such a network is overloaded with a

number of patterns exceeding its capacity, its performance

rapidly deteriorates toward zero. Here, we have stored the 13

handwritten ‘SWARS’ of Hindi language in a network of 25

nodes and the performance of the GA suggests that on inducing

5-bit error in presented prototype input pattern the network is

able to recall the stored patterns. It implies that the network

capacity has increased up to 0.45N. Thus, the numbers of

attractors are existing here and successfully explored during the

recalling process. It is quit obvious to understand that the GA

has searched the suitable optimal weight matrices which are

responsible to generate sufficiently large number of attractions.

Hence, the Hebbian rule which has been used to encode the

pattern information is not the optimal weight matrix for finding

the global minima of the problem due to the limited capacity of

the Hopfield model. Thus capacity has been increased with GA

by exploring the optimal weight matrices for the encoded

patterns.

The simulation program, which is developed in MATLAB-

7, to test the Hebbian rule, the suboptimal GA, and the random

GA for the recalling of handwritten ‘SWARS’ of Hindi language,

stores the patterns in the Hopfield neural network of 25 neurons.

It is to note that during suboptimal GA, the success is

considered only if the recalling is done within 20-iterations.

7. CONCLUSION

The simulation results i.e. Tables 2-7 indicates that the sub

optimal genetic algorithm has more success rate than the

Hebbian rule for the stated problem. It has been found that

suboptimal GA can give more than one convergent weight

matrices for any prototype input pattern in comparison to the

Hebbian rule, if the prototype input pattern is correctly

recognized. This shows the more chances for GAs to explore

better solution than the Hebbian rule. Further the sub optimal

GA is starting from sub optimal weight matrix so it has more

chances to explore more number of convergent weight matrices

with respect to random GA. In the purposed method it can be

seen that the two fitness evaluation functions are used. There

are two basic advantages of the two fitness evaluation

functions:

1. The randomness of the GA has minimized, because

the population is filtered twice. Hence, the less

number of populations will be generated and the

generated population will be more fitted for the

solution.

2. As the number of population has minimized, the

searching time will also be reduced. Thus, the GA has

improved in its implementation because it is less

random and consuming less time for searching the

optimal solution.

The direct application of GA to the pattern association has

been explored in this research. The aim is to introduce an

alternative approach to solve the pattern association problem.

The results from the experiments conducted on the algorithm

are quite encouraging. Nevertheless more work needs to be

perform especially on the tests for noisy input patterns. We can

also use this concept for pattern recognition for hand written

‘VYANJANS’ of Hindi language, overlapped alphabet and curve

scripts. It is also proposed to undertake the following problems

in future research program.

1. We would like to train the Hopfield neural network

with the genetic algorithm and then the pattern

recalling with genetic algorithm.

2. We would like to apply the same approach on the

quantum Hopfield neural network.

3. We would like to introduce other types of sigmoid

function, chromosome, fitness function, crossover to

change the weight values through evolution.

REFERENCES

[1] Hopfield, J. J., “Neural Networks and Physical

Systems with Emergent Collective Computational

www.ijmit.com International Journal of Management & Information Technology

ISSN: 2278-5612 Volume 3, No 1, January, 2013

©
Council for Innovative Research 91 | P a g e

Abilities”, Proceedings of the National Academy

Sciences, USA, 79, pp.2554 – 2558, (1982).

[2] Hopfield, J. J., “Neural Networks and Physical

Systems with Emergent Collective Computational

Abilities”, Proceedings of the National Academy

Sciences, USA, 81, pp.3088 – 3092, (1984).

[3] Amit, D. J., Gutfreund, H., and Somopolinsky, H.,

“Storing Infinite Number of Patterns in a Spin-glass

Model of Neural Networks”, Physical Review Letters,

vol. 55(14), pp. 461-482, (1985).

[4] Amit, D. J., “Modeling Brain Function: The World of

Attractor Neural Networks”, Cambridge University

Press New York, NY, USA, (1989).

[5] Haykin, S., “Neural Networks: A Comprehensive

Foundation”, Upper Saddle River: Prentice Hall,

Chap 14, pp. 64, (1998).

[6] Zhou, Z., and Zhao, H., “Improvement of the

Hopfield Neural Network by MC-Adaptation Rule”,

Chin. Phys. Letters, vol. 23(6), pp. 1402-1405.

[7] Zhao, H., “Designing Asymmetric Neural Networks

with Associative Memory”, Physical Review, vol.

70(6) 066137-4.

[8] Kawamura, M., and Okada, M., “Transient Dynamics

for Sequence Processing Neural Networks”, J. Phys.

A: Math. Gen., vol. 35 (2), pp. 253, (2002).

[9] Amit, D. J., “Mean-field Ising Model and Low Rates

in Neural Networks”, Proceedings of the International

Conference on Statistical Physics, 5-7 June Seoul

Korea, pp. 1-10, (1997).

[10] Imada, A., and Araki, K., “Genetic Algorithm

Enlarges the Capacity of Associative Memory”,

Proceedings of the sixth International Conf. on

Genetic Algorithms, pp. 413 – 420, (1995).

[11] Imada, A., and Araki, K., “Mutually connected neural

networks can learn some patterns by means of GA”,

Proceedings of World Congress on Neural Networks,

vol. 1, pp. 803-806, (1995).

[12] Imada, A., and Araki, K., “Basin of attraction of

associative memory as it is evolves from random

weights”, Proceedings of First Asia-Pacific

Conference on Simulated Evolution and Learning”,

pp. 271-278, (1996).

[13] Imada, A. and Araki, K., “Basin of attraction of

associative memory as it is evolves from random

weights”, Proceedings of First Asia-Pacific

Conference on Simulated Evolution and Learning, pp.

41-44, (1996).

[14] Imada, A. and Araki, K., “Lamarckian evolution of

associative memory”, Proceedings of IEEE

International Conference on Evolutionary

Computation, pp. 678-680, (1996).

[15] Imada, A. and Araki, K., “Evolution of Hopfield

model of associative memory by the breeder genetic

algorithm”, Proceedings of the Seventh International

Conference on Genetic Algorithms, pp. 784-791,

(1997).

[16] Imada, A. and Araki, K., “Applications of an

evolutionary strategy to the Hopfield model of

associative memory”, Proceedings of the IEEE

International Conference on Evolutionary

Computation, pp. 679-683, (1997).

[17] Imada, A. and Araki, K., “Hopfield model of

associative memory as a test function of evolutionary

computations”, The first international workshop on

frontiers in evolutionary algorithms, Proceedings of

Joint Conference of Computer Science, vol. 1, pp.

180-183, (1997).

[18] Imada, A. and Araki, K., “Searching real valued

synaptic weights of Hopfield’s associative memory

using evolutionary programming”, The Sixth Annual

Conference on Evolutionary Programming, Springer-

Verlag, Lecture Notes in Computer Science, vol.

1213,pp. 13-22, (1997).

[19] Imada, A. and Araki, K., “Random perturbations to

Hebbian Synapses of associative memory using

genetic algorithms”, Proceeding of International

Work Conference on Artificial and Natural Neural

Network, Springer-Verlag, Lecturer notes in

computer science, vol. 1213, pp. 398-407, (1997).

[20] McEliece, R. J., Posner, E. C., Rodemich, E. R. and

Venkatesh, S. S., “The capacity of the Hopfield

associative memory”, IEEE Trans Information

Theory IT-33 4, pp. 461-482, (1987).

[21] Hopfield, J. J. and Tank, D. W., “Neural Computation

of Decisions in Optimization Problems”, Biological

Cybernetics, vol. 52 (3), pp. 141-152, (1985).

[22] Tank, D. W. and Hopfield, J. J., “Simple Neural

Optimization Networks: An A/D Converter, Signal

Decision Circuit, and a Linear Programming Circuit”,

IEEE Trans. Circuits and Syst., vol. 33(5), pp. 533-

541, (1986).

[23] Jin, T. and Zhao, H., “Pattern Recognition using

Asymmetric Attractor Neural Networks”, Phys. Rev.,

vol. E 72(6), pp. 066111-7, (2005).

[24] Kumar, S. and Singh, M. P., “Pattern Recall Analysis

of the Hopfield Neural Network with a Genetic

Algorithm”, Computers and Mathematics with

Applications, vol. 60(4), pp. 1049-1057, (2010).

[25] Hebb, D., “The Organization of Behavior: A

Neuropsychological Theory”, Wiley, New York,

(1949).

[26] Holland, J. H., “Adaptation in Natural and Artificial

Systems”, The University of Michigan Press, Ann

Arbor, Michigan, (1975).

[27] Mangal, M. and Singh, M. P., “Analysis of

Multidimensional XOR Classification Problem with

Evolutionary Feed-forward Neural Networks”,

International Journal on Artificial Intelligence Tools,

vol. 16(1), pp. 111-120, (2007).

[28] Mangal, M. and Singh, M. P., “Analysis of

Classification for the Multidimensional Parity-Bit-

Checking Problem with Hybrid Evolutionary Feed-

forward Neural Network”, Neurocomputing, vol. 70

(7-9), pp. 1511-1524, (2007).

[29] Mangal, M. and Singh, M. P., “Handwritten English

Vowels using Hybrid Evolutionary Feed-forward

Neural Network”, Malaysian Journal of Computer

Science, vol. 19(2), pp. 169-187, (2006).

[30] Paliwal, M. and Kumar, U. A., “Review: Neural

networks and statistical techniques”, A review of

applications, Expert Systems with Applications, vol.

36(1), pp. 2-17, (2009).

[31] Kuo, R. J., Chang, K., and Chien, S. Y., “ Integration

and Self-Organizing Feature Maps and Genetic-

Algorithm-Based Clustering Method for Market

Segmentation”, Journal of Organizational Computing

and Electronic Commerce, vol. 14(1), pp. 43-60,

(2004).

[32] Cao, Q. and Parry, M. E., “Neural network earnings

per share forecasting models: A comparison of

backward propagation and the genetic algorithm,

Decision Support Systems, vol. 47(1), pp. 32-41,

(2009).

www.ijmit.com International Journal of Management & Information Technology

ISSN: 2278-5612 Volume 3, No 1, January, 2013

©
Council for Innovative Research 92 | P a g e

[33] Pal, S. K., De, S. and Ghosh, A., “Designing Hopfield

type networks using genetic algorithms and its

comparison with simulated annealing”, Int. Journal of

Pattern Recognition and Artificial Intelligence, vol.

11(3), pp. 447-461, (1997).

[34] Xu, J., He, J. and Yao, X., “Solving Equations by

Hybrid Evolutionary Computation Techniques”,

IEEE Transactions on Evolutionary Computation, vol.

4(3), pp. 295-304, (2000).

[35] Salcedo-Sanz, S. and Yao, X., “A Hybrid Hopfield

Network-Genetic Algorithm Approach for the

Terminal Assignment Problem”, IEEE Transactions

on Systems, Man, and Cybernetics—Part B:

Cybernetics, vol. 34 (6), pp. 2343-2353, (2004).

[36] Amin, A. H. M., Mahmood, R. A. R. and Khan, A. I.,

“Analysis of Pattern Recognition Algorithms using

Associative Memory Approach: A Comparative

Study between the Hopfield Network and Distributed

Hierarchal Graph Neuron (DHGN)”, IEEE 8th

International Conference on Computerand

Information Technology Workshops (CIT

Workshoap-2008), pp. 153–158, (2008).

[37] Blumenstien, M., Liu, X. Y. and Verma, B., “An

investigation of the modified direction feature for

cursive character recognition”, Pattern Recognition,

vol. 40 (2), pp. 376-388, (2007).

[38] Yao, X., “Evolving artificial neural networks”,

Proceeding of the IEEE, vol. 87 (9), pp. 1423-1447,

(1999).

[39] Wasserman, P. D., “Neural Computing: theory and

practice”, Van Nostrand Reinhold Co., New Yark,

NY, USA, (1989).

[40] DeJong, K. A., “An analysis of the behavior of a class

of genetic adaptive systems”, Ph. D. dissertation,

University of Michigan, (1975).

[41] Davis, L., “Adapting operator probabilities in genetic

algorithms”, Proceedings of Third Int. Con. Genetic

Algorithms, pp. 61-69, (1989).

[42] Fogarty, T. C., “Varying the probably of mutation in

genetic algorithms”, Proceedings Third Int. Con.

Genetic Algorithms, pp. 104-109, (1989).

[43] Whitley, D. and Starkweather, D., “Genitor-II: A

distributed genetic algorithm, J. Expt. Theor. Artif.

Int., vol. 2 (3), pp. 189-214, (1990).

[44] Srinivas, M. and Patnaik, L. M., “Adaptive

probabilities of crossover and mutation in genetic

algorithms”, IEEE Trans. on Systems, Man and

Cybernetics, vol. 24(4), pp. 656-667, (1994).

[45] Montana, D. and Davis, L., “Training feed forward

neural networks using genetic algorithms”,

Proceedings of Eleventh International Joint

Conference on Artificial Intelligence, SanMateo, CA,

USA, pp. 762-767, (1989).

[46] Liu, Y. and Yao, X., “Evolutionary Design of

Artificial Neural Networks with different nodes”,

Proceedings of IEEE International Conference on

Evolutionary Computation, ICEC 96, Nagoya, Japan,

pp. 670-675, (1996).

[47] Liu, Y. and Yao, X., “Evolving neural networks for

Hang Seng stock index forecast”, Proceedings of the

2001 Congress on Evolutionary Computation, CEC

01, Seoul, Korea, vol. 1,pp. 256-260, (2001).

[48] Kocalka, P. and Vojtek, V., “Problem Solving based

on Evolutionary Neural Network Algorithms”,

Proceedings of 23rd Int. Conf. On Information

Technology Interfaces, ITI 2001, Pula, Croatia, pp.

145-150, (2002).

[49] Wicker, D., Rizki, M. M. and Tamburino, L.A., “E-

Net: Evolutionary neural network synthesis”, Neuro-

computing, vol. 42, pp. 171-196, (2002).

[50] Plagianakos, V. P. and Vrahatis, M. N., “Training

neural networks with threshold activation function

and constrained integer weights”, Proceedings of the

IEEE Int. Joint Conference on Neural Networks,

IJCNN 2000, Como, Italy, vol.5, pp.161-165, (2000).

[51] Arifovic, J. and Gencay, R., “Using Genetic

Algorithms to select architecture of a Feed forward

Artificial Neural Network”, Physica A: Statistical

Mechanics and Its Applications, vol. 289(3-4), pp.

574-594, (2001).

[52] Yao, X., “Evolutionary artificial neural networks”,

International Journal Neural System, vol. 4(3), pp.

203-222, (1993).

[53] Cardenas, M., Melin, P. and Cruz, L., “Parallel

Genetic Algorithms for Architecture Optimization of

Neural Networks for Pattern Recognition, Soft

Computing for Recognition Based on Biometrics”,

Studies in Computational Intelligence, vol. 312, pp.

303-315, (2010).

[54] Cho, S. Y. and Chi, Z., “Genetic evolution processing

of data structures for image classification”, IEEE

Transactions on Knowledge and Data Engineering,

vol. 17(2), pp. 216-231, (2005).

[55] Kohonen, T. and Ruohonen, M. “Representation of

Associated Data by Matrix Operators”, IEEE Tran

Computers, vol. C-22(7), pp. 701-702, (1973).

[56] Pancha, G. and Venkatesh, S. S., “Feature and

Memory-Selective Error Correction in Neural

Associative Memory”, Associative Neural Memories:

Theory and Implementation, M. H. Hassoun, ed.,

Oxford University Press, pp. 225-248, (1993).

[57] Gardner, E., “The Phase Space of Interactions in

Neural Networks Models”, J Physics, vol. 21A, pp.

257-270, (1988).

[58] Kasko, B., “Neural Networks and Fuzzy System: A

Dynamical systems approach to Machine

Intelligence”, Prantice-Hall, Englewood Cliff, NJ,

(1992).

[59] Kumar, S., Saini, S. and Prakash, P., “Alien attractors

and memory annibilation of Structured Sets in

Hopfield networks”, IEEE Trans Neural Networks vol.

7(5), pp. 1305-1309, (1996).

