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Abstract   

High-tech industry employees are among the most talented groups of people in the workforce, and are 

therefore difficult to recruit and retain.  We analyze employee reviews submitted by employees from five 

technology companies.  Following the Cross-Industry Standard Process for Data Mining (CRISP-DM) and the 

data science life cycle process, we use machine learning techniques to analyze employees’ reviews.  Our goal is 

to predict an overall measure of whether employees are satisfied or not, using other information from the 

reviews, such as employer attitudes towards upper management.  We also use predictive analysis to determine 

which features are more helpful in determining an employee’s overall job satisfaction.  Finally, we analyze which 

prediction algorithm provides the most accurate predictions.  We find the percentage of true positives we 

correctly identify in the holdout sample is 97.4%, while the percentage of true negatives correctly identified is 

72.5%. 
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1. Introduction 

In order for high-tech firms to be successful, they must attract high caliber and knowledgeable employees to 

join their teams.  They also need to provide a work environment where employees feel satisfied with the 

company culture, their everyday work life, and their career development, among other things.  The more satisfied 

employees are with their companies, the more willing they will be to perform to the best of their ability.   

There has been a great deal of research in the human resource management area about what makes employees 

satisfied with their jobs.  Locke (1976) defines job satisfaction as “a pleasurable or positive emotional state 

resulting from the appraisal of one's job or job experiences.”  Spector (1997) presented a list of reasons why 

employees are satisfied or unsatisfied with their jobs, based on factors such as Appreciation, Communication, 

Coworkers, Fringe benefits, Job conditions, Nature of the work, Organization, Personal growth, Policies and 

procedures, Promotion opportunities, Recognition, Security, and Supervision.  Later, Aziri (2011) and Singh and 

Jain (2013) summarized employee job satisfaction factors as follows: 

1. Policies of Compensation and Benefits (most important – such as rewards, salary packages 

compared to others in the same industries, etc.)  

2. Job Security (employees can keep their jobs) 

3. Working conditions (feeling of safety, comfort, and motivation) 

4. Relationship with Superior Authority 

5. Promotion and Career Development 

6. Leadership Styles (democratic style of leadership) 

7. Work Group (group dynamics, cohesiveness, and affiliation) 

8. Personal Variables (such as personality, expectations, age, education, and gender differences) 

9. Others (such as whether group members are outgoing (feeling like part of a family), encouragement 

and feedback, and use of internet and other technologies for doing job). 
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One of the major problems that organizations face is employee turnover.  It can cost businesses a lot to find 

replacements.  Thus, it is important to understand what causes employees to be satisfied or dissatisfied with 

their companies, to both prevent employee turnover and to keep current and prospective employees feeling 

satisfied with their work. 

There are many sources of data concerning employee opinions about their companies.  These include internal 

data collections (within the companies) and external sources such as data collections at Glassdoor.com.  Datasets 

from open sources tend to be anonymous, which allows employees to have more freedom to share their real 

feelings about their places of work, without the risk of losing their jobs.  As a result, true in-depth information 

is available, and since the reviews are typically anonymous, they often contain a voluminous amount of 

information.  Thus, these datasets allow researchers to do a deep analysis of employee opinions, using various 

techniques.   

Most of the current data collections from online reviews include both star ratings and open-ended opinions in 

a textual format.  Reviews are submitted by various groups of employees, which vary by type of job (e.g., 

programmers or managers), status (e.g., current or former employees), rank, and anonymous versus non-

anonymous, etc.  Such datasets allow more in-depth analysis of what employees think about the companies 

they work for, which can help companies improve the recruiting and retention of these employees. 

Current data analysis tools and techniques allow researchers to analyze electronic data more effectively.  To 

structure our business predictions, we use the Cross-Industry Standard Process for Data Mining (CRISP-DM) and 

the data science life cycle process.  CRISP-DM is a widely accepted methodology for data mining and analytics 

(IBM Knowledge Center).  It involves five phases: 1) Business Understanding, 2) Data Understanding, 3) Data 

Preparation, 4) Modeling, 5) Evaluation and 6) Deployment.  The data science life cycle process consists of the 

problem definition, ETL (extract, transform, load) & feature extraction, learning, and model deployment & 

development. We use machine learning techniques to analyze tech industry employees’ reviews to find out 

whether or not employees’ overall job satisfaction (as measured by star ratings) can be predicted, based on 

other data available in their reviews, such as star ratings of senior management, as well as written comments. 

This paper complements previous research (Conlon, 2021).  That previous paper looked at why data scientists 

consider changing jobs as a function of environmental variables (such as city development levels and company 

sizes and types).  The current paper, by contrast, looks at high-tech employee job satisfaction (and so, 

presumably willingness to stay at their current job) in terms of their attitudes towards various aspects of their 

employment situation.  This paper then examines what the major features are that contribute to accurately 

predicting this job satisfaction, and which algorithms perform best in predicting job satisfaction.   

Using CRISP-DM, we begin with Business Understanding.  That is, we define our data mining objectives and the 

data mining problem in terms of a set of research questions. Thus, in this research, we ask: 

RQ 1: Can we use machine learning techniques to predict employee job satisfaction from employees’ 

reviews? 

RQ 2: Using machine learning techniques, which algorithms perform best in predicting employee job 

satisfaction? 

RQ 3: Using machine learning techniques to analyze employee reviews, which features have the highest 

predictive power in helping the system to predict accurately? 

The rest of the paper is organized as follows.  First, we discuss related work in the analysis of employees’ job 

satisfaction, text mining, sentiment analysis and machine learning.  Next, we discuss the dataset used, and also 

does some comparisons of the data across several firms.  Also, we discuss our predictive analysis methodology 

and presents our research findings.  Then, we discuss the results from the analysis and the business implications 

based on the techniques and the findings.  Finally, we conclude the paper and proposes future research. 

2. Related Work 

This research is based on two major related research areas: analysis of employee job satisfaction and the 

techniques used in analyzing datasets to do predictive analysis (we use machine learning techniques in this 

research). 
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2.1 Employee Job Satisfaction 

There has been a great deal of research on employee job satisfaction in the literature.  In general, employee job 

satisfaction measures various dimensions of whether or not employees are satisfied with their jobs.  Locke (1976) 

defines job satisfaction as "a pleasurable or positive emotional state resulting from the appraisal of one's job or 

job experiences" (p. 1304), while Spector (1997) defines job satisfaction as “how an individual is with his or her 

job; whether he or she likes the job or not.”  The level of job satisfaction can be evaluated at the global level 

(overall satisfaction) or according to the particular aspects of the job that make employees satisfied or not 

satisfied. Spector (1997) lists 14 common aspects of employee job satisfaction, i.e., appreciation, communication, 

coworkers, fringe benefits, job conditions, nature of the work, organization, personal growth, policies and 

procedures, promotion opportunities, recognition, security, and supervision.   

Hulin and Judge (2003) argue that job satisfaction is influenced by several psychological factors including 

cognitive (evaluative), affective (or emotional), and behavioral factors.  Cognitive job satisfaction can be 

evaluated using one dimension, such as benefits or supervision, or multiple dimensions if two or more facets of 

a job are evaluated simultaneously.  Affective or emotional factors are a response to the job or to cognitive 

opinions about the job and reflect the degree of pleasure or happiness employees feel about their jobs. Finally, 

Hulin and Judge (2003) state that behavioral components of job satisfaction can be related to other key factors 

such as working conditions, stress level at work, etc.  Other important research papers on job satisfaction can 

be found from Chen, 2007; Galup et al., 2008; Harden et al., 2018; Mishra, 2013; Moorman, 1993; Morris & 

Venkatesh, 2010; Saari & Judge, 2004; Thompson & Phua, 2012; and Vidal et al. 2007. 

A great deal of research has been done analyzing what causes an employee to decide to leave an organization. 

This research has found that, in general, employees’ decisions to leave an organization can be influenced by 

several factors, including individual, organizational, and economic variables (Lee et al., 2004; Mobley, 1982; 

Morrell et al., 2001; Mossholder, 2005; and Mowday et al., 2001). 

Employee turnover costs business a lot.  Employee Benefit News (EBN) reported in August 11, 2017 that if an 

employee leaves a company, it will cost the employer 33% of that worker’s annual salary to hire a replacement.  

For example, for a media salary of $45,000 a year, the cost of finding a replacement is about $15,000 per person 

(Bolden-Barrett, 2017).  Thus, understanding what influences employee job satisfaction can benefit firms a great 

deal if it can help them to prevent employee turnover.   

 Hinkin and Tracey (2000) lists the five major categories of employee turnover costs as: 

• Predeparture (costs that are incurred once an employee has given notice),  

• Recruitment (promotional materials, advertising, and recruiting sources),  

• Selection (identifying the most suitable candidates - Interviewing, background and reference 

checks, and travel expenses), 

• Orientation and Training (almost everyone requires some sort of formal or informal training), 

• Productivity Loss (largest percentage of the total costs, up to 70 percent in some cases  

Some important related research on employee turnover can also be found at Abraham, 1999; Hinkin & Tracey, 

2000; Hinkin & Tracey, 2006; and Vidal et al., 2007. 

To prevent employee turnover, organizations need to understand the causes employee dissatisfaction.  Cotton 

and Tuttle (1986) found that the strongest predictors of voluntary turnover were age, tenure, pay, overall job 

satisfaction, and the employee’s perceptions of fairness.  Holton et. al. (2008); Sacco & Schmitt (2005); and 

several other researchers found that personal or demographic variables, specifically age, gender, ethnicity, 

education, and marital status, were important factors in predicting voluntary employee turnover.  Recently, one 

report, by the Work Institute, found in exit interviews that the top reasons survey respondents gave for leaving 

their jobs were career development (22%), work-life balance (12%), managers' behavior (11%), compensation 

and benefits (9%) and well-being (9%) (2017 Retention Report: Trends, Reasons & Recommendations (1)).  

Moreover, the Work Institute’s Retention Report studied 34,000 respondents and found that 75% of the cases 

of employee turnover were preventable (2017 Retention Report: Trends, Reasons & Recommendations (1)). 
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Thus, being able to predict whether employees are satisfied or dissatisfied with the organization should be very 

helpful in assisting firms to reduce employee turnover. 

2.2 Machine Learning Techniques and Their Applications in Human Resource Management 

Machine learning (ML) is a subarea of artificial intelligence that aims to use algorithms and statistical models to 

train computer systems to perform tasks such as prediction, without explicitly programming the computer for 

that specific task.  With the rapid growth of electronic data, ML has been used in many application areas such 

as medical diagnosis, speech recognition, image processing, and many business applications.   

In business, ML has been used widely in areas such as sales, product recommendation, dynamic pricing, 

marketing, finance, etc.  In the human resource management area, ML has been used, for example, in predicting 

employee turnover (Punnoose & Ajit, 2016), analyzing employees’ attrition (Alao & Adeyemo, 2013; Fallucchi, 

2020; Nagadevara, 2008; and Ray & Sanyal, 2019) and analyzing and predicting employee engagement 

(Golestani et al., 2018).  Jain et al. (2021) studies how internal marketing tools affect employees’ job satisfaction 

of a logistic firm.  For the data, several research groups use the data from IBM HR Analytics Employee Attrition 

& Performance available at Kaggle.com (20). 

In order to analyze employee churn, Bendemra (2019) built an employee churn model to develop a strategic 

retention plan using Python and found that the stronger indicators of people leaving include: Monthly Income 

(employees with higher wages are less likely to leave), Overtime (people who work overtime are more likely to 

leave the company),  age (25–35 are more likely to leave), Distance From Home (Employees who live further 

from home are more likely to leave the company), TotalWorkingYears (more experienced employees are less 

likely to leave, so employees who have between 5–8 years of experience should be identified as potentially 

having a higher-risk of leaving), YearsAtCompany (Employees who hit their two-year anniversary should be 

identified as potentially having a higher-risk of leaving), YearsWithCurrManager (A large number of leavers leave 

6 months after they have worked for their current managers) (Bendemra, 2019).   

3. Data Collection 

In this section, we continue with phase two of the CRISP-DM methodology: data understanding. In this phase, 

we collect and describe our data collection, and assess data quality. We used online data sources for our research 

and analysis.  

3.1 Data Source: 

In this study, we used data consisting of employee reviews from technology companies. We downloaded the 

data from Kaggle.com (the dataset has since been removed). The data retrieved from Kaggle.com was originally 

scraped from the website Glassdoor.com by the original Kaggle.com collection author.  The Kaggle.com page 

included over 67k reviews from employees of Google, Amazon, Facebook, Apple, Microsoft, and Netflix. Due to 

a disproportionately low number of Netflix reviews (810), we excluded Netflix from our study.  Reviews are both 

from current and former employees, and both from anonymous employees and from employees whose identity 

was disclosed.  An excerpt from the csv data file is shown in Figure 1. 

 

Figure 1: Format of the Data 

Similar to general product reviews that appear in many online sources, this data set consists of both textual and 

numerical information. The attributes provided by the Kaggle.com data collection page are described in Table 

1 
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Table 1: Attribute Descriptions. NOTE: 'None' is Placed in All Cells Where No Data Value Was Found. 

Column  Column Name Description 

A Index Index (i.e., review number) 

B Company Company name (Amazon, Apple, Facebook, Google, and Microsoft) 

C Location This dataset is global. As such it may include the country's name in 

parenthesis [i.e. "Toronto, ON (Canada)"]. However, if the location is in 

the USA then the dataset will only include the city and state [e.g., "Los 

Angeles, CA”] 

D Date Posted Date the review was posted. 

E Job-Title This string will also include whether the reviewer is a 'Current' or 

'Former' Employee at the time of the reviews 

F Summary A short summary of the employee review 

G Pros Positive aspects of the job according to the employee 

H Cons Negative aspects of the job according to the employee 

I Overall Rating A rating scale of 1-5 where 1 is low and 5 is high. 

K Work/Life Balance Rating A rating scale of 1-5 where 1 is low and 5 is high. 

L Culture and Values Rating No description given 

M Career Opportunities Rating No description given 

N Comp & Benefits Rating No description given 

O Senior Management Rating No description given 

P Helpful Review Count A count of how many people found the review to be helpful 

Q Link to Review This provides the user with a direct link to the page that contains the 

review. However, it is likely that this link will be outdated 

 

Distribution of the data 

The total number of reviews for each company is displayed in Figure 2. 

 

Figure 2: Number of Reviews for Each Company 

A count of the overall ratings by number of stars for all companies is shown in Figure 3. 
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Figure 3: Number of Ratings by Stars 

The star ratings are between 1 and 5 (1 is low and 5 is high).  To make the predictions more accurate, we grouped 

the reviews into two broad categories: satisfied and dissatisfied.  The reviews that contained an overall rating 

between 3 and 5 were classified as “satisfied” while the reviews that contained overall ratings of 1 or 2 were 

classified as “dissatisfied.”  We broke up ratings like this because we felt that only the 10%-20% most dissatisfied 

employees were likely to leave.  However, as a robustness check, we also analyze the 123/45 classification below.  

Table 2 shows the proportion in percentages of the 12 vs 345 groups for each company. 

Table 2: Percentage of Employees Who are Satisfied and Dissatisfied in Each Company 

  Amazon Apple Facebook Google Microsoft 

 
1-2 stars 

(%) 

3-5 

stars 

(%) 

1-2 

stars 

(%) 

3-5 

stars 

(%) 

1-2 

stars 

(%) 

3-5 

stars 

(%) 

1-2 

stars 

(%) 

3-5 

stars 

(%) 

1-2 

stars 

(%) 

3-5 

stars 

(%) 

Overall Rating 20 80 10 90 6 94 5 95 11 89 

Work/LifeBalance 

Rating 
36 64 26 74 12 88 11 89 18 82 

Culture and Values 

Rating 
24 76 11 89 7 93 6 94 17 83 

Career 

Opportunities 

Rating 

21 79 23 77 7 93 10 90 14 86 

Comp & Benefits 

Rating 
15 85 8 92 2 98 4 96 5 95 

Senior 

Management 

Rating 

31 69 24 76 9 91 13 87 29 71 

A graphical representation of star ratings is shown in Figure 4. 
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Figure 4: Graphs Showing Percentage of Reviewers That are Satisfied Versus Dissatisfied for Each 

Category and Company 

Textual Data Analysis 

There is unstructured text in the summary column, as well as in the pros and cons columns of the reviews. Text 

comments are important because they include an in-depth employee views about the company in question.  

One way to understand which terms are important in the corpus is by using a word cloud.  A word cloud is a 

visual representation of the textual data.  The level of importance and/or frequency is indicated by the size of 

the word.  Figure 5 shows an example of a word cloud.  This example shows that, for example, the term 

“management” is an important word that is mentioned frequently. 
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Figure 5: Word Cloud Visualization Created from the Text Portion of the Employee Reviews 

Word Frequencies 

Star ratings indicate the level of satisfaction but do not indicate the nature of the sentiment creating that 

satisfaction or dissatisfaction.  To determine the specific reasons why employees feel satisfied or not, we use 

text analysis techniques to study the contents in the reviews.  Based on the theory of information retrieval, the 

system first eliminates “stop words” (such as “is,”, “else,” “between,” “the”).  The number of occurrences of the 

remaining terms then indicates the importance of those terms in the reviews.  The following table shows some 

examples of term occurrences in the comments from positive and negative reviews (based on the two rating 

categories, 1-2 being negative and 3-5 positive).  Sample term occurrences from positive reviews are listed in 

Table 3 and from negative reviews in Table 4. 

Table 3: Sampling of Term Occurrences from Positive Reviews 

Positive Review Terms Relative Frequencies Absolute Frequencies 

good 1 6476 

benefits 0.899629 5826 

opportunities 0.475911 3082 

best 0.315473 2043 

amazing 0.273935 1774 

career 0.264206 1711 

growth 0.257721 1669 

smart people 0.245059 1587 

really 0.244595 1584 

opportunity 0.242279 1569 

products 0.199197 1290 

awesome 0.168159 1089 
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Table 4: Sampling of Term Occurrences from Negative Reviews 

Negative Review Terms 

Relative 

Frequencies 

Absolute 

Frequencies 

employees 0.490435 1205 

job 0.455026 1118 

balance 0.290598 714 

life balance 0.267399 657 

little 0.229141 563 

amazon 0.225885 555 

know 0.212047 521 

poor 0.212047 521 

hr 0.182743 449 

retail 0.173382 426 

performance 0.14652 360 

worked 0.134717 331 
 

3.2 Predictive Analysis 

One of the major goals of this research is to create a system that can predict a target metric for an organization. 

For example, an organization may wish to predict whether an employee is satisfied with his/her company or not.  

We also want to examine which factors are most closely associated with overall satisfaction or dissatisfaction.  

The system is trained by using the data from the employee review dataset. We will use several machine learning 

algorithms.  After the training process is complete, the system will rank the algorithms by the model that 

performs the best.  The top performing algorithm will then be used for future predictions.  The overall workflow 

for this process is shown in Figure 6.   

 

 

 

 

Figure 6: Workflow Diagram 

There are 15 features in the employee review data set, including short summary, pros, cons, work/life balance, 

culture and values, career opportunities, and senior management.  “Overall rating” is our target feature that we 

want to predict.  It indicates whether employees are satisfied with their company or not.  The rating values are 

between 1 and 5 and indicate, from low to high, the degree to which the employee is satisfied with his or her 

company.   

Data mining methods are categorized as either supervised (a specific target variable selected for analysis) or 

unsupervised (no specific target variable) (Larose and Larose, 2014). Since we know our target for prediction, we 

are interested in supervised learning. Supervised learning is the most common data mining method.  Regression, 

decision trees, neural networks and support vector machines are all supervised learning algorithms.     

Feature Engineering 
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Tools and Processes 

Recall that there are five phases in CRISP-DM: 1) Business Understanding, 2) Data Understanding, 3) Data 

Preparation, 4) Modeling, 5) Evaluation and 6) Deployment.  We are now entering into the third and fourth 

phases of this process. The data preparation phase is where we preprocess the data (data cleaning and 

preparation) and the modeling phase is where we train the model or algorithm.   

 (1) The preprocessing stage: The data preparation stage is critical in preparing the data for modeling and 

analysis.  We need to ensure a clean and valid dataset. For example, we need to remove the data that will not 

be analyzed.  In this dataset, we removed the reviews from Netflix due to a low number of employee responses 

in comparison to the other companies.  Other data cleaning and preparation tasks are based on what we want 

the system to predict and thus which features should be included or removed.  For the data cleaning stage, we 

mainly use spreadsheet software to prepare our data. 

For the top algorithms presented, if the prediction performance measures are not high enough, these algorithms 

will not predict accurately in the holdout sample.  If the performance is lower than our acceptable threshold, we 

will make changes to the dataset such as regrouping the data for clarity, and resubmit the data to the algorithm.  

For example, if the target feature is “overall ratings,” which consists of 5 different values (1-5), it is more difficult 

to make good predictions than if we try to predict whether the employees are satisfied or not (yes or no).  This 

is why we change the values in the target feature by grouping the reviews that have “overall ratings” 1 and 2 as 

“unsatisfied” and 3 through 5 as “satisfied.  The data with the original and modified rankings are shown in Figure 

7a and Figure 7b, respectively (compare column J in the two figures). 

 

 

 

Figure 7a. Original Dataset with Overall Ratings between 1 and 5 (See Column J) 

 

 

 

Figure 7b. The Modified Dataset after Changing Overall Ratings “1-2” To “0” And “3-5” To “1” (See 

Column J) 

This modification of the data helps to improve the system performance a great deal.  Intuitively, the algorithms 

we consider treat the number of stars as a categorial variable, rather than as an interval variable. That is, the 

algorithms essentially maximize precision, so a prediction of four when the true value is five is treated as if it 

were as bad as a prediction of one or two when the true value is five.  Thus, if we do not transform our target 

feature, then the algorithms penalize “near misses” too much.  Aggregating categories largely solves this 

problem.  However, future work will look at algorithms which treat our target variables as interval variables, so 

we will not have to aggregate categories. The system performance information is discussed in Section 5.1. 
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 (2) Training of the model:  The modeling phase uses the cleaned data as the input file for the system to learn 

how to predict the overall “satisfied” and “dissatisfied” categories in a training data set.  The resulting predictions 

are then evaluated on a holdout data set.  Once a set of good models is obtained, they are used to determine 

which features are most useful in predicting satisfaction.  It is also possible to use the models to predict the 

likely overall ratings for reviews that do not actually have an overall rating.  During this stage, the machine 

learning tool, DataRobot, is used.   

DataRobot (https://www.datarobot.com/) is a supervised automated machine learning tool implemented by 

several successful data scientists.  It analyzes a data set for a target feature and runs the data using several 

algorithms.  The best algorithm for predicting the target correctly with acceptable speed will be recommended 

for use for future predictive analysis purposes.  The outputs of the other algorithms are also presented in case 

the user prefers using them for some purpose.   

After the data set is cleaned and ready for the training phase, the data set is uploaded to DataRobot.  The target 

feature (i.e., overall rating) is then indicated.  DataRobot then uses part of the data set to train the system and 

identify which algorithms are most promising (i.e., can best predict the target feature).  The algorithms that 

perform well then use more data to train until they successfully fit an acceptable amount of the training data 

(such as 80%).  The top algorithms are then presented to the user. 

4. Results and System Performance 

The last phase of the CRISP-DM methodology is evaluation. Here we evaluate the performance of the algorithms.  

In our case, DataRobot ranked the three algorithms with the highest performance as: (1) the Nystroem Kernel 

SVM Classifier, (2) the eXtreme Gradient Boosted Trees Classifier with Early Stopping, and (3) the Auto-Tuned 

Word N-Gram Text Modeler using Token Occurrences - Cons. The best ranked algorithm for target prediction 

with high performance and high speed was the Nystroem Kernel SVM Classifier.  The Nystroem Kernel SVM 

Classifier is a kernelized learning algorithm used in support vector machine classification (Chang et al., 2010). 

  

4.1 Performance Evaluation  

In general, prediction performance is measured by the AUC and log-loss measures.  The AUC is the area under 

the (ROC) curve, where the ROC (receiver operating characteristic) curve is the curve that illustrates the tradeoff 

between false positives (on the horizontal axis) and true positives (on the vertical axis), for different values of 

the cutoff threshold.  For a more demanding threshold, the system will incorrectly classify a smaller number of 

truly negative individuals as positive, but will also correctly identify a smaller number of truly positive individuals 

as positive.  The ROC curve is therefore upward sloped.   A value of the AUC close to one means that one can 

identify a large percentage of the true positives, while suffering only a small number of false positives.  In this 

study, a “positive” indicates the individual is satisfied, overall, with the job, in the sense that their overall star 

rating is a 3, 4 or 5.  The log loss measure, on the other hand, is simply the negative of the log likelihood function, 

so a small value of the log loss indicates a higher value of the likelihood function, and so, a better fit to the data. 

Table 5 displays the employee job satisfaction prediction accuracy rates by algorithm, for the top three 

algorithms.  The best performing algorithm according to both measures was the Nystroem Kernel SVM Classifier, 

followed by the eXtreme Gradient Boosted Trees Classifier with Early Stopping and the Auto-Tuned Word N-

Gram Text Modeler using Token Occurrences – Cons.  It also indicates the overall number of false negatives (FN), 

true negatives (TN), false positives (FP), and true positives (TP) in the holdout sample.  Note, here that the 

percentage of true positives correctly identified in the holdout sample is 100 x [11239/(11239 + 300)] = 97.4%.  

Similarly, the percentage of true negatives correctly identified is 72.5%. 

 

 

 

 

 

file:///C:/Users/Gs/Google%20Drive/mt/RAJPUB/International%20Journal%20of%20Management%20&%20Information%20Technology
https://www.datarobot.com/


International Journal of Management & Information Technology Vol 16 (2021) ISSN: 2278-5612 https://rajpub.com/index.php/ijmit 

 

83 

Table 5: Prediction Accuracy Rates by Algorithm for the 12/345 Stars Rating Classification 

Algorithms (12_345) 

  

AUC  LogLoss  

   

Confusion Matrix  
Validati

on 

Cross 

Val. 

Validati

on 

Cross 

Val. FN TN FP TP 

Nystroem Kernel SVM 

Classifier 0.9657 0.9658 0.1513 0.1510 300 

     

1,298  

     

491  

   

11,239  

eXtreme Gradient Boosted 

Trees Classifier with Early 

Stopping 0.9645 0.9646 0.1536 0.1533 

    

227   1,195  

     

594  

   

11,312  

 Auto-Tuned Word N-

Gram Text Modeler using 

Token Occurrences - Cons 0.8615 0.8595 0.2768 0.2777 

    

268       610  

     

1179  

   

11,271  

The DataRobot software also indicates which features were most important in each algorithm.  These rankings 

are shown in Table 6.  According to the Nystroem Kernel SVM, the top two features were number of stars for 

“career opportunities” and “culture values,” followed by the text categories “summary” and “cons.”  The eXtreme 

Gradient Boosted Trees Classifier had a similar ranking, but with “culture values” and “career opportunities” 

switched.  The Auto-Tuned Word N-Gram Text Modeler only used the “cons” feature, and so, is not included in 

Table 6. 

Table 6: Feature Impact for each Algorithm 

 Algorithms (12_345) 

Nystroem Kernel SVM Classifier 

  Features % 

1 carrer_opportunities_stars 100 

2 culture_values_stars 98.2 

3 summary 62.73 

4 cons 55.27 

5 senior_mangemnet_stars 35.74 

6 work_balance_stars 32.65 

7 helpful_count 31.72 

8 pros 23.92 

9 comp_benefit_stars 18.97 

 

eXtreme Gradient Boosted Trees Classifier with Early Stopping 

  Features % 

1 culture_values_stars 100 

2 carrer_opportunities_stars 83.83 

3 summary 80.66 

4 cons 78.83 

5 senior_mangemnet_stars 62.1 

6 helpful_count 49.28 

7 work_balance_stars 48.74 

8 pros 39.22 

9 comp_benefit_stars 20.51 

 

4.2 Robustness 

file:///C:/Users/Gs/Google%20Drive/mt/RAJPUB/International%20Journal%20of%20Management%20&%20Information%20Technology


International Journal of Management & Information Technology Vol 16 (2021) ISSN: 2278-5612 https://rajpub.com/index.php/ijmit 

 

84 

To check for the robustness of our results, we also reran our data, but with the target feature indicating that the 

employee was dissatisfied if the employee chose one, two or three stars and satisfied only if they chose four or 

five stars.  Thus, more reviews were included in the dissatisfied category.  The results are presented in Table 7, 

where again, FN, TN, FP and TP are for the holdout sample.  The Nystroem Kernel SVM was again the best 

performing algorithm, but the Auto-Tuned Word N-Gram Text Modeler using Token Occurrences – Cons and 

the Auto-Tuned Word N-Gram Text Modeler using Token Occurrences – Summary algorithms were the two next 

best algorithms. 

Table 7: Prediction Accuracy Rates by Algorithm for the 123/45 Stars Rating Classification 

Algorithms (123_45) 

  

AUC 
 

LogLoss 
 

Confusion Matrix 
 

Validatio

n 

Cross 

Val. 

Validatio

n 

Cross 

Val. 

 F

N  TN  FP  TP 

Nystroem Kernel SVM 

Classifier 0.9453 0.9463 0.2754 0.2728 

70

2 

3,43

3 857 

8,33

6 

Auto-Tuned Word N-Gram 

Text Modeler using token 

occurrences - cons 0.8105 0.8152 0.4806 0.4761 

 

66

4 

 

1,94

4 

 

2,34

6 

 

8,37

4 

 Auto-Tuned Word N-Gram 

Text Modeler using token 

occurrences - summary 

 

0.4907 

 

0.4934 

 

0.7997 

 

0.7965 

 

45

1 

 

1,46

6 

 

2,82

4 

 

8,58

7 

Again, the Auto-Tuned Word N-Gram Text Modeler using Token Occurrences algorithms only use one feature 

each, i.e., the text categories “cons” and “summary,” respectively, so Table 8 only shows feature rankings for the 

Nystroem Kernel SVM.  The rankings of the first six features are identical to those above, though the last three 

features are different when predicting 1 through 3 stars versus 4 or 5 stars. 

Table 8: Feature Impact of Each Algorithm 

Algorithms (123_45) 

Nystroem Kernel SVM Classifier 

  Features % 

1 carrer_opportunities_stars 100 

2 culture_values_stars 96.4 

3 summary 69.95 

4 cons 52.96 

5 senior_mangemnet_stars 51.53 

6 work_balance_stars 49.76 

7 comp_benefit_stars 30.7 

8 pros 26.99 

9 advice_to_mgmt 10.85 

 

Note, that the features “Cons,” “Summary,” “Pros,” and “Advice to Management” are in a textual format, “Helpful 

count” is the number of readers that voted the comments from the reviewers helpful to them, and “stars” 

categories consist of numerical scores (1-5 stars). 
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In summary, the Nystroem Kernel SVM Classifier best predicted overall satisfied or dissatisfied employees, and 

the features “Career opportunities” and “Culture values,” are the most important features helping the system to 

predict the target feature correctly, and thus have high predictive power (Burkov, 2019). 

It is also worth noting that system performance was better when predicting the 12/345 breakdown of job 

satisfaction than when predicting the 123/45.  This suggests that the three-star reviews are more appropriately 

classified with the four and five-star reviews than with the one and two-star reviews.  For example, employees 

may use three stars as indicating a satisfactory work environment, like four and five stars, while they may reserve 

one and two stars to express extreme dissatisfaction. 

5. Discussion 

By using machine learning techniques to perform predictive analysis on employees’ reviews, we are able to 

predict with high accuracy whether employees are satisfied or dissatisfied with their jobs.  Thus, we are able to 

answer our research questions as follows: 

RQ 1: Can we use machine learning techniques to predict employee job satisfaction from employees’ 

reviews? 

The AUC and Log loss as well as true versus false positives and negatives indicate that using machine learning 

techniques, the system is able to predict employee job satisfaction very well. 

In addition to using the system evaluation using AUC and Log loss, we also evaluated the system by predicting 

a set of data consisting of 80 reviews that were not part of the original training set.  We removed the overall 

satisfaction values and let the systems predict them.  We compared the results created by the system with the 

real overall satisfaction values given by the reviewers.  The system was able to predict whether those employees 

were satisfied with their companies or not with an accuracy rate of about 95%.  Thus, we believe that the high 

accuracy rate is largely because the dataset is very clean and many of the features are themselves in terms of 

numerical scores.   

Thus, we can conclude that it is possible to predict employee job satisfaction using machine learning techniques. 

RQ 2: Using machine learning techniques, which algorithms perform best in predicting employee job 

satisfaction? 

Using machine learning techniques, the system was able to predict the target feature with high accuracy rates.  

The most successful algorithms are: (1) the Nystroem Kernel SVM Classifier, (2) the eXtreme Gradient Boosted 

Trees Classifier with Early Stopping, and (3) the Auto-Tuned Word N-Gram Text Modeler using Token 

Occurrences – Cons. 

RQ 3: Using machine learning techniques to analyze employee reviews, which features have the highest 

predictive power in helping the system to predict accurately? 

Most features in this dataset contribute highly to the predictive analysis, since the dataset is fairly clean. 

However, the top two features that provided the highest prediction impact (predictive power) are “career 

opportunities” and “culture value.”  This means that, in order to predict whether an employee is satisfied with 

his/her company, analyzing the “career opportunities” and “culture value” provides more predictive power than 

other features. 

One interesting thing we found in the results is that the contents of the textual “summary” feature has more 

impact on the prediction accuracy than the contents of the “cons” and “pros” features.  We believe that the 

terms used in the “summary” feature must be more distinctive than those used in the other two features (the 

words used must contain more information). 

Business Implications 

In order for businesses to perform well, they need employees who are satisfied with the company.  Knowing 

whether employees are satisfied and knowing the major indicators for satisfaction will help businesses to obtain 

the optimal performance from their employees.  Thus, our research findings can contribute to several human 

resource management tasks including: 
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• Enhancing recruitment of strong employees. If a company knows what makes employees satisfied, it 

can improve the company’s culture to incorporate a more satisfying workplace. As a result, the work 

environment can attract strong prospective employees. 

• Predicting employees’ retention (staying with the company) – Turnover is very costly. If employers can 

identify dissatisfaction in employees and rectify the situation, this may lead to greater employee 

retention. 

• Improve the employer/employee relationship – Our study finds that “career opportunities” and “culture 

values” lead to more satisfied employees. More satisfied employees may be more prone to feel good 

about their position with the company. This positive relationship may encourage employees to perform 

well at work.  

• Applying the algorithm to other areas of business – Machine learning tools such as DataRobot, and 

predictive models can be applied to other areas such as analyzing customer satisfaction to predict churn.   

6. Conclusion and Future Research 

In this paper, we demonstrated that it is possible to use supervised machine learning techniques to analyze and 

predict employee job satisfaction with high rates of accuracy.  The best performed algorithm is Nystroem Kernel 

SVM Classifier with an accuracy rate of more than 96% according to the AUC-measure.  In addition, the system 

can find the most important factors that provide a high impact on predicting job satisfaction.   

In our study, a career opportunities and company’s work culture contribute greatly to predicting employee job 

satisfaction.  

Building on what we have found from this study, we plan to extend this research in the following areas: 

• Incorporate more semantic and linguistic analyses using terms and their relations (words/phrases, lexical 

semantic relations, etc.) to improve system performance. E.g., how exactly does the text in the 

“summary” and “cons” features help to predict job satisfaction? 

• Apply similar techniques to other application domains such as supply chains, health care, and security. 

• Compare employee job satisfaction across similar businesses, such as Apple vs. Microsoft.  From the 

current dataset, we find that the overall ratings for both companies are similar.  However, by using 

semantic analysis to examine the textual comments in the employee reviews (pros, cons, and summaries) 

we can identify more specifically what employees think about their companies. 

References 

1. 2017 Retention Report: Trends, Reasons & Recommendations: 

http://info.workinstitute.com/retentionreport2017 (accessed on January 1, 2021). 

2. Abraham, R. (1999). The Impact of Emotional Dissonance on Organizational Commitment and Intention 

to Turnover. Journal of Psychology, Vol. 133, No. 4, 441–455. 

3. Alao, D. & Adeyemo, A. (2013). Analyzing employee attrition using decision tree algorithms. Comput. 

Information System, Development Informatics and Allied Research Journal. Vol. 4, No. 1, 17–28. 

4. Alduayj, S. S. & Rajpoot K. (2018). Predicting Employee Attrition using Machine Learning. International 

Conference on Innovations in Information Technology (IIT), 93-98. 

5. Azari B. (2011). Job Satisfaction: A Literature Review. Management Research and Practice, Vol. 3, No. 4, 

77-86. http://mrp.ase.ro/no34/f7.pdf.  

6. Bendemra, H. (2019).  Building an Employee Churn Model in Python to Develop a Strategic Retention 

Plan. https://towardsdatascience.com/building-an-employee-churn-model-in-python-to-develop-a-

strategic-retention-plan-57d5bd882c2d (accessed on January 1, 2021). 

7. Bolden-Barrett, V. (2017). Turnover costs employers $15,000 per worker. 

https://www.hrdive.com/news/study-turnover-costs-employers-15000-per-worker/449142/ (accessed 

on January 1, 2021). 

8. Burkov, A. (2019). The Hundred-Page Machine Learning Book, ISBN-13: 978-1999579500. 

file:///C:/Users/Gs/Google%20Drive/mt/RAJPUB/International%20Journal%20of%20Management%20&%20Information%20Technology
http://info.workinstitute.com/retentionreport2017
https://econpapers.repec.org/scripts/redir.pf?u=http%3A%2F%2Fmrp.ase.ro%2Fno34%2Ff7.pdf;h=repec:rom:mrpase:v:3:y:2011:i:4:p:77-86
https://towardsdatascience.com/building-an-employee-churn-model-in-python-to-develop-a-strategic-retention-plan-57d5bd882c2d
https://towardsdatascience.com/building-an-employee-churn-model-in-python-to-develop-a-strategic-retention-plan-57d5bd882c2d
https://www.hrdive.com/news/study-turnover-costs-employers-15000-per-worker/449142/


International Journal of Management & Information Technology Vol 16 (2021) ISSN: 2278-5612 https://rajpub.com/index.php/ijmit 

 

87 

9. Chen, Ling-Hsiu (2008). “Job satisfaction among information system (IS) personnel,” Computers in 

Human Behavior, Volume 24, Issue 1, 2008, Pages 105-118, ISSN 0747-5632, 

https://doi.org/10.1016/j.chb.2007.01.012. 

10. Conlon, S. J. (2021). Why Do Data Scientists Want to Change Jobs: Using Machine Learning Techniques 

to Analyze Employees’ Intentions in Switching Jobs. INTERNATIONAL JOURNAL OF MANAGEMENT & 

INFORMATION TECHNOLOGY, 16, 59–71. https://doi.org/10.24297/ijmit.v16i.9058. 

11. Cotton, J. L.& Tuttle J. M. (1986). Employee turnover: A meta-analysis and review with implications for 

research. Academy of management Review, Vol. 11, No. 1, 55-70. https://doi.org/10.2307/258331.  

12. Fallucchi, F., Coladangelo, M., Giuliano, R., & William De Luca, E. (2020). “Predicting Employee Attrition 

Using Machine Learning Techniques.” Computers 9(4), 86. https://doi.org/10.3390/computers9040086.  

13. Galup S, Klein G, Jiang J. (2008).  The impacts of job characteristics on IS employee satisfaction: A 

comparison between permanent and temporary employees.  Journal of Computer Information Systems, 

Vol. 48 No. 4, 58–68.  

14. Golestani, A., Masli, M., Shami, N. S., Jones, J., Menon A., & Mondal J. (2018). Real-Time Prediction of 

Employee Engagement Using Social Media and Text Mining. 17th IEEE International Conference on 

Machine Learning and Applications (ICMLA), Orlando, FL, 2018, 1383-1387. 

15. Harden, G., Boakye, K. G., & Ryan, S. (2018). Turnover intention of technology professionals: A social 

exchange theory perspective. Journal of Computer Information Systems, 58(4), 291–300. 

https://doi.org/10.1080/08874417.2016.1236356.  

16. Hinkin, T. R. & Tracey, J. B. (2000). The cost of turnover: Putting a price on the learning curve. Cornell 

Hotel and Restaurant Administration Quarterly, Vol. 41, 14-21. https://hdl.handle.net/1813/71741. 

17. Hinkin, T. R. & Tracey, J. B. (2006). Development and use of a web-based tool to measure the costs of 

employee turnover: Preliminary findings. Ithaca, NY: Cornell University School of Hotel Administration 

Center for Hospitality Research.  

18. Holtom, B., Mitchell, T., Lee, T., & Eberly, M. (2008). Turnover and retention research:  A glance at the 

past, a closer review of the present, and a venture into the future. The Academy of Management Annals, 

Vol. 2, No. 1, 231-274. https://doi.org/10.1080/19416520802211552. 

19. Hulin, C. L., & Judge, T. A. (2003). Job attitudes. In W. C. Borman, D. R. Ligen, & R. J. Klimoski (Eds.), 

Handbook of psychology: Industrial and organizational psychology, Hoboken, NJ: Wiley.  255-276.  

20. IBM HR Analytics Employee Attrition & Performance: IBM HR Analytics Employee Attrition & 

Performance | Kaggle (accessed on January 1, 2021). 

21. IBM Knowledge Center 

https://www.ibm.com/support/knowledgecenter/SS3RA7_sub/modeler_crispdm_ddita/clementine/cris

p_help/crisp_overview.html (accessed on January 1, 2021). 

22. Jain D., Makkar S., Jindal L., Gupta M. (2021) Uncovering Employee Job Satisfaction Using Machine 

Learning: A Case Study of Om Logistics Ltd. In: Gupta D., Khanna A., Bhattacharyya S., Hassanien A., 

Anand S., Jaiswal A. (eds) International Conference on Innovative Computing and Communications. 

Advances in Intelligent Systems and Computing, Vol 1166. Springer, Singapore. 

https://doi.org/10.1007/978-981-15-5148-2_33 

23. Larose, D. & Larose, C. (2014). Discovering knowledge in data: An introduction to data mining. John Wiley 

and Sons, Inc. 

24. Lee, T., Mitchell, T., Sablynski, C., Burton, J., & Holtom B. (2004). The effect of job embeddedness on 

organizational citizenship, job performance, volitional absences and voluntary turnover. Academy of 

Management Journal, Vol. 47, No. 5, 711-22. https://doi.org/10.2307/20159613.  

25. Locke, E.A. (1976). The nature and causes of job satisfaction. In M.D. Dunnette (Ed.), Handbook of 

industrial and organizational psychology, Chicago: Rand McNally. Vol. 1, 1297-1343.  

file:///C:/Users/Gs/Google%20Drive/mt/RAJPUB/International%20Journal%20of%20Management%20&%20Information%20Technology
https://doi.org/10.1016/j.chb.2007.01.012
https://doi.org/10.2307/258331
https://doi.org/10.3390/computers9040086
https://doi.org/10.1080/08874417.2016.1236356
https://hdl.handle.net/1813/71741
https://doi.org/10.1080/19416520802211552
https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset
https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset
https://www.ibm.com/support/knowledgecenter/SS3RA7_sub/modeler_crispdm_ddita/clementine/crisp_help/crisp_overview.html
https://www.ibm.com/support/knowledgecenter/SS3RA7_sub/modeler_crispdm_ddita/clementine/crisp_help/crisp_overview.html
https://doi.org/10.1007/978-981-15-5148-2_33
https://doi.org/10.2307/20159613


International Journal of Management & Information Technology Vol 16 (2021) ISSN: 2278-5612 https://rajpub.com/index.php/ijmit 

 

88 

26. Mishra, P.K. (2013). Job Satisfaction. Journal of Humanities and Social Science, Vol. 14, No. 5 (Sep. - Oct. 

2013), 45-54. 

27. Mobley, W. H. (1982). Employee turnover: Causes, consequences, and control, Reading, MA: Addison 

Wesley.  

28. Moorman, R.H. (1993). The influence of cognitive and affective based job satisfaction measures on the 

relationship between satisfaction and organizational citizenship behavior. Vol. 46, No. 6, 759–776. 

https://doi.org/10.1177/001872679304600604.  

29. Morrell, K., Loan-Clarke, J., & Wilkinson, A. (2001). Unweaving leaving: The use of models in the 

management of employee turnover. International Journal of Management Reviews, Vol. 3, 219-44. 

https://doi.org/10.1111/1468-2370.00065.  

30. Morris, M. & V. Venkatesh. “Job Characteristics and Job Satisfaction: Understanding the Role of 

Enterprise Resource.” MIS Q. 34 (2010): 143-161. https://doi.org/10.2307/20721418  

31. Mossholder, K., Sutton, R. P., & Henagan, S. C.  (2005). A relational perspective on turnover: Examining 

structural, attitudinal, and behavioral predictors. Academy of Management Journal, Vol. 48, No. 4, 607- 

18. https://doi.org/10.2307/20159682.  

32. Mowday, R. T., Porter, L. W., & Steers R. M. (1982). Employee-organization linkages: The psychology of 

commitment, absenteeism, and turnover, New York: Academic Press. 

33. Nagadevara, V. (2008).  Early Prediction of Employee Attrition in Software Companies-Application of 

Data Mining Techniques. Research & Practice in Human Resource Management. 16, 2020–2032.  

https://doi.org/10.1109/IADCC.2018.8692137.   

34. Punnoose, R. & Ajit, P. (2016). Prediction of employee turnover in organizations using machine learning 

algorithms. International Journal of Advanced Research in Artificial Intelligence, Vol. 5, Issue 9. 22–26. 

https://doi.org/10.14569/IJARAI.2016.050904.  

35. Ray, A. N. & Sanyal, J. (2019). Machine Learning Based Attrition Prediction. 2019 Global Conference for 

Advancement in Technology (GCAT), BANGALURU, India, 1-4. 

36. Saari, Lise. M. & Judge, T. (2004) Employee Attitudes and Job Satisfaction. Human Resource 

Management, Winter 2004, Vol. 43, No. 4, 395–407. https://doi.org/10.1002/hrm.20032. 

37. Sacco, J.  M.  & Schmitt, N. (2005). A dynamic multilevel model of demographic diversity and misfit 

effects. Journal of Applied Psychology, Vol. 90, No. 2, 203-231. https://doi.org/10.1037/0021-

9010.90.2.203.  

38. Singh, J.K. & Jain, M. (2013). A Study of Employees’ Job Satisfaction and Its Impact of their performance. 

Journal of Indian Research Vol. 1, No. 4, 105-111. 

39. Spector, P.E. (1997). Job satisfaction: Application, assessment, causes and consequences. Thousand Oaks, 

CA: SAGE. 

40. Sumner, M. & Niederman, F. (2004). The impact of gender differences on job satisfaction, job turnover, 

and career experiences of information systems professionals. Journal of Computer Information Systems, 

44: 29–39.  https://doi.org/10.1145/512360.512395.  

41. Thompson, E.R. & Phua F.T.T. (2012). A Brief Index of Affective Job Satisfaction. Group & Organization 

Management, Vol. 37, No. 3, 275–307.  https://doi.org/10.1177/1059601111434201’ 

42. Tracey, J. B., & Hinkin, T. R. (2010). Contextual factors and cost profiles associated with employee 

turnover. In C. Enz (Ed.), The Cornell School of Hotel Administration handbook of applied hospitality 

strategy, Los Angeles, CA: SAGE.  736-753.  

43. Vidal, M.E.S., Valle, R.S., & Aragón, B.M.I. (2007). Antecedents of repatriates’ job satisfaction and its 

influence on turnover intentions: Evidence from Spanish repatriated managers. Journal of Business 

Research, Vol. 60, 1272-1281. https://doi.org/10.1016/j.jbusres.2007.05.004.  

file:///C:/Users/Gs/Google%20Drive/mt/RAJPUB/International%20Journal%20of%20Management%20&%20Information%20Technology
https://doi.org/10.1177/001872679304600604
https://doi.org/10.1111/1468-2370.00065
https://doi.org/10.2307/20721418
https://doi.org/10.2307/20159682
https://doi.org/10.1109/IADCC.2018.8692137
https://doi.org/10.14569/IJARAI.2016.050904
https://doi.org/10.1002/hrm.20032
https://doi.org/10.1037/0021-9010.90.2.203
https://doi.org/10.1037/0021-9010.90.2.203
https://doi.org/10.1145/512360.512395
https://doi.org/10.1177/1059601111434201
https://doi.org/10.1016/j.jbusres.2007.05.004

