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Abstract 

Background: The science of computer vision is replication of human vision for pattern recognition and 

segregation of objects-of-interest at macro- and micro-level. There are numerous computer vision 

techniques with greater focus on deep learning utilizing artificial neural network. Only few of them can be 

readily applied to medical images for surgical interventions.  

Study objective: As this narrative review is aimed at the medical community it is not encumbered with 

mathematical algorithms, albeit important. Apart from discussion on basic concepts and chronological 

development of the computer vision techniques the study introduces role of clinical biomechanical 

engineering team at the time of surgical planning.  

Methodology: The study literature was searched on Google Scholar, keywords on Google chrome, 

Wikipedia and cited references in the reviewed articles referring to the original studies describing various 

computer vision techniques between 1980 to 2021. 

Result: There is enormous discursive literature to read with extremely variable computer vision terminology 

unknown to the medical community is densely populated with advanced mathematics leading to lack of 

interest among majority of the physicians as the end user. There are inconsistencies in the usage of medical 

terminology and definitions.  

Comments and conclusion: Standalone image processing and segmentation is meaningless without 

patient information for clinical applications in daily practice. There is a dire need for streamlining of 

computer vision science to teach medical community, introduction of a new breed of in-house clinical 

biomechanical engineers and supplementary residency program for residents to accept it as standard of 

patient care. 

Keywords: Sternotomy, segmentation, active contour, convolutional neural network, solid modelling, 

patient-appropriate medicine 

1.0 Introduction to computer vision 

Computer vision is an engineering design to match the biological processes of human vision and its intricate 

neural network to read 2D and 3D images in real time. It is analogous to only part of the active process of 

human vision, and it carries out image processing based on mathematical operations. The enthusiasm of 

computer scientists has paced well to advance the computer vison techniques matching industrial 

development and rapidly growing medical technologies to extract essential information out of 2D and 3D 

digital medical images assisting medical diagnosis and therapy.  

Computer vision includes image processing, image analysis, and pattern recognition techniques(Klette, 

2014). The techniques of image analysis are image processing numerical tools for recognizing and 

differentiating regions by calculating grey-level values, size, and shape, textures, the architectural 

relationship between constituent tissue properties to produce quantitative data for subsequent decision 

making. In medical image analysis, depending on clinical objectives, one or all these steps are engaged 
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sequentially_ 1. image acquisition with a suitable modality; 2. image pre-processing for enhancement and 

inclusion of elements perceptible to human vision; 3. segmentation to identify region-of-interest; 4. feature 

extraction to measure grey-level values, intensity gradient, textures, geometrical properties; 5. 

Segmentation of one or multiple regions of an image that contains a specific object of interest; 6. higher-

level processes such as image recognition and registration to classify and label various regions by sorting 

them into categories; and finally 7. decision making for medical diagnostics and therapeutic 

applications(Davies & Holloway, 2005). The main concept behind medical image processing is to enhance 

the visual quality of digital images to erase defects such as geometric distortions, blurring, and noise, to 

acquire meaningful information.  

Image processing is broadly categorized into three areas(Prats-Montalbán et al., 2011), a) image 

compression to excise redundancies in input or original image; b) pre-processing it by reducing noise, pixel 

calibration, and standardization, enhancing edges of each region to produce a ‘new’ image by manipulating 

image space; and c) image analysis to provide numerical and graphical information to quantify output image 

characteristics and properties. In computer vision, segregating regions-of-interest (segmentation) is a 

mainline activity therefore there are a plethora of image segmentation methods that have evolved within 

image processing techniques in the last fifty years. Since the late eighties, the potential role of computer 

vision in medical image quantification has grown enormously and is still growing to improve the 

segmentation methods to increase its clinical application. Much of it has been applied successfully, 

particularly in the field of medical nuclear physics to devise treatment strategies and allied medical radiology 

imaging technologies to acquire high-resolution 2D and 3D imaging studies and temporal four-dimensional 

(4D) patient-based follow-up during treatment. However, there is still a lack of evidence and a significant 

gap between experimental and routine surgical treatment as a standard of care. There is abundant 

experimental literature available for review and serious consideration. It can only be achieved in a 

collaboration led by a surgical team and clinical biomechanical engineers as hospital-based members rather 

than standalone professionals in an engineering laboratory. 

2.0 Study objectives 

The present review is motivated by growing interest of the physicians in navigation surgery and machine 

learning for in-depth diagnosis and therapeutics. Considering limited mathematical adroitness of the 

physicians the study is configured to meet their primary needs to know and understand the ‘nuts and bolts’ 

of computer vision for emerging image-based practical applications. Therefore, this narrative review is not 

encumbered with mathematical algorithms, albeit important. The enormity of the subject is such that the 

review includes only the most relevant basic computer science concepts followed by important image 

processing, traditional image segmentation methods in practice since the beginning of 1980s and more 

recent techniques. Considering the pros and cons of fast evolving computer vision science, at the end there 

is preamble to a newly conceptualized physiology-based biomimetic model called hyalite sol-gel Amoeba 

(HSG-Amoeba) model, devised to acquiesce tissue densities for surgical application.  

The computer vision science directed at processing and segmentation of medical images is a 

multidisciplinary undertaking, therefore the concept of clinical biomechanical engineering team within the 

hospital surgical department is discussed at the onset.  The role of a clinical biomechanical engineer is to 

carryout higher numerical analysis and assist in selecting the most suitable implant design based on 
1patient-specific and patient-appropriate (Gandhi, 2019) parameters at the time surgical planning and 

medical treatments.  

 
1 The word ‘specific’ refers to a precise anatomical location or an entire segment of a region or organ system, e.g., head of the humerus of the 

skeletal system, and ‘appropriate’ means that something is suitable and favourable only for a single patient under special circumstances, 
including patient physique and multiple influential co-morbidities. A technique can only be called ‘patient-specific’ if the collected set of data to 

which it is applied belongs to a specific anatomical section/segment of a bone as in the case of skeleton or a specific element of an organ for 
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As an example, the properties of digital image of the thorax are discussed as it is a routine and the most 

frequent investigation undertaken using all imaging modalities. It is a complex multilayered medical image 

consisting of all kinds of solids and fluids projecting radiolucent and radio-opaque tissues for computer 

vision applications.  

Currently, there is an enormous amount of unaligned and discursive computer vision learning material, but 

much of it is outside the scope of the present study, therefore it is carefully handled to a limited number of 

computer vison techniques including only high yield segmentation methods that may be applied 

successfully to real-life 3D anatomy.  

3.0 Role of a clinical biomechanical engineer 

The science of computer vision is a challenging subject given that there are hundreds of techniques and 

complex mathematical algorithms. Currently, it is outside the avenue and beyond aptitude of most medical 

practitioners for computer vision techniques to be a standard of care without a clinical biomechanical 

engineer becoming established as a team member within the department of surgery to play an active role 

in improving patient-based outcomes. Now that high-quality 3D models can be rapidly printed with additive 

manufacturing techniques in a variety of biomaterials, this new technology and science of computer vision 

can be employed to advance surgical techniques from its current position in the engineering and biomedical 

engineering laboratory into clinical practice and operative surgery. The collaboration of engineers and end-

users working together on a leveled platform will generate immediate stimulus and feedback. It will 

accelerate the operation of computer-aided technologies with the input of the interested clinicians in 

parallel with clinical biomechanical engineers. Thereby the process of development and application of 2D 

and 3D image-based technologies can become directly feasible routine for patient-specific biomechanical 

assessments as an integral part of pre-operative surgical planning to meet the requirements of patient-

appropriate medicine(Gandhi, 2019).   

The current attempt is to initiate such pre-operative surgical planning objectives that will introduce the in-

house role of a clinical biomechanical engineer to undertake a surgeon-induced surgically relevant 

mathematical analysis based on the patient-appropriate clinical status of individual patients. It is realized 

and expected that introduction of such pre-operative planning will incur extra costs in terms of human 

resources, equipment, person-hour, and computational time. Overall surgical techniques and process of 

patient care will hardly be tempered with the introduction of clinical biomechanical engineers to the 

department of surgery to make engineering recommendations based on mathematical analysis of 3D 

patient-specific model and finite element analysis (FEA) to advise an implant design from currently available 

implant systems. With the presence of engineering expertise wherever necessary patient-specific and 

patient-appropriate implants can be readily manufactured by using additive manufacturing technology.  

4.0 Methodology  

Primarily, the study literature was searched on Google Scholar, Google Chrome by using keywords such as 

computer vision, image processing, image segmentation, image registration, medical image processing; 

computer vision textbooks; Wikipedia and relevant references cited in the reviewed articles. Secondarily,  

searched for original studies describing various techniques and methods during computer vision evolution 

between 1980s to 2021. The illustrations were drawn in MS Paint and artwork by hand. 

5.0 Medical imaging technology 

In the field of medical imaging, the x-ray recording machine is equivalent to the light-sensitive camera, 

which has been in use since its discovery in December 1895 by Roentgen. The x-ray beam when projected 

 
biomechanical evaluation and higher numerical analysis for clinical application rather than to the entire organ system of that individual; without 

the inclusion of any kind of extraneous experimental or population based statistical values to constitute ‘patient-appropriate medicine’. 
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through 3D biological structures of varying radio-opaque and radiolucent densities, it is recorded as a 2D 

image and, when recorded with computed tomography (CT) in the form of numerous 2D slices, the set of 

data can be automatically organized into 3D reconstruction for storage and display. The medical image 

modality of nuclear magnetic resonance imaging (MRI) is based on the concentration and distribution of 

hydrogen ions in the tissues affected by the magnetic field to produce 2D data, which can also be 

transformed into 3D images. The radiographic digital image data is stored as a picture archiving and 

communication system (PACS). The CT and the magnetic resonance tomography set of data are stored for 

future display as digital imaging and communication in medicine (DICOM). Alternative to these modalities, 

a recently introduced electronic operating system (EOS) based radiographic recording machine can register 

two orthogonal views simultaneously and can automatically generate reasonable quality of 3D images for 

limited regional anatomy of interest. Despite all these innovative and much-preferred imaging modalities, 

the modality of plain radiography has been eagerly exploited by obtaining two or more projection views of 

the regional anatomy and synthesized by applying image registration and mathematical algorithms to 

create 3D embodiments for further analysis and processing.  

5.1 Digital image 

The digital image is a binary numerical representation of a 2D object or a scene. Technically it is described 

as a bitmap image, also called a raster image (Fig. 1). A raster image is an electronic file that consists of 

discrete picture elements, which are the smallest areas within a scene called pixels.  

 

 

Figure 1 – Raster image showing pixels of varying grey scale intensities. 

A pixel(Lyon, 2006) is the smallest luminescent unit or a cell in the raster form of a 2D digital image. The 

word ‘pixel’ is a synthetic term that originated in the early sixties, formed from ‘picture’ (pix) and ‘element’ 

(el). In the case of a 3D volumetric image, the element is called voxel (volume + pix + element). Unless a 

normal digital image is magnified (zoom-in) to more than a hundred percent the pixels are too small to be 

seen with normal human vision. They are graphic representations of thousands and millions of 

photosensitive electronic tiny sensors on the full frame of a digital sensory plate of an image recording 

device. A one-megapixel device has one million pixels. The size of each square pixel is related to the viewing 

area, aspect ratio, and pixels per square inch of an image. It is approximately 0.26 X 0.26mm, 96.15 pixels 

per square inch with 1280 X 1024 resolution. The degree of image resolution (sharpness) is defined by the 

number of pixels in the grid of the digital sensory plate of the recording device. 

In the computer system, it is in the form of binary (bi) digits (ts) (0, 1 or black and white) called bits, and the 

matrix formed by the pixels is a series of bits. A set of 4 bits arranged in a pixel has 24 = 16 different 

values/levels of grey values or brightness levels. One bit pixel means either black or white colour. The 

medical images have a minimum of 8 bits or one byte (bit + eight) in a pixel to provide 28 = 256 grey values 

for clarity and contrast, suitable for human visualization. The quality of the image needed for analysis and 
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processing is because of the black, white, and grey brightness or intensity gradient (contrast) that 

constitutes the greyscale of an image. The distribution of the brightness levels in an image can be shown 

graphically in the form of a histogram called greyscale intensity histogram, which is a kind of map of pixel 

values in each image.  

An optimal image is expected to have greyscale values ranging between 0-255, where 0 depicts black and 

255th represents maximum white brightness. A highly saturated pixel value means a complete loss of 

information. There should be an even distribution of grey shades representing the best possible tissue 

material density, to provide good contrast between different tissues and organ boundaries to assist easy 

recognition, analysis, and least number of steps for segmentation and further processing.  

6.0 Image registration, segmentation, and other operations  

In an acquired image light reflected off the object is represented as a bright region often referred to as 

foreground and surrounding area as background. In a classic black and white image bright foreground as 

a region-of-interest (ROI) can be isolated by manually drawing a definitive line around it as its edges. In 

other words, there is a point of separation between the bright and the dark intensities where the ROI ends 

forming a threshold between two zones, which can be classified and labeled as foreground and background. 

These simple activities of edge location and the defining threshold between two different intensities divide 

the image into two or more distinct regions. In simple terms, this intentional process of partitioning the 

image into segments for further study by an observer is referred to as segmentation. These peculiar features 

can also be used to match similar images of different sizes and in the distant future to express the change 

in the image. This technique to match or register a pre-existing image to a new image is called registration. 

Semantic segmentation is the process of assigning a label to every pixel in the image is in stark contrast to 

classification, where a single label is assigned to same class as a single entity. On the other hand, instance 

segmentation treats multiple objects of the same class as distinct individual objects or instances. 

These fundamental ideas form the basis for hundreds of registration and segmentation algorithms 

developed in the last fifty years during the evolution of computer vision science. The simplest way to classify 

segmentation and registration techniques is to recognize edges and define thresholds based on image 

intensities to divide an image into two or more regions somehow interactively or automatically. A 

compound image has a varying degree of grey levels distributed all over and a collection of intensities to 

give the image a kind of textured appearance, which too can be used for image segmentation and 

registration. Fortunately, almost all medical images presented for examination are in varying tones of black 

and white intensities and textures (grey-level scale) for diagnosis and treatment purposes. Unlike light 

reflected photography, the radiographic medical image formation is an X-ray transmission technology and 

represented grey-level scale intensities are because of tissue densities. It gets rather more intricate in an 

image like that of the chest where there are several overlapping structures forming layers of differing 

densities.  

Thus, in computer vision, the two main activities which form the basis of greater understanding and clinical 

applications of medical digital images for translation of an average prototype image (example, source, 

reference, atlas) to individual patient image (real, target, new reference, end object, objective) are 

registration and segmentation. It is most important to know that both registration and segmentation 

methods are driven by the application of mathematical algorithms, which are constructed on well-

established physics-based algebraic principles and geometric theorems.  

As the main goal of registration is to achieve the best possible translation between images by an energy 

minimization algebraic solver (algorithm) automatically there is an additional computational cost to it. This 

involves a) transformation between images, b) objective similarity measures, and c) optimization(Sotiras et 

al., 2013; Zitová & Flusser, 2003). There are numerous parametric and geometric methods described in the 
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literature to carry out the registration of 2D and 3D medical images(Salvi et al., 2007; Sotiras et al., 2013; 

Tam et al., 2013; van Kaick et al., 2011).  

 6.1 Segmentation    

Within the larger picture of the image there are numerous geometrical primitives, such as one-dimensional 

points and lines, two-dimensional squares, and circles, and when these are reconstructed into volumetric 

shapes form functional objects or regions of human anatomy. Each object or region may or may not have 

clear dividing edges and boundaries. However, in cellular structures arrangement of cells in a defined way, 

and more importantly, tissue density, air, and water content confer upon each tissue a distinctive physical 

property. It is due to these characteristics each tissue is discretely designated grey-level values and rendered 

in the form of image brightness or intensity in analogue and digital images.  

Before any kind of treatment is implemented, it is only wise to analyze the whole image and specifically the 

ROI thoroughly by somehow segregating it into smaller units to increase the focus of study, and subject it 

to further analysis. This step of isolating the ROI is called segmentation(Del Toro et al., 2014). With the 

growth of computer vision and artificial intelligence, the interest has steered towards computer-based 

medical image analysis and processing. At the same time, there had been the development of numerous 

mathematical, heuristic, and metaheuristic algorithms with increasing accuracy to improve quality and cost-

effectiveness in terms of computational cost and automation to save time.  

As the medical images are collections of a variety of tissues forming specialized areas, each area may require 

attention at various times during the evolution of a disease. To increase focus, an image can be analyzed 

by categorizing the whole image into specific organs, subdividing to label them into various parts. And, for 

greater understanding, segment diseased tissues from the healthy or even decompose desired normal 

anatomy for finite element analysis, and in the case of skeletal system with the bone-implant interface. 

Recently, with the development of robotic vision and autonomous vehicles on the horizon the image 

processing to assess the surroundings deeply has moved to each pixel and sub-pixel level analysis as part 

of deep learning programme (Lecun et al., 2015a; Shotton et al., 2009).  

6.2 Image transformation operations  

Image processing for segmentation of ROI is performed at the level of each set of pixels. The medical images 

with an assortment of tissues within the same frame can be sorted by similarities and/or dissimilarities based 

on grey-level values of their pixels as regions, aggregate, and clusters or by some other kind of association 

such as colour, a mixture of tissues, air and water within the region that is of interest to physicians to perform 

specific procedures. To increase focus, three basic operations are generally required during one or the other 

type of segmentation technique to transform an input digital image into an output image or other kind of 

representation(Castleman, 1996). These operations are performed following the coordinates in the image 

space. A point output value at a specific coordinate is represented exactly to the same coordinate in the 

input value of the original image.  

As the standard medical digital images have square pixels or cubic voxels, the images are sampled by 

applying a square grid over an image. The included neighbouring pixels can be arranged in a grid of either 

four connected pixels, above, below, right, and left of the selected pixel forming a grid of five pixels. Or the 

output grid can be formed with eight connected pixels all around the centrally placed selected pixel when 

a square sampling grid is applied to the input image (Fig. 2).  
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Figure 2 – Raster image showing 1 + 4 pixel grid and 1 + 8 pixel grid 

6.3 Image intensity histogram  

Image intensity histogram is a statistical representation of the distribution of grey levels in the spatial 

domain of an original image (Fig. 3). The number of pixels and how their grey-level values are distributed 

in a digital image are generally displayed as either a bar chart or a graph on Cartesian x-y co-

ordinates(Dzung et al., 1998; Pham et al., 2000). A standard histogram displays the distribution of pixels and 

their numerical intensities ranging from 0 to 255. For a red, green, and blue colour image a 3D histogram 

is generated. An image histogram gets importance from its application in numerous techniques for image 

pre-processing to enhance quality to prepare it for various segmentation methods. 

 

 



International Journal of Computers  and Technology   Vol 22 (2022) ISSN: 2277-3061     https://rajpub.com/index.php/ijct 

 
 

8 

Figure 3 – Intensity histograms and graphic representations of a coloured and a black and white image. 

A digital image histogram is constructed by scanning the image to count the pixels and record the 

intensities at each pixel coordinate. Binary image (black and white) histogram will have bimodal 

representation, a low peak for black and a high peak for white high-intensity segment of the image. When 

there are numerous grey tones, the histogram shows the multi-modal distribution of the pixels. The main 

advantage of generating a histogram for a digital image is that an operator can alter image quality by 

manipulating the histogram, which can help to enhance the sharpness of the edges of the objects and make 

the segmentation process easier. As most of this is done automatically it becomes particularly important in 

the case of medical images to preserve the tissue densities and normal topography of the structures in the 

image during segmentation for higher quantitative analysis. Therefore, the idea of histogram equalization, 

where during pre-processing the pixels are distributed evenly over the whole intensity range to transform 

the output image, is not a great idea in medical image analysis.  

6.4 Image noise  

Noise signal in physics is a non-periodic undesirable disturbance produced by irregular vibrations of 

random non-harmonic frequencies of varying amplitudes arising out of scientific instruments and 

surrounding ambient environment(Mandar et al., 2015). It is the noise from various sources that 

contaminate and degrades the quality of medical images and makes the segmentation task difficult. In the 

case of medical images, the noise is random as opposed to from defined sources causing distortions such 

as shading and lack of focus.  

Although modern-day technology has reduced noise levels associated with digital cameras and medical 

imaging modalities to almost negligible levels, the noise produced by photons is hard to eliminate. The 

problem of photon noise is because of statistical variation of photons which strike the sensitive pixel grid 

like a drum. It is the statistical variations associated with photon count that this finite amount of noise would 

be impossible to eradicate. In addition to the photon noise, thermal noise which also degrades the quality 

of medical images is generated from thermal energy produced when electrons are released from CCD 

material. The other well-recognized troublesome sources of noise worth mentioning are transistors, 

capacitors, and amplifiers making up the image recorders, and surrounding electromagnetic environment 

in all hospital workspaces.      

7.0 Continuum Mechanics  

Within engineering mechanics and mathematics, continuum mechanics study deals with the deformation 

of solids and fluids following the laws of physics(“Continuum Mechanics for Engineers, Third Edition,” 2009). 

The fundamental assumption is that almost all materials at the macroscopic level are homogeneous, 

isotropic, have continuous structure and when described are independent of a coordinate system. However, 

traditionally the motion of infinitesimal points in solids and fluids is described in terms of Lagrangian and 

Eulerian equations. Mathematically, both formulations when applied to appropriate models result in similar 

outcomes, but the Eulerian technique is practiced more often.  

7.1 Application of continuum mechanics to deformable models 

The concept of deformable models has been directly inherited from geometrical designs through computer 

graphics. In computational modeling, it becomes necessary to depict handcrafted graphs as numerical data 

to generate mathematical algorithms to make the virtual motifs physically active. Deformable models are 

generally represented with curves and surfaces. In the past, curves and surfaces had been numerically 

defined by 2splines and patches when making engineering drawings. Over time these have been refined to 

 
2 Footnote: A spline curve is a piecewise polynomial formula to represent the shape of a mechanical spline. A hull (covering surface or frame of 

a body) is a deformed 3D structure bounded by several 2D squares or rectangular fasciae, called patches, and several of these patches put 
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develop 2D and 3D computer models for application in industry and medical imaging. The curves and 

surfaces are represented by a set of control points and movement of these control points iteratively move 

them to new positions, adding and removing, and altering their weights (parameters) mathematically are 

employed as active curves and surfaces(Gibson & Mirtich, 1997). The reason physics-based deformable 

models have been developed further is that they can be handled interactively and automated with 

reasonable expectations of an operator, which would be otherwise impractical to implement with 

geometrical techniques alone.  

Moreover, a computer model can be represented as a system of masses and springs in various 

configurations and deformed according to a mathematical algorithm. The linear springs follow well-

established Hooke’s law and masses as control points can be moved and tracked by choosing appropriate 

weights to animate the devised system. Human tissues are viscoelastic and anisotropic, which makes them 

nonlinear springs. But for image segmentation and further numerical analysis with tissues as homogeneous 

and isotropic adequacy of linear dynamic motion of control points as representative masses is considered 

acceptable and run-on Newton’s second law. Macroscopically continuum models of real objects are solids, 

and the computational models are discrete points and lines simulating the real objects. Therefore, the active 

motion of these elements as dynamic computer models when analyzed can only provide approximate 

simulation on a small discrete time scale with the help of iteratively run algorithms. They need to be 

parameterized to define initialization, driving vectors, velocity, and position of termination(Gibson & 

Mirtich, 1997). To have a near real approximation the model design must be given parameters based on 

prior understanding of the original object and its material properties must be taken into consideration. For 

stability the continuum mechanical model acted on by internal and external forces must reach a state of 

equilibrium by minimization of its potential energy. In the case of a deformable model, the work done is 

the sum of applied load on the control points, the force distributed on the surface in between the points, 

and gravity acting on the whole body of the system. The potential energy only reaches a minimum value 

when the material of the whole deformed system experiences zero displacements, becoming smooth again.  

7.2 Application of continuum mechanics to finite element methods  

In the case of continuous solids, the process of deformation causing displacement of material, its 

equilibrium state is solved by a continuous differential equation. Whereas in the case of the mass-spring 

model with discrete control points and lines forming a mesh of finite elements the state of equilibrium is at 

each node of the mesh. This leads to the concept of the finite element method, which divides/discretizes a 

solid object into a set of discrete finite elements, where a state of equilibrium upon deformation can be 

solved by the partial differential equation for each element with constraints applied as boundary conditions 

for given material properties(Bathe, 2006; Zienkiewicz et al., 2013). For finite element analysis the elements 

are variously shaped, and recently in the case of a 3D image in-situ voxels are used to represent the finite 

elements instead of embedding a mesh of elements in an object or simply a wireframe superficially to 

represent deformation and calculate the influence of internal and external forces.  

8.0 Concept of energy minimization  

Energy is an agency that actively sets an entity into motion, drives it ahead, and finally terminates its motion. 

In computer vision, all these steps are applied interactively to user-run deformable active curve, surface, 

and even three-dimensional volume models for processing a variety of images. In this respect, the energy 

 
together in continuity form hyper-patches, which are constructed with parametric curves known as Bezier curves and the complete fascia forms 
the Bezier surface. A collinear set of control points joined together form a linear curve and applying varying number of weights or application of 

force at each point, a desired non-linear curve can be formed. When the first and the last points of it are kept fixed then in-between control points 

embedded in the curve or surface can be manipulated to form a smooth non-linear curve is referred to as non-uniform rational basis-splines 
(NURB-Spline), which is an intuitively driven technique as part of computer-aided design engineering. 
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source can be internal to motivate the model and external originating from pixel intensities of the image. 

In engineering physics, the formulation and solution are solved for a system such that it achieves minimal 

energy to reach a stable state at the point of termination of the desired motion. In user-run experimental 

physical systems such as virtual reality, the energy is created by writing suitable algorithms based on 

principles of continuum mechanics to determine the motion of an active model with specified compulsory 

constraints to initiate and inhibit the activity. The energy parameters are frequently defined to match the 

prior knowledge of the goals to fit objectives of image registration and segmentation. Image energy is pixel 

intensities as the formulated data in Cartesian coordinates to represent the difference in intensities in x and 

y direction according to intensity gradient. It is the magnitude and directional change in intensity of grey-

level or colour in a digital image. This image property forms the basis of image processing to delineate 

edges to identify and classify various regions within panoramic view of multi-object multilayer radiographic 

images like the chest.     

In mathematical formulation conservation of energy may not be entirely viewed like in physics. When 

developing a mathematical algorithm internal (input) and external (output) energies or forces are 

approximated by providing modifiable quantities as parameters and constraints such that the process can 

be terminated as desired without loss or waste. In terms of geometrical optimization, it is assumed that in 

the given location it has minimum energy to attain a stable state in that spatial domain.  

9.0 Quantum mechanics in computer modeling  

Quantum mechanics is the behaviour of atoms and elementary particles on the basis that whenever radiant 

energy is transferred, the transfer occurs in pulsations or stages rather than continuously, and the amount 

of energy transferred during each stage is of a definite quantity. In computer vision processes, except for 

techniques like convolutional neural network (CNN), the available computational models are based on 

quantum mechanics, a force field, which is used to calculate the potential energy of a system of atoms or 

items (say pixels of an image) for dynamic simulation to guess the correct geometry. An iterative algorithm 

is applied, where the first force acting between atoms or items is calculated, and if this force is less than the 

supposed force then the calculation is terminated. Otherwise, more atoms are computed until the predicted 

force is reduced to less than the chosen threshold. Quantum mechanics can be used to calculate energy 

and the gradient of the potential energy surface for the position of the atoms or items in the given domain. 

The optimization (method to select the best element or combination of elements from the available 

solutions) algorithm can be applied theoretically to minimize the forces in methods like gradient descent 

as in image intensity gradient and potential energy of surface curvature.  

In the same way, the energy minimization concept has been applied to numerous image analyses and 

processes, particularly ones that are classified under active contour models, in the form of mathematical 

algorithms. In these cases, the virtual geometric model in the form of a curve, a surface, or a mesh during 

motion has higher internal energy when getting attracted towards the desired site under the influence of 

external energy derived from the image characteristics. When the energies approximate each other, the 

designed algorithm reaches the minimum energy the motion of the curve model is terminated, if the 

algorithm is idealized to the task.  

10.0 Heuristic and Metaheuristic 

The ability of human beings to know or learn by immediate perception and understanding of truths and 

facts without consideration to logic and reason, particularly in the case of a new instance is often referred 

to as intuition. It is this intuitive power that encourages human beings and animals to undertake a personal 

investigation of observed events to find the best possible solution. This kind of lateral thinking and 

developing collateral ideas can help understand most of the computer vision modeling techniques and how 

the mathematical formulations may be conceived and updated. This process of immediate acquisition of 
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potential knowledge and understanding of any problem to find a method to begin and construct the most 

reasonable solution without certainty forms the concept of heuristics (Gk Heuriskein - to find). A 

metaheuristic is a kind of heuristic beyond intuitive learning and observations to draw inferences. It is 

derived from biological phenomena such as best gene selection, which can be abstract and demanding for 

the optimization of engineering problems.  

In computer vision, heuristics do not guarantee optimal solutions, in fact, do not guarantee solutions at all. 

Heuristics can be applied to real or practical problems, whereas mathematical algorithms apply to abstract, 

theoretical problems ending in any number of satisfactory solutions(Romanycia & Pelletier, 1985). The 

heuristic approach taken after an exhaustive algorithm, in contrast, is supposed to deliver a guaranteed 

solution. The goal of modern heuristics in computer vision is to overcome the disadvantages of premature 

convergence to nearest local optima(Kokash, 2005). Metaheuristics often perform better through a random 

and thorough search and is a favoured method for generating solutions to many engineering 

problems(Yang, 2010) The list of metaheuristics is long and diverse(Luke, 2013). Heuristic and metaheuristic 

methods can handle a wide range of problems and explore large solution space but may still fail to provide 

optimal solutions.  

11.0 Digital imaging of the thorax (chest)  

The chest region is a collection of numerous soft tissue structures containing air in the respiratory tract and 

oesophagus; large blood vessels and heart filled with blood, and other small solid structures usually not 

appreciated on a plain radiograph unless calcified. The thoracic skeleton consists of twelve pairs of 

bilaterally arranged ribs, articulating with twelve thoracic vertebrae at the back and on the front with 

intervening costal cartilages are tied in the mid-line by a tie-board called sternum (Fig. 4). There are 

significant variations with change in posture, quiet and laboured breathing, differences among males and 

females, and age-related. All these variations occurring during respiration influence the relative position of 

the ribs and vertebral column during imaging of the thorax when it comes to marking salient control points 

on the dynamic skeletal elements for morphometry(Kenyon et al., 1991), and segmentation during the 

modeling process.  

 

A.                                                                                     B. 

Figure 4 – A. anterior to posterior and B. posterior to anterior oblique views of the thoracic skeleton. 
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Figure 5 – A posterior-anterior (top) and lateral (bottom) radiographic views of the chest. The images 

modified to highlight skeletal structures of the thorax. 

The multilayered complex chest anatomy of varying densities and constantly moving structures greatly 

influence the quality of the radiographic image. Unlike the film based x-ray plates, the digitally acquired 

images have much greater resolution and heterogeneous grey-level values of bones and soft tissues. Higher 

image resolution, variable texture, and grey-level relative to factual bone density permit interactive and 

automatic segmentation of the thoracic skeleton on plain radiographs possible. On CT imaging 

heterogeneous density of the ribs produce an intensity gradient range from 700 to 3000 Hounsfield 

Units(Candemir et al., 2016). However, due to the crowding effect of the ribs and overlapping soft tissues, 

the cumulative density of structures in the mediastinum and thoracic vertebral column in the same sagittal 

plane, the sternum on posterior-anterior view is almost completely concealed (Fig. 5).  
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Frequently, ribs below the 6th and 7th pair are poorly seen on a posterior-anterior view demanding an 

oblique view to visualize the whole radius of the lower ribs. A 15-20 degree right oblique posterior-anterior 

view shows a slightly warped eccentrically placed image of the sternum over the cardiac shadow, and its 

edge-on profile view on a lateral view may be used for radiographic morphometry and segmentation. 

Overlapping of structures in the image field tend to add ambiguity to grey-level values and intensity 

gradient when measured in Hounsfield units on plain radiographs. Whether the adjoining structures of 

higher radio-density affect the HU of lower density tissue remains unclear. There is no standardization of 

radiographic technique in routine clinical practice to match the posterior-anterior and lateral views of the 

chest x-rays for grey-level and intensity gradient-based registration of the images to reconstruct a 3D 

image. To exclusively acquire images of thoracic skeleton intrathoracic soft tissues can be subtracted with 

dual-energy subtraction x-ray but overlapping of ribs due to their oblique descent from posterior to anterior 

show false boundaries of the ribs, and poor location of anterior ends of the ribs due to lower bone 

density(Candemir et al., 2016) is further masked by soft tissue organs immediately under the diaphragm, 

which affect their true grey-level values.  

The quality of thoracic skeletal imaging may also be adversely influenced by thick subcutaneous adipose 

coat in cases of high BMI, and occlusion by large breasts. Alternatively, biplane electronic optical system 

(EOS) based digital plain radiographic scanner takes posterior-anterior and lateral views at the same time 

provide a 3D reconstruction of the thoracic skeleton of the chest falls short because costal cartilages and 

sternum are not included routinely(Bertrand et al., 2008). 3T and higher Tesla MRI imaging of the thorax is 

essential for building a complete articulated thoracic skeleton to include fascio-cutaneous and adipose 

layers, breasts, tendons, and muscles of the trunk acting on the ribs and the sternum, costal cartilages and 

articular cartilage, and joint capsules and ligaments if an ideal thoracic model must be constructed for 

realistic FE analysis and surgical application. Unfortunately, the image intensities of MRI do not relate to the 

tissue densities. Currently, building an ideal 3D image of the complete articulated thoracic skeleton from 

2D radiographs is an ambitious undertaking. 

12.0 Modeling processes in computer vision  

Virtual computer models are kind of analogies as digital (numerical) representations to include salient 

features essentially to analyze the problem in return for a reasonable solution close to reality. A simple and 

compact model of a 2D pattern of an object is called a template, and in medical image processing and 

analysis to accommodate variations in size and shape, multiple templates or atlases forming a training set 

is generated to make an average atlas for copying and editing a new patient-specific medical image by 

registration. To overcome the computational cost of checking against each atlas in the set one at a time the 

process can be automated to find the best fit(Sabuncu et al., 2009).  

In computer modeling, a deformable model is a virtual geometric entity or object whose shape can be 

changed iteratively based on heuristic knowledge from mathematics, physics, and engineering mechanics. 

These geometric entities are generally represented as curves, surfaces, blobs, solids, or even bio-mimetic 

machines. These deformable motifs are motivated and powered by mathematical principles of partial 

differential equations. The 2D and 3D dynamic models are frequently designed to operate in time-varying 

dimensions (4D). Mathematically, these entities are representative drawings (maps) of the computer models 

in space, and under applied force change from existing shape to a new shape (deformation).  

12.1 Control points  

The thought of control points and point distribution model is like pencil and paper games of dots and 

boxes, joining dots to make subjective contours represented in dots of 2D objects by having a priori 

knowledge. The control points pierced into a template like old-fashioned postage-stamp perforations are 

employed to customize the size by moving points in hand-crafts and sartorial practice.  
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In computer modeling, control points or landmarks are a collection of points that define the shape and 

salient features of an entity in an image or a geometric model to act as handles for manipulating the image 

dimensions during registration and segmentation. A shape defined by a set of a finite number of points 

distributed within static Cartesian co-ordinate space is termed point distribution model. Each of these points 

defining the shape is given a vector comprising x and y coordinates. These shape vectors are statistically 

computed to a mean shape. Several same shape medical image atlases of varying dimensions are converted 

to a single mean atlas and the shape variability is calculated by performing statistical shape analysis.  

12.2 Principal component analysis and Procrustes analysis  

Every shape has only a few defining features but for greater accuracy sometimes is represented by hundreds 

of control points depending on the size and complexity. To reduce the computational cost and data the 

reduction method used to perform statistical shape analysis is called Principal Component Analysis (PCA). 

It is a linear algebraic formulation that involves transformation matrices, finding Eigenvectors and 

Eigenvalues (Eigen from German means unique) by selecting important shape variables to produce the 

expected outcome. The approach to compare the shapes and scale them up or down the generalized 

Procrustes analysis is undertaken. The Procrustes (pro – in favour of + crusty, means a bad-tempered person 

with bad manners; and in a Greek legend, character Procrustes attacked travelers, who either stretched or 

cut off their legs to make them fit the length of his bed)(Gage Canadian Dictionary, 1983) analysis provides 

a measurement of the distance between superimposed two or more shape atlases annotated by control 

points to segment a new reference image.  

PCA is a dimensionality reduction process to select the most important variables and let go of the least 

important and calculate new independent variables which are representative of all the original variables 

(www.towardsdatascience.com). When performing PCA it is important to preserve salient features for 

accuracy to maintain proportions and achieve maximum possible compression of the data.  

12.3 Atlas in computer modeling 

An atlas can be a single illustration or collection of illustrations representing an image of a specific normal 

or pathological anatomy of a patient population. Within a given population there can be significant 

variations in the representative organ anatomy under study that would reflect in medical images as well. 

Initially, performing image analysis and segmentation requires the collection of parameters from hundreds 

of training images to include anatomical variations, to build an atlas of a prototype model to learn a specific 

anatomical region. However, to recruit and collect a large population-based data is not only expensive but 

also a major time-consuming laborious step. The image of a new patient can be segmented by employing 

only a single atlas model; however, the multiple atlas approach provides much higher accuracy(Aljabar et 

al., 2009).  

12.4 Geometry and graphics in computer modeling 

In computer graphics, 3D modeling is a mathematical process to represent the surfaces of an object. The 

created 3D model of ROI is a representation of a physical entity with identifiable edges and boundaries 

within an image containing multiple entities. Solid models are employed for higher medical image analysis 

as they represent the volume of an object like a solid cube rather than a shell model akin to a box with 

corners, edges, and surfaces only. In 3D space, the edges can be a collection of points or dots connected 

by geometric primitives such as triangles and squares to form polygons. Vertices or corners are points where 

three or more edges meet in 3D space, and if each included polygon has a face, then the collection of 

connected polygons forms an element. The elements can be a collection of triangles, squares, hexagons, 

etc. Many numerical analyses are performed on meshes made up of a variety of polygons overlaid on the 

region-of-interest or the whole image. One such construction of polygon mesh for analysis is called the 
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finite element method in engineering. The points at the vertices of the mesh acting as control points (nodes) 

may be used for manipulating the underlying enclosed image entity to modify its geometry. 

12.5 Parametric modeling 

A parametric model is created from already known facts as a priori knowledge of an entity or object. 

Parameters are set of quantities as one or more independent variables, and parametric equations are 

commonly used to express the coordinates of the points that make up a geometric entity. In computer 

modeling techniques, the freedom to change parameters help interactively modify specifications of a model 

by the user to update dimensions for customization. The knowledge of regional human anatomy of interest 

is the ultimate source of a priori knowledge when it comes to segregating ROI in computer vision 

applications. Manual segmentation performed by an expert to develop a training prototype atlas from a 

given radiology image furnishes ground truth to validate the results of computer-generated segmentation. 

In mechanical engineering for constructing a computer-aided design, the parametric term is used to 

describe the change in the shape of 2D or 3D shell or solid model geometry by altering the values of the 

dimensions. Numerous open accesses and expensive for sale mechanical CAD software such as Solid 

works®, Inventor®, CATIA®, Mat lab®, etc. are available for parametric computer modeling. 

13.0 Classification of computer modeling techniques 

Almost all available medical image recording modalities deliver grey-level digital images consisting of pixels 

or voxels. Each of these micro-size elements has 8 or 16 bits, displaying 256 (28) or 65,536 (216) grey tones. 

Under natural ambient light, the human visual system can easily discriminate approximately 200 grey-level 

shades or tones(Barten, 1992). Therefore, even the liquid crystal display units with 8-bit pixels are adequate 

for viewing most digital medical images. With this minimum degree of image resolution, it is practically 

possible for a trained anatomist, radiologist, surgeon, or pathologist to manually segment a region of 

interest with suitable computer equipment. There is a significant degree of variability of intensity gradient, 

grey-level value, image texture due to image heterogeneity, the spatial organization of the tissues in the 

ROI and spatial-temporal (time lag as the 4th dimension) when it comes to follow-up a disease evolution 

to plan treatment. For these reasons the computer vision community engaged in medical image processing 

has put enormous effort to develop numerous algebraic, geometric, heuristic, and meta-heuristic variety of 

segmentation algorithms to run the process interactively and automatically. To mitigate the deficiencies of 

the antecedent algorithms to fulfill a specific kind of need for analysis of medical images and, other 

computer vision images. However, each newer algorithm is delivered with new limitations of its own, which 

has led to the expansion of the classification system.  

A classification system makes the process of decision-making tasks easier whether it is to better define 

patient-specific regional anatomy or description of disease pathology from a variety of tissues in an image 

for patient-appropriate management. In an image, the same type of normal tissue such as fibrous, glandular, 

muscles, bones, etc. can be expected to have similar intensity distribution giving it self-segregating texture 

unless there are pathological changes in the region-of-interest.  

In clinical practice, it is not a simple matter to define normal anatomy in a large busy radiographic image 

like that of the thorax with layers of structures. In this regard, the task of selecting the best segmentation 

technique from among the many is even more engaging to locate a pathological lesion. The importance of 

image processing lies in labeling diseased tissues reflected as pixel/voxel intensity values in two- and three-

dimensional modes of medical image for segmentation for further analysis. Therefore, varying pixel 

intensity, scattered noise, and textures in the image domain play a significant role when it comes to 

classifying and developing segmentation techniques. A simple way to classify and label ROI in an image 

would be to apply grey-level scale and intensity histogram for thresholding, detection of edges, and texture 

recognition in each region. Unfortunately, there remain many imperfections particularly when it comes to 
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studying the extremely variable and heterogeneous nature of medical images with the scope to develop 

newer techniques in the future.  

Here, a simplified yet practical classification of computer-based modeling techniques presented, although 

limited to the present task it may be valuable in many other ways (Table 1). 

Table 1- A limited structural and functional classification of computer-based models. 

A. Grey-level scale and 

intensity-based techniques 

a. Thresholding, edge 

detection, fractal dimension, 

region-based, clustering etc. 

B. Rigid models 

a. Image matching techniques 

b. Atlas-based templates 

C. Free form 

models 

a. Free form 

deformable models 

b. Extended free 

form deformable models 

c. Free form 

templates –rubber masks, 

spring-loaded models 

D. Deformable (intensity 

gradient and energy 

minimization) models 

a. Parametric models 

b. Non-parametric models 

E. Parametric models 

a. Active contour models – Snakes, 

adaptable snake, topologically adaptive 

snake, gradient vector flow snake, 

inertial snake algorithm, snake growing 

algorithm, directional snake algorithm, 

balloons, intelligent balloons, 3D 

morphable model, 3D surface meshes, 

fire propagation algorithm etc. 

b. Statistical shape models -  

                Active shape models,  

                Active appearance    models               

c. Others – Grow and cut 

techniques, edge flow, live-wire, fuzzy 

transformation and connectedness, 

Fourier transformation etc. 

F. Non-parametric 

models 

a. Level set curve 

and surface evolution 

methods – Level set 

method, geometric 

method, geodesic 

method 

b. Atlas-based 

method, watershed 

method, graph-cut 

techniques 

 

G. Metaheuristic 

segmentation and 

optimization algorithms   

a. Deep learning Artificial 

neural network – fully 

convolutional neural network, U-

Net, V-Net, Generative 

adversarial Network, Projective 

adversarial Network. 

b. Genetic algorithm and 

numerous other algorithms 

 

H. Bio-mimetic models 

a. Deformable organisms – with or 

without artificial intelligence 

 

I. 3D solid 

modeling  

a. Parametric and 

geometric models, 

multilayer parametric 

solid modeling 
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14.0 Methods for computer modeling 

A computer-aided model is a virtual representation of a known object and its variations with or without 

added constraints by the user help to define significant features of its shape to remain true to the anatomy 

of the structure. Segmentation of normal and pathological anatomy helps to have a greater understanding 

of disease evolution. In case there is a need for biomechanical evaluation of solid weight bearing anatomical 

structures then the choice of physical properties such as anisotropy, elastic modulus, and similarity of 

material distribution of the model should match in-vivo biological properties to allow the form and shape 

of the model to respond congruously under applied loads. Unlike solid engineering materials, the 

deformation of biological materials can be highly unpredictable depending on material distribution and 

anatomical shape. This is true as the shape and material distribution of diseased structure changes so does 

its response to applied loads. In other instances, during follow-up of soft tissue pathology, there are 

morphologic and morphometric changes in the anatomy and appearance of tissues in acquired radiology 

images. Therefore, to establish computer-aided modeling of medical images, in a busy medical practice, it 

becomes important to have the collaboration of a clinical biomechanical engineering team to undertake 

the process of registration and segmentation of temporal shape for higher analysis and timely therapeutic 

intervention.   

To achieve such goals what follows is a selection of the most common computer modeling techniques that 

have been applied to medical image processing and analysis. It is not exhaustive in terms of the amount of 

literature currently available on the subject. To keep it simple for basic understanding and within the 

framework of the study objectives, none of the techniques are supported by mathematical algorithms.    

14.1 Edge detection and edge detectors 

An image is a collection of specific and non-specific segments representing various features interrelated to 

each other functionally. The term edge means a set of points that distinguishes between the adjacent class 

of regions and feature-based variable segments that can be organized by curved lines(Marr & Hildreth, 

1980). As the main objective of segmentation is to segregate a ROI the process of edge detection is the first 

and foremost tool to split a digital image to discriminate various zones and extract features of importance. 

They can be usually differentiated by their relative intensities and textures, separated by a set of featureless 

pixels that act as discontinuity without occluding the edge features of adjoining segments or territories. 

Presuming that the structural tissue of the given anatomy is homogeneous and of the same class, then the 

image intensity gradient can be expected to be the same as well. In that case, the region-of-interest (ROI) 

act as foreground, and adjacent territories of the image with relatively different grey-level scale and intensity 

act as the background to help detect its edge. At the edge, there is an abrupt change in pixel intensity to a 

higher value. The objective is to seek and identify a very precise narrow band of pixels with predefined 

brightness (threshold) that sharply marks the limits of the region. Each adjacent region would have its 

limiting edge and in-between any two edges of well-defined regions lay the boundary contour.  

Automatic edge detection using differential operators is often performed by applying two-dimensional 

convoluting kernels or filters to the image for segmentation as an image pre-processing step. The operators 

can be configured to search vertical, horizontal, or diagonal edges(Senthilkumaran & Rajesh, 2009).  

The first-order linear operators are Sobel, Prewitt, and Roberts (Fig. 6). The non-linear second-order 

operators are Laplacian, Kirsch, and Wallis. The Sobel is a discrete differential operator that calculates image 

luminance by considering intensity gradient. The Sobel operator filter consists of two sets of 3 X 3 matrices, 

which are horizontal and vertical in x and y coordinates, plotted in the plane of the image (overlying the 

image) to align and approximate to each pixel of the image to estimate the intensity gradient.  
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Figure 6 – First and second derivative operators – Prewitt, Sobel, Roberts and Laplacian masks. 

The second derivative Laplacian operator is good at finding the fine details in an image and is applicable 

when the edge needs to be detected regardless of the difference in pixel grey-level values around 

it(Haddon, 1988). The Laplacian filter kernels are omnidirectional and extract edge information in all 

directions. If the sum of all convolved values is equal to zero, the filter kernel reveals all image areas having 

significant brightness, making it an isotropic operator. The Laplacian operator responds strongly to isolated 

pixels than edge line pixels making it very sensitive to noise and less effective in case the image is very 

noisy. Therefore, in the presence of noise, the Laplacian operator undergoes a low pass filtering step by 

applying a Gaussian filter as a preliminary step. This two-step process is named Laplacian of Gaussian 

operation(Mendoza, F. & Lu, 2015). 

Another popular edge detection algorithm is the Canny edge detector(Canny, 1986). The algorithm begins 

with a Gaussian filter to smooth the image for noise reduction, followed by a computation of intensity 

gradient magnitude like the Sobel operator. In the next iteration, a step called non-maximum suppression 

is applied to remove pixels that are not part of the edge. Finally, the previously set upper and lower 

threshold is applied to select relevant edge pixels. The pixels below the lower threshold are discarded and 

one greater than the higher threshold marks the edge. The pixels in-between the two thresholds only one 

with the highest value closer to the upper threshold are considered for inclusion to strengthen the edge. 

The Sobel operator can detect edges reasonably well following edge orientations, while the Canny edge 

detector after removal of noise with enhanced signal to noise ratio can deliver a one-pixel wide edge in the 

output image.  

In medical images, the edges are not always uniformly connected showing an objective boundary, which is 

a low intensity very narrow belt between edges of two adjacent regions. Medical images of pathological 

lesions are more like irregular coastlines rather than smooth coasts. Therefore, to state that the marked 

functional and anatomical boundary contour of the ROI is the differentiating threshold for surgical planning 

is never a trivial undertaking, particularly when a malignant tumour in the image is ROI for segmentation. 

Considering fewer effective results of the edge detection techniques, they have become important only as 

a pre-processing step to more recently developed more sophisticated techniques for improved 

segmentation. 

14.2 Thresholding  

In computer modeling, the process of separating two or more regions based on variable intensity and/or 

texture is called thresholding. The foreground as a ROI can be easily isolated by setting upper and lower 

limits (histogram graph valley as minima and peak as maxima) by suitably dividing the peaks of the image 

histogram at the depth of the valley, which divides the whole image into foreground and background 

bearing similar value pixels (global thresholding). Although grey-level thresholding appears simple but to 
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select multiple correct thresholds for a heterogeneous medical image can be less than optimum for 

complete segmentation, more so if the image quality is marred by a low signal-to-noise ratio. In a 

multimodal image of numerous grey levels of low peaks, several intermediate peaks, and high peaks, 

generally, the upper threshold is used to initiate the marking of an edge, pixel by pixel.  

In an ideal bimodal image, the threshold is selected at the bottom of the valley of the histogram to represent 

foreground and background(Prewitt & Mendelsohn, 1966). It is often difficult to select the threshold when 

the valley is flat and broad, the image is noisy, and peaks are of uneven heights. The remedy in such cases 

for selecting threshold the Otsu algorithm is preferred(Otsu, 1979). It is a non-parametric and unsupervised 

method, which selects an optimal threshold automatically but requires prior information about the ROI. It 

is based on the local minima property and the global property of the histogram. The selected threshold 

creates a binary image from grey-level pixel values. All pixels below and above the threshold value are 

respectively assigned zero and one value. Otsu method uses exhaustive search to evaluate the criteria for 

maximizing the variance between pixels above and below the threshold. In the case of medical images with 

multimodal threshold, the Otsu method takes a much longer time to select multilevel threshold(Sahoo et 

al., 1988). To improve upon the Otsu method, it is combined with other approaches. One such strategy is 

to combine with the K-means algorithm as both are based on criteria of minimizing within-class variance. 

The Otsu algorithm operates on global thresholding and K-means on local thresholding. Application of 

grey-level histogram is a preliminary step to the Otsu algorithm and applied in conjunction with K-means 

for enhanced segmentation(Vala & Baxi, 2013).  

Very often the edges are enhanced by convolving the image gradient to produce a new edge. The 

convolution process involves implementing a filter/kernel to the original image domain in each direction. 

There are several such filters to emphasize the edges. However, a lack of standardization of image collection 

by different image modalities and inconsistent image intensity gradient can prevent precision, cause the 

failure of registration and segmentation algorithms to match time lag follow-up scenarios in the same 

patient, and during comparative clinical studies for higher analysis. 

14.2.1 Fractal dimension-based edge detection and thresholding 

The concept of fractals and fractal dimension was conceived by Mandelbrot in 1982(Benoit B. Mandelbrot, 

1984) to characterize complex irregular objects in nature.  The hierarchy of human body tissues arranged in 

complex fractals reflected in the heterogeneity of medical images with irregular structures is difficult to 

analyze with Euclidian geometry, however, it lends well to fractal mathematics for image 

segmentation(Vuduc & 634, 1997).  The box-counting technique (counting overlying grid-squares) is used 

to measure the fractal dimension of medical images based on a finite set of pixel data(Alan I. Penn, 1996) 

and develop algorithms for medical image analysis. The equation for calculating fractal dimension (Fd) of 

2D geometric shapes is expressed as Fd = Log(n) / Log(m), where n is the number of units and m is the 

magnification factor. 

Fundamentally, it is a matter of grouping together elements of similar fractal dimensions to mark out the 

edges segregating ROI as a thresholding and edge detection tool. Recently, with the availability of FracLac© 

box-counting software application for assessing complex patterns, its role had been further exploited for 

computational image processing to study the progression of malignant tissue histology(da Silva et al., 2021) 

and high resolution MRI images containing(Marusina et al., 2017) atypical focal lesions. 

14.3 Active contour models  

Currently, there are numerous classes and algorithms of deformable models utilized for image 

segmentation by defining the region and/or edge detection to delineate boundary contour. Edge detection 

segmentation techniques based on thresholding and local filters provide irregular and frequently 

incomplete segmentation, particularly if the image is noisy. The search into the development of dynamic 
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deformable models started in the early 1980s to advance the state of computer vision from free-form 

deformable models and template-based shape-matching performed by correlation of intensities in the 

spatial domain and feature space. The free form deformable, and matching template atlas had limited 

dynamic variability to meet the demands of highly versatile dynamic changes occurring in the medical 

images within any given population and time-lag follow-up in the same patient. Hence, deformable active 

contour models evoked greater attention for medical image segmentation and higher analysis. The main 

thought behind dynamic deformable models is that they can be operated based on prior knowledge of the 

imaging anatomy and ROI, with or without predefined parameters to run and deform one-, two-, and three-

dimensional models by constructing time-dependent suitable algorithms explicitly and implicitly to match 

the shape of a known object boundary contour. The model is called active because it can adopt and follow 

the given set of data with constraints, and the ability to react to laws of physics in response to image 

properties.  

The active contour models are based on the principle of unification of physical laws and optimization 

theory(McInerney & Terzopoulos, 1996). An active contour model is usually represented by an arbitrary 

geometric curve-shaped body (a spline) that can alter its shape in space and over time, guided by the image 

properties and imposed constraints. The curve model acts and behaves like an elastic energy string to 

represent its internal parameters and each point on it moves in conjunction with each other when deformed 

by an applied force. The curve behaves within its constraints to conform to a new shape and is optimized 

according to image energy (intensity gradient) as the external parameters. At a point of energy equilibrium 

state, the curve model delineates the boundary contour of a ROI. The system achieves an equilibrium state 

when internal elastic properties of the curve model balance with external image intensity gradient as its 

external energy. Most of the active contour algorithm consists of three phases – a suitable initialization site 

of the curve in relation to boundary contour of the ROI, progressive deformation of the curve by the leading 

control points to energy minimization site and termination criteria to cease at the edge, converging to zero 

and phase out. The number of iterations required is set by segmenting operator according to size and shape 

of ROI.  Fundamentally, a whole variety of these interactive models best operate based on prior knowledge 

of the anatomical space and topology, edge pixel intensity and image intensity gradient, local and global 

spatial information, to motivate the curve with user-dependent parameters.  

For better understanding, it is important to learn that line is a one-dimensional geometric shape whose 

course can be defined by an equation on a graph representing statistical data. The term curve here refers 

to the active computer model and contour is a line that represents the edge or boundary of a structure, an 

object, or a region to segregate it from the rest of the image.  

14.3.1 Snakes  

The pioneering ‘Snakes’ algorithm introduced in 1988 is an energy minimizing spline guided by internal and 

external forces to detect lines, edges, and even subjective contours(Kass et al., 1988) to approach human 

visual perception to segment ROI. ‘Snakes’ has its roots in autonomous energy minimization 

models(Sperling, 1970) and shares the concept of deformable rubber mask templates(Widrow, 1973a, 

1973b), to develop an interactive technique and guide the model to a local minimum as a point of energy 

equilibrium state. The basic ‘Snakes’ model behavior depends on internal spline forces (elasticity and 

rigidity), which makes it act like a membrane and a thin plate, making it a controlled continuity 

spline(Terzopoulos, 1986). The spline is motivated by the external energy of image intensity gradient and 

applied constraint forces. Adjusting the weights of stretching (membrane behaviour) and bending (thin 

plate behaviour) of the spline controls its active behaviour to provide smoothness and regular outline to 

conform it to the boundary contour at the final moment of energy minimization.  

 



International Journal of Computers  and Technology   Vol 22 (2022) ISSN: 2277-3061     https://rajpub.com/index.php/ijct 

 
 

21 

 

Figure 7 – Illustration showing propagation of an active curve (chartreus green with red control points) 

within a region-of interest towards its edge (indigo) within the boundary contour (dark blue) separating it 

from the edge (dark green) of an adjoining region. Arrows shows direction of progression of the curve. 

The total energy of the parametric ‘Snakes’ spline curve is sum of internal energy at a specific point in space 

of arc length plus image energy at a specific point of the arc length in space plus energy constraint at a 

specific point in space and its distance from the specified edge (Fig. 7). The curve tends to get attracted to 

the brighter intensity of the closest lines and edges depending on its constraints and gets pulled to 

terminate only at points of energy minimization. The minimum local potential energy of the curve is 

equivalent to the maximum local intensity gradient of the image at the edge of desired boundary contour. 

The ‘Snakes’ algorithm iteratively by discretization of Euler-Lagrangian equation into sub-equations intends 

to reach equilibrium state so that curve energy is equal to image energy as its terminating criterion. In these 

time-dependent discretization iterations if time duration is longer than the matched traveled distance, say 

from one pixel to the next then the curve can transgress the intended edge resulting in unstable boundary 

contour. Therefore, the algorithm parameters are set to align with a high-intensity gradient so that the edge 

of the required segmentation region after necessary iterations ultimately marks the boundary contour.  

It is sensitive to noise and due to lack of gradient in the depth of concavities prevents its convergence to 

delineate such boundary contours. The algorithm fails to handle the heterogeneity of the image gradient 

which represents the variable topology of all medical images, and it also requires recurrent additional 

parameters with changes in image geometry. It is these limitations and increasing demand for medical 

image analysis and processing, which have given a tremendous impetus to the computer vision community 

to make necessary modifications to already ingenious ‘Snakes’ and develop further new ideas. Most of the 

modifications within physics of energy minimization are at the level of image spatial domain, higher 

dimensional model geometry and energy terms; and non-parameterization of the model to reduce the 

number of iterations.  

14.3.2 Balloon ‘Snakes’  

Balloon ‘Snakes’ curve(Cohen, 1991) is an extension of primordial ‘Snakes’ discussed above. Balloon ‘Snakes’ 

was devised to overcome freezing of the ‘Snakes’ at local minimum image energy in presence of noise and 

homogeneous image intensity gradient. In this algorithm, a new energy functional term called balloon force 

or pressure is added to the primordial ‘Snakes’ that controls the amplitude and direction of the balloon 

curve. The control points of the balloon curve have positive and negative signs, which respectively inflates 
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or deflates the active curve depending on the magnitude of balloon force to overcome noise and react to 

gradient potential referred to as distance potential force to increase capture range and refrain from leaking 

through weak edges. Balloon models operate better when edges are strong, or the image had been pre-

processed by applying an edge detector filter. Balloons fail to recognize subjective contours and inflate 

beyond the expected boundary contour and may overshoot missing edges.  

14.3.3 Intelligent balloon  

The algorithm of the deformable intelligent balloon model is interactive, and it also operates on the energy 

minimization principle, with prior knowledge of the structure due for segmentation(Duan & Qin, 2001). The 

highlight of this balloon is that it can simultaneously recover both arbitrary shape geometry and changing 

topology. The algorithm begins simply with interactive seed implantation, which then begins to deform the 

model and grow towards the edge according to modeled dataset. Another significant feature of the 

algorithm is that it adaptively subdivides the model geometry locally and globally during deformation and 

automatically detects self-collision. It is because of this self-collision recognition the model evolves correctly 

to modify following the image topology and mark the boundary contour. Combination with mature 

polygonal mesh optimization techniques makes the process of intelligent balloon effective to generate 

good quality segmented regional topology.  

14.3.4 Level set methods  

The level set technique came to be introduced into image segmentation to resolve the issue of segmenting 

an image with variable topology by applying an active curve or a surface. The curve or the surface is 

activated and updated at each time step by forces derived from the image intensity. The level set method 

was developed to describe the front propagation to model ocean waves and burning flames(Osher & 

Sethian, 1988) based on Hamilton-Jacobi formulations. And later it was applied to medical image 

processing. The construction of the technique is simple, where a virtual model of curve or curve embedded 

in a 2D or 3D surface is laid over and above the image plane, generally referred to as hyper-surface. The 

‘Snakes’ algorithm advances the curve perpendicular to the control points explicitly with the knowledge 

where the front would terminate. Upon meeting sharp corners, concavities, and  

 

Figure 8 – Illustration of honey dippers, A. showing multiple zero level set planes along the path as honey 

flows from top to the bottom of the dipper over its variable shape and dimensions; B. demonstrating part 

segmentation (white outline) of honey dipper elements as the level set plane/hypersurface progresses over 

its varying topology. 
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changing topology, the orientation and number of control points of the evolving front must be re-

parametrized interactively to keep the distance between the points smaller and smooth, which makes the 

process unmanageable(Sethian, 1985). Further to help the evolving curve or surface continuously flow and 

mark the edges of changing topology it must split, and merge frequently as required(Malladi et al., 1995).  

To simplify, imagine when a large blob of honey flows under the force of gravity on two adjacent objects, 

for example around the shape of a honey dipper, it is perturbed at the interface and splits upon meeting 

the obstruction (Fig. 8). After marking the outer boundary contour of the first object the residual blob soon 

merges and continues to evolve and move under the same force of gravity to mark out the boundary of the 

next object. With the unchanging force of gravity, the continuous flow of honey with the constant speed on 

the changing topology of the honey dipper demonstrates the fundamental concept of the time-dependent 

implicit definition of front propagation. Similarly, in each level set state, the value is zero at any time during 

propagation or progressive motion of the curve or surface front with a constant speed. When the zero-

thickness hypersurface is not engaged, its speed term at time zero is <0. At the interface, it is set to move 

at the speed term equal to zero and as it propagates it is >0. Each time the propagating surface or curve 

meets a new obstacle formed by the changing regional topology it is stopped in its path and reset to zero 

at each passing time step. The whole process is reiterated between these values. The force is high/positive 

inside the ROI and low at the high-intensity gradient at the edge, stopping the curve to define the boundary 

contour. The direction of the moving front is always normal (perpendicular) to mark out the boundary 

contour evenly rather than lopsided.  

Although this active contour model for flexible topology does not require prior knowledge of object shape 

knowledge of image anatomy can be useful to introduce repelling force to prevent curve leakages at the 

edges of the region-of-interest.  

The initial curve can be placed anywhere in the plane of an image. The embedded curve is programmed to 

search the boundary of the ROI either by propagating inward or outward in the normal direction. After 

initialization, the algorithm is automatic except to vary the smoothness of the curve to match the boundary 

contour. Despite its ability to manage segmentation of variable shapes and textures in the image, the level 

set technique has difficulty fully segmenting an edge with deep concave irregularities. This may be resolved 

by having an extrinsic and an intrinsic level set curve to define the boundary contour and the edge can be 

made stronger by combining the level set approach with an edge detector(Shah, 1996).  

14.3.5 Gradient vector flow for ‘Snakes’  

There had been several modifications to overcome the difficulties of curve initialization and propagation 

into the concavities by making changes either to the forces related to the curve or the image properties. 

One such example is pressure force to inflate and deflate the curve as a balloon to push the curve towards 

the boundary contour faster and into the concavities of the edges. Too much force can cause trespassing 

of the curve through areas of low-intensity gradient edges at the boundary. Alternatively, the propagation 

of the curve may be influenced by increasing the image-based potential forces, such as introducing dense 

vector fields called gradient vector fields (GVF)(Xu & Prince, 1997). In this technique, the energy 

minimization is achieved by solving linear partial equations which diffuse the gradient vectors of a grey-

level edge map computed from the image. The active curve run on the concept of gradient vector field 

algorithm is called gradient vector field snakes. As a result, the GVF snakes can be initialized further away 

from the boundary contour of the ROI, and progress into a concave boundary contour. At least, it tends to 

resolve the issues of curve initialization and effectively intrude into narrow and deep spaces to mark concave 

boundary contour.  
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The formulation of the GVF field vector is such that it directs the Snake normal to the edges, varies uniformly 

across homogeneous regions of an image, has large magnitude only when close to the edges, and forces 

the Snake into the concavity instead split to skip across the aperture of the concavity. The generalized 

diffusion equations of applied physics are employed and solved by discretization and iteration to “fill in” 

the concave boundary missed by the original ‘Snakes’ formulation(Xu & Prince, 1997). GVF snake can be 

initialized inside or outside the boundary contour for segmentation and does not require prior knowledge 

of image structure. If the balloon model bulges through rents in the edges, then the GVF snake misses sharp 

corners by forming round outlines due to its chosen regularization internal forces resulting in a less-than-

optimal edge map.  

Like other parametric and geometric active contour models, the GVF snake too fails to automatically handle 

variable topology in an image(Li et al., 2005).       

14.3.6. Chan-Vese active contour model  

The Chan-Vese model based on the combination of a piecewise smoothing and termination criterion of an 

edge defining algorithm(Mumford & Shah, 1989)  and zero level-set terms is energy minimizing active 

contour algorithm(Chan & Vese, 1999) independent of edge gradient function developed to segment very 

noisy or smooth edges of a ROI that marks both internal and external boundary contours.   

The Chan-Vese active contour model algorithm directs a closed curve to effectively define the edges. It can 

be initialized either endogenous or exogenous to the ROI. It is provided with two constants during its 

evolution, each representing the averages of the image intensity gradient “inside” and “outside” the 

boundary contour. The endogenous area belongs to the ROI to be segmented. The algorithm is formed by 

“fitting energy” with two terms, one for inside and the other outside the edge. Boundary contour 

characteristics minimize the “fitting energy”. If the curve goes outside, it means that the energy is >0 and 

vice-versa depending on whether the curve is endogenous or exogenous at initialization. The “fitting 

energy” will be minimized if the inside and outside intensities are more or less than zero. The “fitting energy” 

is minimized only in case the curve is on the boundary contour of the ROI. To make it robust, the curve is 

given additional regularizing terms, such as length of the curve and area of ROI within the boundary contour. 

The model algorithm segments ROI by simultaneously recognizing the intensity variations within and 

outside it. Thus, it can define boundary contours without edge gradient function, appreciating not the only 

smooth edge but even discrete points forming an edge. It is sensitive irrespective of the site of initialization 

and automatically detects the internal edge of a torus (doughnut shape). The curve length term scales to 

match the journey around the edges of the ROI and responds automatically to the change in topology as 

well.  

14.3.7 Edge-flow technique  

In a medical image with multiple objects as region-of-interests, there are numerous edges to segment each 

region. However, as the images are heterogeneous each region can be expected to have a different texture 

and pixel grey-level values flowing towards its edge (edge-flow) and each of the higher intensity edges, 

therefore, has a distinct intensity gradient. The edge-flow technique algorithm(Ma & Manjunath, 2000) is 

an iterative edge flow vector propagation following the texture and grey-level scale for the detection of 

boundary contour of a region-of-interest in image segmentation.  

This technique too is based on an energy minimization algorithm, model parameters, and image properties. 

Like pixels, the edge-flow in the image feature domain texture elements (Texels) are defined by computed 

parameters depending on the heterogeneity of the pattern, size of the region, and probable regional 

boundaries. It is the change in local pixel and texture information that propagates the edge-flow energy. 

The flow of intensity gradient due to phase difference between neighbouring regions is opposite to each 

other upon reaching the edges as a point of zero crossing that defines the boundary contour, segmenting 
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the two regions. Energy is required to help the flow forward depending on the pixel grey-level scale, texture 

scale, and intensity gradient across the boundary contour.  

The Edge-flow vector is equal to its flow energy (distance × forward direction). Between two or more 

neighbouring regions there is a bidirectional edge flow vector, forward and backward in each region, and 

based on computed probabilities the flows are directed to find the nearest edge following directions of 

intensity gradient. At each pixel, local edge-flow energy estimates its flow direction, and it is propagated 

iteratively in opposite directions towards edges of adjacent regions. The energy is minimized at the zero-

crossing of phase difference and upon reaching a stable state indicates the probable boundary between 

two edge pixels. The sum of the flow energy on either side is the boundary energy. Wherever the direction 

of the edge flow vector is similar propagating towards the periphery those locations are included in the 

local region. It is only when two opposing edge signals of the flow vector are detected the boundary is 

defined. A region merging algorithm is finally applied to fuse similar neighbouring regions to segment 

multiple regions of interest. 

15.0 Statistical shape model   

Human vision can expertly reveal subjective contours and recognize patterns representing a specific class 

of objects when marked in dots having priori knowledge. Like human faces, many human anatomical organs 

and the collection of cells forming a specific tissue tend to have some similarity and an average shape. The 

outline of these organs and structures has definable edges, which can be region-of-interest in an image for 

further examination. Technically, the shape is a property of an object which does not change during the 

registration process of translation, rotation, and scaling in size. When several examples of similar shapes are 

available a mean shape can be derived by applying statistical analysis(Cootes et al., 1992). The outline of 

the shape in a set of these examples called training sets can easily be marked manually by marking points 

or dots on the edges and salient surface features. This basic art concept and ‘Snakes’ to deform the 

connected point annotations is the basis of what has been described as statistical   

 

A. 
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B. 

Figure 9 – A. - A point cloud of undersurface of the liver showing various lobes, impressions of nearby 

organs, including gall bladder and inferior vena cava; B. - a point distribution model of an oak leaf in red, 

its central and peripheral veins in green and that of Sternal buckle-G (IP of the author) in blue dots placed 

between leaflets/ribs. 

shape modeling (SSM) technique(Cootes et al., 1992). Thus, SSM is a technique to construct the mean shape 

(an atlas or prototype) of a specific class of object or ROI in an image from several modes or variations as 

examples or training samples of an anatomical structure.  

A pre-requisite to construct a mean statistical model from a series of 2D shape examples in a training set is 

that all the annotated points on the shape examples are located at the same corresponding positions of 

salient features. The cloud of all the points representing the whole image or a region-of-interest called point 

distribution model (PDM) is the active shape model (ASM)(Cootes et al., 1995) (Figure 9). When the statistical 

shape model encompasses the surface features (texture) by incorporating the grey-level intensity 

information it is called active appearance model (AAM)(Cootes et al., 1998; Cootes & Taylor, 2002; Timothy 

F. Cootes, Gareth J. Edwards, 2001), which increases the strength of this technique. When the positions of 

relevant anatomical point annotations that describe the frame of ROI are analyzed they construct a mean 

statistical shape model. A computer program is generally developed to automatically perform this tedious 

and time-consuming task of building PDM as a few dozens to hundreds of examples may have to be 

produced to generate a mean statistical shape model. The cloud of a point distribution model can be denser 

in 3D images for segmenting ROI for surgical application.  

Where there are significant variations in shapes (modes) among the examples of the training set, at the time 

of registration the training set is further computed to scale all the samples to minimize the differences by 

applying generalized Procrustes analysis(Gower, 1975). Generalized Procrustes analysis iteratively aligns, 

scales, and reorient the whole training set to develop the mean statistical shape by minimizing the sum of 

squared distances between corresponding points to fit all the included examples.  
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Another issue with the PDM of a very dense and variable cloud pattern is to somehow select the most 

important shape vectors to compute the largest variance. This is achieved by applying Principal Component 

Analysis (PCA)(Jolliffe, 2002). Based on the normal bell curve the first 25 percent principal components have 

68.5% of the variance (one standard deviation) and the first 100 have 90.1% of the information. The PCA 

reduces the number of variables in the mean shape and still represents almost the same boundary contour 

of the ROI. To build a quality statistical mean shape model maximum number of annotation points, mode 

variations in the ROI and most relevant pixels at the edge are included to increase the precision, particularly 

when segmenting a malignant lesion for surgical intervention.  

ASM reconstruction is simple and fast but less robust in managing a new image with extreme variations in 

texture and irregular boundary of a malignant mass. When both ASM and AAM models are combined they 

have a greater range of parameters for statistical analysis and accuracy to mark out the boundary contour. 

However, if the difference between the mean shape and the new image under study differs significantly 

there will be a loss of outlying points because of Procrustes and Principal Component analyses reducing 

the quality of the image segmentation(Heimann & Meinzer, 2009).  

SSM technique is suitable for image processing of stable hard tissue anatomy and introduction of automatic 

annotation of points for modeling 3D image segmentation has popularized the technique(Heimann & 

Meinzer, 2009). The region-of-interests in medical images that change rapidly within a short period at 

follow-up and undergo shape transformation during registration are unsuitable for analysis with SSM 

technique. Hence, it is only proficient in model-specific classes and stable shapes, such as the normal 

anatomy of the bones and brain.  

Although larger training sets can increase flexibility and universality of a mean shape but makes the overall 

task of population recruitment expensive. SSM technique well established in face recognition as per its 

origin may not be ideal for medical images in clinical practice.          

16.0 Three-dimensional morphable model  

The completeness of 2D images of 3D human anatomy and image quality within a specific class of image is 

dependent on the pose, projection, illumination (brightness), the density of tissues, the effect of occlusion 

by adjacent structures, the motion of anatomical region during acquisition and temporal variations on 

follow-up. The lesions seen within ROI in orthogonal views can change configuration relative to each other 

unless coupled together directly by some salient point correspondences. The maximum clinical value of any 

imaging technology for diagnosis and treatment planning can only be realized by 3D reconstruction. Like 

the SSM technique, the 3D morphable modeling approach for image segmentation requires class-specific 

prior knowledge for developing training sets and statistical information(Blanz & Vetter, 1999). Ideally, 3D 

models for medical applications require 3D training examples, which are frequently obtained from 

computed tomography and magnetic resonance imaging techniques. 

The technique of 3D morphable models includes shape and texture vectors obtained through dense 

pixelwise correspondences to merge shape and texture properties into a single framework is called image 

vectorization(Jones & Poggio, 1998). The texture vector contains the grey-level value of each pixel in the 

examples of the training set and the prototype image model for correspondence to a new patient image.  

Huge variations in medical images in the same class and within the same subject over time and during 

image acquisition require hundreds of training set examples. There are three steps to prepare a training set 

and construct a 3D morphable model(Blanz & Vetter, 1999).  The first step involves pre-processing multiple 

views of 2D radiographic images or scans of 3D reconstruction from CT or MRI images to remove any 

artifacts and select to be modeled. Next, pixelwise correspondences are computed between each scanned 

example and a reference image mesh. Finally, the example images are aligned and scaled by applying 

general Procrustes analysis, followed by PCA. The major disadvantage in building a 3D morphable model is 
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the expense and ethical issues collecting hundreds of scanned 3D training examples, and pipeline to process 

the raw data onto a standard 3D mesh(Blanz & Vetter, 2003).              

17.0 Deep learning neural networks  

In the case of human vision, the moment an image is reflected on the retina, the humans can immediately 

label objects of interest and respond appropriately. An expert physician requires repetitive training and 

practice to characterize a medical image to recognize and segregate by focusing (attention mechanism) on 

a region of interest. It is this property of intricate operations of the multilayered anatomy and physiology 

of over 100 billion neurons in the brain that inspired the development of neural networks for image analysis 

and segmentation process. The neurons in the brain fire impulses when the retina is exposed to vertical, 

horizontal, and diagonal lines or edges(Hubel & Wiesel, 1962). And the idea that neurons organized in 

columnar architecture respond to a stimulus can be trained to learn graphic information for future 

applications encouraged the development of computer-based neural networks, often referred to as 

machine learning. It led to the development of multiple computer vision techniques including machine 

learning to detect features of a variety of objects in a scene. Machine learning process requires training set 

of specific image/s to train the network, a verification set in the form expertly segmented image as reference 

and parameters for training, and evaluation or test set to verify and authenticate the newly segmented 

patient image under examination. Deep learning is a machine learning mathematical algorithm, which has 

multiple layers to progressively train and learn in depth about the object of interest and refine it to extract 

features of interest from a busy image.  

The artificial neural network is a computing system that consists of collection of artificial neurons carrying 

signals, process the information and pass the information further down the network. Each artificial neuron 

like biological neuron gets activated when signal intensity reaches certain threshold. To learn the task and 

train the network “weights” or parameters are added along with “bias” term as a constant value to the inputs 

by processing number of reference images (training atlases) through multiple successive layers. The process 

of network training continues through backpropagation and assessment of loss function (error) until there 

is minimum error by adjusting “weights” between the predicted output and the target output.  
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Figure 10 – A. – traditional multilayer perception neural network; B. - multilayered convolution neural 

network. The kernels/filters convolve with the image to extract various features; the linear operations of the 

convolution engage nonlinear activation function called rectified linear unit (ReLU) to compute function f(x) 

= max (0, x); the pooling layer reduce dimensionality of the network; and fully connected layer aggregates 

information by selecting patches from input feature maps and discard others. Back propagation algorithm 

trains neural network through learnable kernels and weights, which are updated based on loss function; C. 

- U-Net, arrangement of channels of down-sampling (green) and up-sampling sub-modules (blue). 

The target output is either based on predetermined criteria or manual segmentation by an expert to set 

“ground truth” to increase robustness of the model and decrease value of loss function. Generally, the error 

between predicted output and expected target output never approaches zero and  
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frequently need redesigning the network. Although it is a supervised model, however once the network is 

trained and optimized the specific task is automatic for segmenting and diagnosing a particular class of 

pathological lesion or an intended object in future.  

The traditional multilayered perception neural networks were a crude version of the biological visual cortex 

with an image input layer, one or two hidden layers, and an output layer(Lecun et al., 2015a) (Fig.10A). In 

machine learning, the input image is preprocessed by applying a kernel/filter to remove any noise and 

improve contrast, followed by thresholding and edge extraction. In the next layer, regional features are 

extracted by collecting certain pixels based on intensity variations, texture, and colour; and the next layers 

resolve horizontal and vertical lines(Coates et al., 2013; Lecun et al., 2015b). The machine learning classifier 

such as neural network classifies and labels target features to determine the segmentation boundary. It is 

the neural network classifier that is trained and learns to classify new images. This kind of simple multilayer 

perception model becomes active only when a certain threshold value of image pixels is reached. One 

significant limitation of this kind of model was that it used one perception for each input pixel in an image, 

when multiplied by three in the case of standard red, green, and blue images, the model failed to handle 

large image data. Secondly, it was trained for specific objects with defined features in a fixed coordinate 

and, if a given object was moved even within the same scene the network corrected the orientation of the 

object itself as trained and failed to accept and learn the changes. This could not work optimally for the 

analysis and processing of evolving heterogeneous medical images efficiently. However, with the advent of 

graphic processing unit (GPU) and fast computer machines for the gaming industry the interest in deep 

learning revived(Coates et al., 2013; Lecun et al., 2015a) and the traditional neural networks evolved to 

convolutional neural networks advancing the process to manage the image data in the form of multiple 

arrays, including coloured RBG images.  

Based on image texture, the segmentation task of medical images is regarded as semantic segmentation 

(pixel by pixel segmentation of the same class of objects in an image). For this purpose, there are number 

of networks in practice, such as fully convolutional neural network (CNN), U-Net, V-Net, Non-local U-Net, 

generative adversarial network (GAN) projective adversarial network (PAN) is briefly discussed here. 

17.1 Fully convolutional neural networks  

The fully convolutional neural network(Long et al., 2014) forms the basis of what came to be known as deep 

learning for processing image data. The convolutional neural network (CNN) classifier can directly handle 

raw image data without initial preprocessing and has multiple layers(Rizwan I Haque & Neubert, 2020). It 

has much greater accuracy for image classification, which is an important feature to classify, and label 

variegated medical images, particularly when an image has multiple satellite lesions. It deals with an image 

layer by layer, filtering, and computing relevant pixels as part of its learning process, like some of the 

classical computer vision techniques. It depends on the fact that all pixels in the neighbourhood forming 

an object, or the same type of tissue are intimately related to each other than one at a distance.  

Convolution (from Latin convolvulus means to roll together, merge, fuse, or converge) neural networks are 

designed to adapt to the properties of images even if the tissue elements are in a different frame/slice 

appear at another location and can perform pixelwise segmentation process. The fully convolutional neural 

network architecture is made up of interrelated three types of multiple sequential layers examining the 

morphology of the image to locate and align edges by recognizing associated pixels/voxels forming a 

hierarchical structure. Every layer transforms a 3D volume input image to a 3D volume output image. The 

three types of layers are convolutional layer, pooling layer, and fully connected layer(Kenji Suzuki, 2017; 

Yamashita et al., 2018) (Fig. 10B). In the convolutional layers, learnable filters or kernels are applied to the 

original image. It is in these layers that the receptive field of an input image is scanned by a series of a user-

specific grid of parameters in the form of filters or kernels to extract certain image features. The number of 

filters, filter stride, filter size, 3 x 3 or 5 x 5 grid window are the most important parameters. To convolve 
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with image pixel grid, the kernel scans from top left to the bottom right corner of the image. At each group 

of pixels on the image, based on the size of a filter window convolutional value (pixel grid grey level value 

and filter grid weights) is calculated and stored. The process of optimizing the values and weights of the 

filters decides the quality of training and learning of the network. The activation non-linear rectified linear 

unit (ReLU) improves the training speed. Next the pooling layer down-sample the input data, extract the 

maximum average value of a convolved window and reduce image dimension. There can be numerous 

convolutional and pooling layers to increase the capability of the network.  

In the end, the fully connected layer has complete connectivity with all the neurons in the preceding and 

succeeding layer and collates the averaged information from the preceding feature maps to determine 

which features most correlate to a specific class in the image. The filter hierarchy in each layer learns an 

increasing number of features and the final layers have complete image representation to recognize the 

entire shape, form, and orientation of the structures in the image. To train a neural network the computer 

adjusts its kernels/filters in convolutional layers and filters values or weights in the fully connected layers 

through a training process called back-propagation(Yamashita et al., 2018). Convolutional neural network 

filters are given values and weights randomly at the initiation, and during the forward propagation, the 

output image loss function calculates the kernel values. The weights and learnable parameters are updated 

according to loss value through optimization back-propagation algorithm(Yamashita et al., 2018). The 

efficacy of an image segmentation system may be evaluated by using standard statistical methods for 

accuracy, precision, and reproducibility to assess for correctly predicting a total number of actual disease 

pixels/voxels. 

17.2 U-Net, V-Net, and adversarial networks 

The U-Net(Ronneberger et al., 2015) is so named because the architecture of channels, encoder contracting 

path and decoder expanding path submodules are arranged symmetrically with skip connections between 

the descending and ascending limbs (Fig. 10C). This high performance network based on fully convoluted 

network without a fully connected layer can be trained “end-to-end” from very few images in the training 

set. Also, the pooling operators are replaced by up-sampling operator to improve resolution. As there are 

few examples to teach the network the data is augmented by rescaling using rotation, shifting, elastic 

deformation and even making changes to pixel grey values. For training the input images and 

corresponding segmentation maps are used to train the network. The U-Net takes less than a second to 

segment a 512 x 512 image on a GPU. There are four encoder submodules in the descending limb and four 

decoder submodules in the ascending limb. The encoder has two convolutional layers for down-sampling 

and decoder submodules successively increase resolution by up-sampling of input image dataset and 

enhance accuracy of segmentation by inclusion and exclusion of relevant pixels. The network skip 

connections between the descending and ascending limbs for up-sampling resulting in same resolution as 

input in the encoder submodule as the input of the next decoder submodule, thereby it has the capability 

to handle simultaneously low level and high level information increasing accuracy and extracting complex 

features. The same group introduced 3D U-Net(Çiçek et al., 2016), where the 3D operators of the network 

architecture consisting of  3D down-sampling convolution, 3D up-sampling convolution, and 3D max-

pooling  layer is fed with 3D sparsely annotated limited number of images for training. The data is 

augmented by elastic deformation, and it is the weighted soft-max loss function that allows the network to 

learn from only labelled pixels while setting the rest to zero. Once the network is trained on sparse 2D CT 

data, input of individual slices arranged in a stack can provide segmentation of 3D volume. Residual U-Net 

and hybrid dense U-Net are weighted convolutional networks. The former network is preferred for retinal 

vascular tree segmentation in diabetic and hypertensive retinopathy and latter is for segmentation of liver 

tumour in contrast enhanced CT imaging. 
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The V-Net(Milletari et al., n.d.)  is like 3D U-Net trained on limited number of images in a training set. The 

data is augmented by applying random non-linear transformation and histogram matching. To discriminate 

between enormous size of background and much smaller foreground voxels, the V-Net employs Dice co-

efficient (calculate similarities) loss function instead of statistical mean square error (the average squared 

difference between the estimated value and actual value), or the cross-entropy loss function (entropy is 

measure of randomness in information and cross-entropy refers to difference in two random variables). The 

descending limb path of the V-Net compresses the data and during up-sampling gradually decompress the 

signal until it reaches the original size extracting the required features for image segmentation. The 

architecture claims to ensure convergence in a fraction of the time compared to similar networks that do 

not learn residual functions.  

Generative adversarial network (GAN)(Goodfellow et al., 2014) is based on game theory philosophy having 

two models to train simultaneously to segment the intended group of pixels. The generative component 

adds random noise to the input image fabricating a pseudo-image and the adversarial part of the network 

is the discriminator that estimates the probability to remove the random noise from the training data to 

segment the target pixels in the image. Projective adversarial network(Khosravan et al., 2019) (PAN) utilizes 

2D CT image projections without the need for 3D reconstructed image to generate high level 3D information 

for segmentation. The three component architecture of the PAN consists of a fully connected network called 

segmentor with an encoder and decoder to handle 2D grey-scale input image to produce a pixel level 

probability map, and two adversarial networks to capture high level information during training phase. One 

of the adversarial networks has an additional attention mechanism module to focus on highly desired object 

pixels to increase overall performance of the PAN model. 

18.0 Evolution based genetic algorithms  

Evolutionary algorithms being beyond everyday simple observations are considered metaheuristic. They are 

based on biological concepts of natural selection and the genetic propagation of species. An evolution-

based computational genetic algorithm(The Evolution of Intelligence. The Nervous System as a Model of 

Its Environment, n.d.; Holland, 1962) is not an image segmentation algorithm but a search-based 

optimization technique applied to engineering problems. Such a technique is frequently applied secondarily 

to find an optimal solution to difficult problems, which otherwise would take an extremely long time and 

require extensive computational resources to solve.  

In nature, there is continuous randomization of events and physical adaptation without a fixed scheme and 

pattern. Over time because of this continuous change the nature is forced to produce better solutions more 

often than best to overcome arising adversities. The same would apply to a genetic algorithm for an 

engineering problem to find a better solution from among many possible alternatives to solve a given 

problem in terms of cost and time, rather than the best which may not be practical and cost-effective. In 

this regard, genetic algorithms have proven to be a reasonable metaheuristic method to provide practical 

near-optimal solutions for the image segmentation process within minimal computational space, cost, and 

time. Analogous to evolutionary genetics a set of solutions is chosen heuristically (former experience or 

speculation), which form a given population (the total number of solutions from which samples are selected 

for statistical measurement). Each solution is a representation of a chromosome and elements of that 

solution are the genes arranged in a specific order (Fig. 11). The values or parameters given to  
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Figure 11 – The steps of genetic algorithm for optimization, a. each of the solutions (chromosome) is a 

string of real values (genes) encoding the parameters, b. selects a set of random strings from the old 

population and c. choose the best individual strings, d., e., and f. process of selecting the best values and 

discarding others, g. new generation of strings with best values. It is the variation operator that combines 

and alters best values in each string by crossover blending and random mutation. 

each gene are alleles.  Within the computational space arrangement of the solutions form genotype, and 

upon decoding the most effective solutions from genotype space enters phenotype space (activity space) 

as functionally adaptable solution to solve the problem. Otherwise, to better the functional fitness of the 

selected solution it is encoded and returned to the genotype space for re-evaluation. The genetic operators 

alter the composition of the solution (chromosome) by changing the parameters through the exchange of 

values (alleles) between a selected pair of solutions (chromosomes) called crossover operation or 

introducing new parameters (mutation) within one or more solution elements (genes) of the set of solutions 

(chromosome population), or even make new pair of solutions to find a better solution and make the 

algorithm robust. Once a ‘fit’ solution is found to solve the problem the algorithm (evolution) is terminated. 

The random process of crossover of values (alleles) at one or more specific crossover points is considered 

one of the most significant steps in running a genetic algorithm(Goldberg, 1989) to better the solution to 

make it robust for solving the problem in-hand. Mutation adds randomness and more options to the current 

set of solutions. 

19.0 Technique of animated deformable organism  

The subject of virtual animation and artificial intelligence is a rapidly expanding field. Deformable organism 

model (Hamameh et al., 2001; Hamarneh et al., 2009) for medical image analysis is a parametric 

semiautomatic image segmentation technique based on well-established interdisciplinary specialties such 

as continuum mechanics, Newtonian dynamics and numerical computation, differential geometry, vector 

calculus, and computer graphics(Nealen et al., 2006). In principle, the deformable organism is advanced 

modeling of ‘Snakes’ and other deformable models based on time-integrated Euler-Lagrangian partial 

differential equation algorithms for image segmentation(Heimann & Meinzer, 2009). The deformable 

organism is an interactive systematically mechanized model with artificial life control algorithms given a 

predefined set of criteria to manipulate and deform its shape in response to image properties. The activation 

of model deformation and behaviour is based on the perception of the image data and prior knowledge of 
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anatomy, topology, pathology, and any other structural landmarks. The model is programmed to be aware 

of itself and its environment to search intelligently by exploring the entire image space to reach correct 

solutions. 

19.1 Deformable organism model  

The deformable organism model has a hierarchical structure incorporating biomechanical principles and a 

higher life centre. It is organized into four main systems consisting of structural geometry, motor system, a 

sensory system for perception, and a cognitive centre to manage the behaviour of the organism, which 

defines it as an artificial intelligent ‘life’. The geometry of deformable organism that forms the morphology, 

shape, and topological constraints is built on the medial (median) axis(Hamarneh et al., 2004)  and medial 

(median) sheet(Hamarneh et al., 2007). Geometric deformation (stretching, shrinking, bending, thickening) 

manipulates the geometric structure of the model without constraints. The structure explicitly stores the 

location information on its Lagrangian surface mesh and internal nodes, and in the Eulerian model, the 

shape is formulated to zero level-set function. The motor system simulates Hooke’s spring-mass law. The 

actuation of the motor system at basic low-level skills brings about simple bulging and stretching, and 

higher-level skills are parametrized to cause rigid transformations such as translation, sweeping, bending, 

and smoothing the medial (median) axis depending on underlying geometry. Sensory perception is 

facilitated by providing a set of sensors to perceive the external environment to gather information 

regarding image properties and interact with other organisms in the image space. There are image gradient 

sensors, texture sensors, and edge detection sensors. These sensory organs can be trained to focus on 

specific image features so that non-essential non-region-of-interest is ignored and search for relevant 

programmed features. There are internal sensors confined to the organism and external free-floating 

sensors within the image domain. The sensory information is transmitted to the cognitive centre for 

behaviour modification of the organism. The cognitive centre responds to the internal and external sensory 

stimuli as predefined parameters, as well as to any user-initiated changes to redirect the behaviour of the 

organism to match image segmentation requirements. In return, per-programming and learning ability over 

time, the model behaves by appropriately deforming and translating to detect the edge.  

According to prior knowledge of anatomy and segmentation requirements and, programmed parameters, 

the organism initiates the process, deforms, analyzes, make decisions, and segment ROI as planned. The 

deformable organism model has the capability of processing 3D medical images.  

 19.2 Artificial intelligence deformable organism model  

For segmentation of MRI images, an artificial intelligence organism with a primitive brain has also been 

developed(McInerney et al., 2002). This kind of intelligent organism model is thought of as higher evolved 

versions of deformable active contour models. The structure of a deformable organism consists of a virtual 

body form capable of altering its shape to match the ROI for segmentation. The construction of boundary 

contour is achieved through sensory communication between image properties and the primitive brain of 

the organism. The rudimentary brain has centres for perception, motor control, and cognition. They can 

perform voluntary movements and respond by altering body shape based on sensory input and motor 

response. The organism once released in the image domain tends to search for edges of the region for 

segmentation. 

20.0 Solid modeling 

Solid is a three-dimensional object bounded by a uniform surface having a homogeneous continuous dense 

interior with four or more facets (polyhedrons), sphere, and cylinder without overhanging edges. 

Mathematically, one can derive mass and area to determine its volume. On the other hand, a wireframe is 

an ambiguous three-dimensional object. It is an incomplete structure unsuitable for mass and volume 

determination. A polyhedral object whether solid or wireframe obeys geometric principles relating to its 



International Journal of Computers  and Technology   Vol 22 (2022) ISSN: 2277-3061     https://rajpub.com/index.php/ijct 

 
 

35 

shape and parameters. The movements of their edges and vertices respond following the Cartesian 

coordinates in Euler space. And, how the various parts of the object are related to each other expresses its 

topology. Fundamentals of constructive solid geometry in combination with elementary geometric 

primitives such as lines, triangles, blocks, etc. provide necessary elements for constructive solid 

modeling(Requicha & Voelcker, 1982). 

20.1 Parametric solid modeling  

A parametric solid is a constrained parametrized object whose parameters (dimensions) can be manipulated 

in a stepwise fashion according to the wish of an operator to achieve the required configuration 

instantaneously. In the computer environment, the creation and alteration of 3D shapes are achieved by 

changing parameters to manipulate its size and configuration to exploit the design of an object. The process 

of parametric solid modeling acts on the meta-structure of a shape as it can be modified to create new 

instances by implementing computer-aided design software in comparison to the geometric structure 

which represents a specific real shape of the solid object and its constant topology.  

Parametric modeling technique has the potential for application to segment and create new instances of 

skeletal elements as 3D models and even change dimensions of a reference prototype radiological image 

to match patient-specific new target image. In the case of the thoracic cage skeleton, there are multiple 

elements, each element possessing unique architectural geometry and topology created by their adjacency 

and connectivity with nearly solid cortical and trabecular structure internally. Unlike a true solid all its 

components are irregular having overhanging edges at places as seen on plain radiographic and computed 

tomographic images.  

The intention to construct a parametric solid model is to develop a competent technique whereby new 

parametrized instances of skeletal and soft tissue structures can be built and segmented for application of 

surgical implants and finite elements for non-invasive analysis in a virtual environment. Application of 

parametric solid modeling lends itself to construct a model of 3D human vertebral column 

satisfactorily(Rodriguez et al., 2011). The method is history-based modeling from a 3D reference prototype 

CT reconstruction image to parameterize the new patient-specific image in terms of morphometric 

dimensions of its anatomy and bone density. To the constructed model patient-appropriate related 

boundary conditions and loads can be applied to reach the correct solution when FE analysis is sought. 

Unfortunately, as the number of overall parameters will increase, so would the computation time and cost. 

Unlike plain radiography, CT can acquire 3D anatomy easily but there is concern over excessive radiation to 

the patient. However, from a single generic atlas of 3D reconstructed CT image parametric solid model of 

the same class of two or more plain radiographic images of a new patient can be constructed for surgical 

application. The thoracic skeletal cage has an elaborated anatomical structure of articulated twelve pairs of 

ribs and cartilages with the sternum on the front and twelve thoracic vertebrae on the back, all having a 

variety of articulations and accessory structures. Within the computer virtual environment appropriately 

designed or existing engineering software for parametric solid modeling may be used to re-parametrize 

the plain radiographic views by using the image registration method. One such open-access software called 

3D Slicer (www.slicer.org) employs greyscale densities to segment skeletal parts(Rodriguez et al., 2011). 

Segmentation of the CT slices can be performed manually by using a thresholding tool such as a computer 

mouse to create a 3D labeled map. Each segmented element can be annotated in a variety of colours to 

identify the thoracic cage components. The soft tissue structures can also be defined if MRI slices are used 

for developing the model. The thoracic cage model can be iteratively smoothed if required to remove noise 

and edited before stereo tessellation lithography (STL) file is generated for transfer into 3D slicer or other 

engineering CAD software for parametric solid modeling for creating a new target 3D model. 

 

http://www.slicer.org/
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The step in parametric solid modeling that helps to resize a solid structure to manipulate all the parts at 

once by changing one parameter may not apply to irregular widely varying human skeletal anatomy of the 

thoracic cage, which is an assembly of multiple structures. User interaction may become necessary to adapt 

the prototype parametric solid model for refining its application and registration to the new patient-specific 

image by moving specific control points at the salient anatomical vertices or an alternative technique is 

devised to constrain the use of automatic re-parametrization method.  

The pipeline line of the parametric solid modeling (Fig. 12), say for thoracic skeletal structure begins with 

0.625mm thick CT slices. Each slice after the smoothing process is segmented manually or using an 

automatic deformable model for each element of the articulated cage skeleton. 3D CT-based reference 

prototype image of the segmented structure is mapped. With the help of the 3D Slicer from the patient-

specific 2D plain radiograph 3D parametric solid model is prepared by registering a 3D reference CT 

prototype, followed by creating STL from the created 3D patient-specific model. The patient-specific STL 

file with an applied surgical implant is transferred to a finite  

3-D Slicer application 

2-D 0.625mm CT slices of the chest 

Smoothing of the skeletal elements 

Segmentation of the skeletal elements 

3-D reconstruction of the thoracic cage 

Mapping of the elements 

Prototype 3-D image of the thoracic cage 

Patient-specific 2-D plain radiographic views 

Registration of prototype to the patient-specific views 

3-D parametric thoracic cage model 

Patient-specific STL file of the thoracic skeleton 

+ 

Test implant STL file 

Sternum bone-implant interface development 

FE model and analysis 

Figure 12 – Parametric solid modeling algorithm 

element analysis space for the creation of the mesh. Patient-appropriate boundary conditions and, bone 

and implant material properties are applied to obtain stress-strain von Mises maps. This pipeline set up 

from the step after the creation of the patient-specific STL file onwards can be run in parallel on multiple 

computer stations to receive results from several different types of implants at the same time. And, 

depending on the facilities the setup may be run for as many patients as necessary for more than one 

elective operating list. Such a computational patient-specific and patient-appropriate operating model in 

practice is feasible only in the presence of a clinical biomechanical engineering team. 

The single most advantage of the parametric solid model will be its ability to create all shapes and sizes of 

normal and anomalous sterna, ribs, and vertebral anatomy as new patient-specific instances and finite 

element analysis by applying patient-appropriate boundary conditions to choose a better implant for the 

best possible outcome in a patient.  
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20.2 Direct modeling technique  

It is a technique of building and editing a model that goes together. In this computer-aided model, the 

operator directly manipulates the geometry of a 3D solid or a wireframe at its vertices. This model does not 

have a ready history of parameters to which the dimensions can be changed to fit a new shape of the same 

class of object. This adds significant versatility to this modeling technique. Here the designer can perform 

direct deformation to change the configurations of the native object elastically as a go-along design project. 

The ease of modification adds the capability to allow rapid iteration of the 3D base raw wireframe stock 

model to be converted to the new patient-specific image as an open-mesh structure initially during 

registration.  The segmented image is sized into a 3D structure based on morphometric measurement of 

multiple views of 2D images by selecting salient anatomical control points and refined by iterations to 

smooth the whole structure. The wireframe mesh can be converted to 3D stereo-lithographic model by 

including the bone mineral density based on Hounsfield units recorded from the native patient-specific 

radiograph for each of its elements when an image structure has multiple components. The current mesh 

can then be transformed into a 3D fully textured voxel-based greyscale model ready for polyhedral finite 

element mesh to apply surgical implants and patient-appropriate boundary conditions.  

Direct medical image modeling technique can open a new field for the construction of 3D solid skeletal 

structures from 2D multiple views of plain radiographs element-by-element to generate a completely new 

patient-specific 3D model without the need for a library of many atlases and a mean statistical model. Like 

the former history-based parametric solid modeling technique, in this history-free and edit-free direct 

modeling system the user may not be able to return and edit the dimensions during the post-processing 

phase and iterate further. This makes the direct modeling technique demanding as it requires sufficient 

expert knowledge of both anatomical structures and computer thresholding to take full advantage of it. It 

is an interactive method and completely patient-specific once the clinical biomechanical engineering team 

has patient-specific bone material properties and patient-appropriate clinical parameters with the 

collaboration of a clinical team. This modeling technique can be used for direct stereo-lithographic 

modeling for medical image segmentation and therapeutic applications. Most of the currently available 

engineering CAD systems are a hybrid of parametric solid modeling and direct modeling tools. Solidworks® 

comes with a direct editing option and creates a history tree with the potential to make necessary changes 

during the advanced modeling phase. Synchronous technology (Siemens Nx® and Solid edge®) means 

having a display of both parametric and direct modeling menu on the same screen environment without 

history-tree and the necessity to re-compute editing job. 

20.3 Multilayer parametric solid modeling  

The key dimensions of a skeletal region or a segment can be accurately extracted either directly from 

cadaveric dried bones or 3D reconstructed CT image. Then these dimensions can be used as parameters to 

enable customization of the same class of skeletal anatomy of a new patient from 2D multiple plain 

radiology images to 3D stereo images based on the multilayer parametric solid modeling technique such 

as for rapid shoe-last customization(Wang et al., 2011).  

The multilayer parametric solid technique consists of multiple layers - feature control point layer, parametric 

curve layer, parametric surface layer, dimension layer, and constraint layer to obtain parametric piecewise 

reconstruction. An interactive draft-driven deformation method is used to customize the object mesh to 

match the surface curves and contours. The feature point layer represents control points marked at all the 

salient features and the dimension layer to resize the dimensions of the object. The whole object is placed 

in the global coordinate frame such that the sagittal, coronal, and axial planes correspond to normal 

anatomy. This level of accuracy will help recognize anatomical details during the conversion of 2D to 3D 

solid images. The parametric curve layer describes concave and convex contours, and the parametric surface 

layer carries the mesh for piecewise interactive draft-driven deformation. The object anatomy is divided into 
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as many regions as possible in a meaningful way representing salient features on which the technique can 

be conducted. When the object is divided into relevant parts it becomes easier to edit the local surface 

contours and edges to accurately adapt the base prototype 3D model to the 2D new patient-specific 

images. The Slice technique can be used to manipulate the mesh vertices and every other layer is adjusted 

to regularize it to the new image. In the case of the sternum, it can be divided into manubrium, gladiolus 

further into several sternebrae, and xiphisternum. Next mark multiple control points on the curves and 

surface contours and sharp corners at the attachment of costal cartilages and clavicles in both right 

posterior-anterior oblique and lateral views. Dense labeling of surface features points and piecewise surface 

division help with the topology and appearance of the final model. The robustness of the parametric curves 

is maintained by parametric constraints for curve stability at the intersection nodes during the deformation 

process.  

The object mesh of the 3D prototype is encoded parametrically to preserve its geometric information and 

then used on new patient-specific 2D multiple view images by decoding to acquire similar geometry as long 

their class is the same. The encoding is built on the feature control points in the feature point layer to follow 

the salient features of the new images based on the prototype geometry. The relative position of each 

vertex of the object mesh is encoded and decoded to adapt to the salient feature points on the new image. 

The draft-driven deformation is performed by directly dragging the feature control points and in real-time 

following the curves and surface contours under coplanar, dimensional, and directional constraints at the 

intersection nodes.  

Over time numerous atlases of the same object class with variations will build a comprehensive library 

whatever solid modeling technique is employed. At the same time collecting a patient-matched set of data 

and outcomes based on age, gender, co-morbidities, BMI, etc. can help modify and develop new implant 

design. These modeling techniques are adaptable to medical image modalities and the design process is 

visible, intuitive, and interactive as the model is being constructed.   

21.0 Comments and analytic conclusion 

Computer vision is an interesting science made up of a kaleidoscope of numerous algebraic, geometrical, 

and differential calculus-based algorithms, and recently integration of biological processes. The literature is 

extensive, and its jumbled evolution has occurred rapidly in the last fifty years. There are numerous 

synonymous terms to confuse a newcomer to this science and require a simplified organization to make its 

study practical for those physicians interested in medical image processing and analysis for surgical 

diagnosis, preoperative planning, radiotherapy, and medical therapeutics.  

The major objective in medical image processing and analysis is optimal segmentation of heterogeneous 

images, registration across available imaging modalities, 2D to 3D transformations of human anatomy, and 

application of FE analysis in-silico to harvest mathematical solutions for in-vivo surgical applications. To 

accomplish this ambition there are numerous semiautomatic and automatic computer vision techniques for 

image analysis and processing in the manufacturing and media industry applicable to medical images with 

varying degree of success. Despite great efforts there is not a single image registration and segmentation 

modeling technique that can be applied confidently to the medical images in daily clinical practice for 

therapeutic applications. To solve any scientific problem there is a set of input values that are processed to 

get optimal output values. For optimization or a solution providing ‘best’ output values in mathematics 

there is an amelioration exercise by randomly selecting the parameters to maximize or minimize objective 

functions by varying input parameters. The set of all available solutions or values as input parameters forms 

the search space and within this space is present a better solution to the problem in hand, which in the case 

of image processing is the quest for a segmentation algorithm. As a result, there are so many attempts to 

refine the segmentation process to resolve few yet significant problems of image analysis and processing 

leading to hundreds of  techniques that the task to devise a comprehensive classification system applicable 
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to clinical medical practice is lacking. It is expected to remain in the evolution phase to develop a technique 

for managing medical images as a standard of care. So far most of the refinements are occurring piecemeal 

and have resolved pre-existing issues only partially. Currently, deep learning has become the hub of 

computer scientists worldwide.  

The basic issues in medical image processing are blurred edges, edge interruptions, image noise, intricate 

tissue textures, heterogeneous intensity gradient, anatomical variations, changing topology, and changes 

in pathological images over time in the same patient. Moreover the ‘work-piece,’ the image in medical 

computer vision science, there is a lack of standardization of image production by the same and different 

radiographic imaging modalities, which leads to variations in the viewed frame for registration/ comparison 

and extraction of the data for concrete decision-making on each follow-up visit in the same patient remains 

unresolved.  

As the primary objective of introducing computer vision science into the medical field is an intensive activity 

of image segmentation and 3D rendering of 2D radiographic images for FE modeling and analysis, there is 

a need for the expertise of a dedicated clinical biomechanical engineering team within a surgical unit. The 

simplest way for an expert to draw a boundary contour manually to segment a region-of-interest is with a 

pointing device such as a computer mouse or pen. The same can be done to reconstruct a 3D computed 

tomography volume structure by segmenting one slice at a time and finally computing the segmented slices 

of a region by stacking them together. It is also convenient to modify and replace the previously drawn 

boundary contour on the same or new follow-up image for comparison. Although manual segmentation is 

used frequently it is time-consuming, expensive, and lacks consistent reproduction even in the hands of an 

expert(Preim & Botha, 2014). But manual segmentation, the method to establish “ground-truth,” may still 

be preferred if the image has a significant number of artifacts or the ROI in an instance of a tumour that 

evolves unexpectedly rapidly where an automatic segmentation technique may provide incomplete 

boundary contour. Developing an automatic segmentation algorithm is challenging when it comes to 

selecting a mathematical model and parametric values to compute missing details for optimal results and 

satisfactory clinical outcomes. On the other hand, the fully automatic techniques for image segmentation 

comes with individual pros and cons. To overcome some of the difficulties encountered development of 

several semi-automatic (interactive) techniques has been encouraged throughout the evolution of 

computer vision science(Olabarriaga & Smeulders, 2001) because semi-automatic techniques rely on 

operator attended computer interaction to modify parameters allowing increased accuracy.  

Although currently medical image processing and analysis has been limited to radiology, radiotherapy, and 

radio-surgical interventions, however, the science of computer vision is rapidly expanding into the fields of 

computational anatomy and biomechanics, and the study of normal and pathological tissue histology. It 

may have application in clinical methods for the surface examination of the human body to detect for 

example subtle changes in hyper- and hypopigmentation changes of skin lesions such as malignant 

melanoma and leukoderma respectively, at each follow up visit. The human visual system can easily 

segregate a well-defined island of homogeneous density with a single grey-level value in a medical image. 

However, when a less distinct high-intensity lesion important to the physician is embedded in a background 

of similar grey-level value and texture, it can be very easily overlooked and missed by even an expert 

radiologist. A good example of this kind of scenario is a mammogram of a condition referred to as “white 

dense breast”, which can harbour malignant tissue. It can be extremely difficult to automatically segment 

malignant tissue embedded in such a condition based on grey-level scale and intensity gradient, and almost 

impossible to visually isolate and excise the area confidently to include all malignant extensions at surgery. 

Similarly, in a multilayered posterior-anterior view of chest radiographic image with a spectrum of pixel 

intensities a malignant lesion hiding behind a rib or sternum overlapping cardiac shadow can be easily 

missed. This issue has been largely resolved with the introduction of dual-energy subtraction radiography 

to separate the soft tissues from the skeletal structures. Still, it is not a simple task to segment thoracic 
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skeleton by subtracting soft tissue structures and merging two orthogonal views taken separately to 

reconstruct a three-dimensional model and try to estimate bone mineral density to extract bone material 

properties for bone-implant finite element analysis.  

What can be concluded by looking at the big picture of computer vision as a practical instrument in 

medicine is its application to recognize tissue patterns and to distinguish between ROI from the rest of its 

environment for qualitative and quantitative analysis, diagnosis, and temporal evolution to make prompt 

decision to undertake appropriate treatment. Unfortunately, to achieve these goals fully, there is a lack of 

reproducibility of grey-level values and intensity gradient to consistently acquire radiology images and 

flawless cross-registration techniques between various radiology modalities. There is also no universal 

standard segmentation technique that can be applied to all kinds of medical images. Almost all the known 

registration and segmentation methods are far from perfect for daily clinical practice.   

A medical image is a collection of orderly arranged pixels to construct a meaningful image. Most of the 

commonly employed segmentation techniques operate on grey-level pixel intensities and intensity 

gradients to describe the projected information in an image. It is inopportune that intensity gradient-based 

techniques are easily influenced by lack of standard luminance when the images of the same anatomy are 

compared in a patient over time and co-registered among different modalities. The numerous mathematical 

assumptions and alteration of image characteristics during pre-processing to remove artifacts can 

undermine the physical value of segmentation and its true clinical relevance. The process of segregating 

ROI containing an irregular lesion in an image speckled with noise, particularly near the discriminating edges 

between healthy and pathological anatomy can be a serious concern during surgical planning, when there 

is crossing over of true and false edges creating an ambiguous line for surgical excision, as in a case for 

total resection of a brain tumour such as glioblastoma.    

The traditional “Snakes” and other active contour algorithms are generally based on pixel grey values and 

intensity gradient to delineate higher intensity edges, but no medical image is perfectly homogeneous, has 

a noise-free region and perfect leakproof edges. If the virtual environment and the algorithm parameters 

are not optimized to image features and quality the process of segmentation can be easily jeopardized mid-

stream. The algorithm is overwhelmed by heterogeneity, irregular and concave edges, and a lack of prior 

knowledge of intended regional boundaries to assist with the initial placement site of the contour model 

by the user interactively or training the set of images in the case of deep learning for accurate output. The 

other significant issue is variable topology, which in the case of a medical image can be strikingly diverse 

intensity gradient due to highly variable texture of pathological tissue, occlusion of edges and merger 

between adjacent regions, inconstant presence of air, tissue water (oedema, necrosis, cyst formation), and 

fat distribution add an extra layer of complexity. It is biological fact that there are no empty spaces between 

juxtaposed organs abutting each other or within their normal substance carrying pathological lesions, 

except for cleavable dissecting planes. The merger of a variety of tissues occludes boundaries, resulting in 

radiology images that contain many pixels or voxels of varying grey-level values to make it difficult to assign 

the label and weight appropriately for thresholding and edge detection.  

Now multiple imaging modalities and modes are routinely used to increase the accuracy and precision of 

diagnosis. The deep learning convolution neural network classifier lends itself well to facilitating fusion of 

CT and MRI images to improve segmentation of region-of-interest(Zhou et al., 2019). Here each modality 

image is employed as an input image and fused with the input image of the other. The fusion of the included 

images occurs either at the input level, intermediate layer level, or decision level neural network designed 

to independently learn complementary representative information of individual modality to create the 

segmented output image. Despite such increasing interest in deep learning convolution neural networks 

and their application to radiology images, there are some serious challenges. Clinical application of deep 
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learning neural networks for patient-specific and patient-appropriate analysis would require an extreme 

degree of robustness for higher applications.  

Segmentation of medical images is dependent on the quality of the image, which in turn depends on 

standardization of image recording modalities, surrounding environment, and layers of organs projected as 

overlapping anatomy. The most thwarting of all that impair image quality is the incurable noise artifacts 

arising from electronics of a machine. The decision to improve image quality the intensity histogram is 

applied to almost all intensity gradient-based segmentation techniques sensitive to noise and image 

manipulation during pre-processing. It revises grey-level values altering projected original tissue properties 

that automatically alter Hounsfield units in the ROI, apparent bone density, and ultimately the extracted 

values of soft tissue and bone  material properties for FE evaluation, defeating the objective of making 

patient-specific choices. Therefore, preservation of image features such as distribution of pixel values, 

intensity gradient, texture, etc. are extremely important. It is this endeavour what makes the process of 

segmentation an optimization dilemma still to be solved in computer vision. 

No two tumours appear similar in their native anatomy nor are spherical. Tumours, whether carcinomas or 

sarcomas, malignant or benign, come in variety of forms and shapes and consistencies like fruits and 

vegetables (Fig. 13) with a difference that the tumours have intricate vascular supply and extensions 

embedded in the surrounding normal anatomy. Unlike human vision, the science of computer vision, 

computer ‘eyeballing,’ is unable to report confidently on the likely material properties and material qualities, 

whether it is soft, fluffy, firm, fluid, its compressibility, and degree of hardness for practical application 

directly without having prior knowledge of one or more of its salient features. A lot more research effort is 

needed in image processing and analysis for recognition of material properties and post-processing 

numerical analysis and, the ability to recognize items in an image having similar grey-level pixel values to 

distinguish shiny plastic from real steel and titanium. The ability to discriminate material qualities delivered 

at end of the segmentation process without direct haptic experience would enormously help provide 

significant knowledge what to expect at surgery during pre-operative planning. 

 

 

 

Figure 13 – Like fruits and vegetables tumours come in all kinds of forms and shapes with unpredictable 

extensions into important surrounding structures. 

Considering some of the limitations of the current segmentation techniques outlined above the hyalite sol-

gel Amoeba (HSG-Amoeba) model based on the theory of pixel grey-level values, intensity gradient, and 
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tissue characteristics for medical image segmentation have been conceived for publication in the future. It 

is a deformable biomimetic model. Conceptually, the interior milieu of the HSG-Amoeba model is governed 

by active sol-gel models of soft matter physics(Petrie & Yamada, 2016). The workings of this biophysical 

model are based on the anatomy, physiology, and biomechanical principles that motivate the propagation 

of the Amoeba Proteus by extending multiple pseudopodia under the influence of environmental stimuli. 

The evolution of each stage of the model during propagation follows principles of solid mechanics, fluid 

mechanics, and bioelectricity. Finally, at the time of apoptosis, its protoplasm transforms from sol-gel to a 

solid-state. During the phase transition, the substance of the organism acquires 3D anatomy of the region-

of-interest such that the resultant tissue densities are representative of original tissue intensities, whereof 

mechanical properties can be calculated for the higher application. 

The deep learning networks seems to have become the ‘panache’ of the computer vision scientists for 

segmentation of medical images, but it cannot be called the final frontier, the ‘panacea’ for all kinds of 

hugely variable images of pathological anatomy. It is true that the physics based ‘traditional’ segmentation 

techniques cannot be directly equated to the much preferred biology based metaheuristic techniques, 

however there is place for amalgamation of the two to drive the segmentation techniques into the future. 

The deep learning models are not flawless as the fully convolutional neural network can be unresponsive 

to finer details resulting spatial inconsistencies in pixel selection(Liu et al., 2021). Although there are deep 

learning models which require limited examples to train a network, however for greater accuracy like 

statistical shape modeling a large training dataset is needed for successful training, greater accuracy and 

flawless performance of the models(Anaya-Isaza et al., 2021; Liu et al., 2021). Harvesting of large number of 

patient records is expensive and demands responsibility of privacy and data confidentiality, which adds 

another layer to a model. To resolve this issue recently devised model called asynchronized discriminator 

GAN has a central generator to synthesize pseudo-image of input image as in the GAN model. The 

discriminator learns to distinguish the actual image for segmentation resulting in an anonymous secure 

data which is then incorporated for further learning and training of the network for segmentation(Chang et 

al., 2020). In a recent systematic review and meta-analysis of two hundred and seventy peer-reviewed 

studies out of 11,921 deep learning studies of medical and surgical imaging the quality of segmentation for 

diagnostic accuracy has been questioned (Aggarwal et al., 2021)! In addition, the notable deficiencies such 

as heterogeneity, extensive variation in methodology, terminology and outcome measure have been 

highlighted that can lead to considerable uncertainties to convince surgical community to accept deep 

learning as a trustworthy and cost-effective tool for pre-operative planning and higher numerical analysis 

to put into daily practice.  

The main derivative of this study is that although there are numerous segmentation algorithms and 

optimization approaches in computer vision applied to segregate and quantify the ROI there is no technique 

yet ready for standardization for medical image analysis and processing to become part of a wide spectrum 

of daily clinical practice. Most of the segmentation techniques applied to medical images are driven by 

physics-based ‘energy minimization’ principles and numerous mathematical algorithms, rather than 

physiological principles. So far there is no standardization of various radiology imaging modalities and 

constancy of grey-level scale for medical images based on tissue characteristics to extract material 

properties for in-vivo surgical application. The concept of HSG-Amoeba is an attempt to include image 

segmentation of 3D reconstruction from multiple views of 2D plain radiographs to extract tissue properties 

to formulate material properties, preferably within the same computer space.  

Multiple aspects of computer vision convolved with medical and surgical specialties makes it a multi-

disciplinary specialty demanding immediate dire need for positioning clinical biomechanical engineers 

within hospital teams, particularly affiliated to surgical department. It is expected that over time with a 

greater understanding of computer vision techniques and machine learning, the interest of medical 

professionals through appropriate educational tools the whole process will develop truly into a precision 
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instrument for the direct patient-based application. As of now, there is limited interest projected in this field 

by the medical and surgical specialties.  

In the field of surgery, if patient-specific and patient-appropriate medicine practice must succeed effectively 

then the role of a clinical biomechanical engineering team within the department of surgery should not be 

a far cry, and its institutionalization as a hospital practitioner be seriously pursued. To implement such a 

vision from the bottom-up, indeed there is a need for the development of computer vision and machine 

learning opportunities. Ideally, it can be achieved as part of a higher clinical and surgical training curriculum 

in the form of a well-defined residency program under the mentorship of a clinical biomechanical 

engineering team at university teaching centres like any other residency program amounting to an 

innovating doctor-scientist graduate and postgraduate certification of medical computer science. 
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