
 I S S N 2 2 7 7 - 3 0 6 1
V o l u m e 1 5 N u m b e r 1 4

I N T E R N A T I O N A L J O U R N A L O F C O M P U T E R S & T E C H N O L O G Y

7 4 2 3 | P a g e

D e c e m b e r , 2 0 1 6 w w w . c i r w o r l d . c o m

Public Key Encryption with Conjunctive Field Free
Keyword Search Scheme

Fairouz Sher Ali1,2 , Song Feng Lu1
1
School of Computer Science and Technology, Huazhong University of Science and Technology,

Wuhan, Hubei 430074, P.R.China
2
Kufa University, Kufa, Iraq
Fairouz_sherali@yahoo.com

lusongfeng@hust.edu.cn

ABSTRACT

Searchable encryption allows a remote server to search over encrypted documents without knowing the sensitive data
contents. Prior searchable symmetric encryption schemes focus on single keyword search. Conjunctive Keyword
Searches (CKS) schemes improve system usability by retrieving the matched documents. In this type of search, the user
has to repeatedly perform the search protocol for many times. Most of existent (CKS) schemes use conjunctive keyword
searches with fixed position keyword fields; this type of search is not useful for many applications, such as unstructured
text. In our paper, we propose a new public key encryption scheme based on bilinear pairings, the scheme supports
conjunctive keyword search queries on encrypted data without needing to specify the positions of the keywords where the
keywords can be in any arbitrary order. Instead of giving the server one trapdoor for each keyword in the conjunction set,
we use a bilinear map per a set of combined keywords to make them regarded as one keyword. In another meaning, the
proposed method will retrieve the data in one round of communication between the user and server. Furthermore, the
search process could not reveal any information about the number of keywords in the query expression. Through analysis
section we determine how such scheme could be used to guarantee fast and secure access to the database.

Indexing terms/Keywords

Searchable Encryption; Public Key Encryption; Conjunctive Keyword Search; Keyword Field Free; Bloom Filter.

Academic Discipline And Sub-Disciplines

Computer Science, Computer Networks, Cloud Computing

SUBJECT CLASSIFICATION

Information Security, Cryptography

TYPE (METHOD/APPROACH)

A novel public key encryption scheme based on bilinear pairings

1. INTRODUCTION

Cloud computing has become the most common phenomenon in the recent years. More and more cloud services have
flourished all around the world such as computing resource, storage space outsourcing and different kinds of software
applications. For many reasons like low cost, efficiency, convenience, better connectivity and etc., user often stores his
data on a remote server. Since more servers are public, there exist a lot of risks for the data in the transition process, the
user ensures the privacy of his data by storing it in encrypted form, and then he can search the encrypted data and
retrieve it. The first scheme of searching encrypted data by keyword was tackled by Song et al. [1]. To securely search
through encrypted data, searchable encryption schemes have been introduced in recent years [2,3,4,5,6,7,8], which can
be divided into two schemes: symmetric searchable encryption (SSE) and asymmetric searchable encryption (ASE). To
perform a search on a dataset, an user creates an index of keywords listed in the documents and later on executes the
search on the index in a way that allows the server to retrieve the documents contain a certain keyword instead of
retrieving all the encrypted documents back which is fully impractical solution in cloud computing scenarios. Recent
refinements and extensions to this scheme are given in[7,8].

The drawback of all the follow-up works is that they only allow the remote server to retrieve the documents that match a
specific keyword, but they do not allow for Boolean combinations, conjunctive and disjunctive, of such queries.

Most classical searchable encryption works focus only on single keyword search [4,5,6,7,1] or multiple keyword search
[9,10,11,12,13]. In the symmetric key schemes, recently some solutions have been introduced for general Boolean queries
on encrypted files [14,15], and there are only two related works in the public key setting [16,17].

There are many Boolean operations, like disjunction, conjunction and negation. In the disjunctive search, the user can
search for encrypted documents containing: w1 or w2 or wn. While in the conjunctive search, the user can search for the
encrypted documents containing: w1 and w2 and wn and finally in the negative search, the user can search for all encrypted

documents which do not contain particular words.

mailto:lusongfeng@hust.edu.cn

 I S S N 2 2 7 7 - 3 0 6 1
V o l u m e 1 5 N u m b e r 1 4

I N T E R N A T I O N A L J O U R N A L O F C O M P U T E R S & T E C H N O L O G Y

7 4 2 4 | P a g e

D e c e m b e r , 2 0 1 6 w w w . c i r w o r l d . c o m

Fig 1: An example of searchable email system

To support multiple Boolean encrypted keywords, such as conjunction operation, we consider a mail server, shown in
Figure 1, which retrieves a stream of email encrypted messages, each email will be defined some keyword fields, like

”From”, ”Date” and ”Status”. Before sending the message, the sender, for example Jack, should encrypt the message

content by using a public key encryption algorithm with the recipient’s public key, and then adds some additional

encrypted keywords of the above keyword fields, like ”Jack”, ”11/02/2008” and ”secret”. When the recipient wants to

retrieve the encrypted messages which are sent by ”Jack” at ”11/02/2008” and having ”secret” status, rather than

retrieving all messages from ”Jack”, he sends a ”trapdoor” with multi keywords ”Jack” AND ”11/02/2008” AND ”secret” to
the mail server which in turn routes the corresponding encrypted emails to receiver without learning any information.

Existent schemes for conjunctive keywords search ([11] and subsequent works) were supporting keyword fields in the
index. This setting is not useful and much more difficult to search in most systems, such as the database text and the body
of e-mail.

Despite the efficiency of Public-key Encryption with Keyword Search scheme PEKS[4], there are some important cases
relating the use of PEKS, which were studied in[18]. One of these cases is that the scheme did not support the notion of
the multiple keywords search.

Our proposed solution to solve the above problem is to define a secure scheme of public key encryption with keyword field
free conjunctive keyword searches (PKE-KFF-CKS) that allows conjunctive keyword search queries on encrypted data
without needing to specify the positions of the keywords (hide the keywords positions from the querier) where the
keywords can be in any arbitrary sequence. Furthermore, instead of giving the server one trapdoor for each keyword in the
conjunction, we combine individual keywords to make them regarded as one keyword, this can be done using the template
concatenation function w1||w2||…||wm without needing for conjunctive search mark , the cloud server cannot know the

number of keywords, in other meaning if the users want to retrieve the documents that contain a set of keyword, they have
not to repeatedly perform the search protocol for m keywords times. Also, we show that our scheme is secure against
adaptive chosen-keyword attacks in the random oracle model ROM under the Bilinear Diffie Hellman assumption.

1.1. Main Contributions

Our main contributions can be summarized as:

(1) Our scheme dealing with keyword field-free conjunctive keyword searches, we design a novel algorithm that converts
the conjunctive keywords search to a single keyword search and consequently the model cannot support the posting
list intersection protocol. With this new scheme, we can greatly reduce the search time and the storage cost of the
searchable index.

(2) Creating Indistinguishability-Chosen Keyword Attack (IND-CKA) secure index using a bloom filter for each file in a
collection of files.

(3) Security of our scheme based on the Bilinear Diffie-Hellman assumption.

1.2. Previous Work

Song, Wagner, and Perrig [1] first proposed the notion of searchable encryption for a single-user. They introduced a
scheme in the symmetric key setting, which encrypts each word of a document separately. Goh [7] proposed a method for
secure index using the Bloom filters. Each keyword is processed using the keyed hash function f as the pseudo-random
function and then inserted into a Bloom filter. The trapdoor consists of an indicator of that which bits in the Bloom filter
should be tested. In the public key setting, Boneh et al.[4] first proposed public key module for keyword search, where
anyone can use public key and write to the data stored on remote server, but only authorized users with the secret key
can search. Furthermore, the keyword security could not be protected in the public key setting since remote server could
encrypt any keyword with public key and then use the received trapdoor to evaluate this ciphertext. However, these above
approaches focus only on single keyword search. To improve search functionalities, many boolean keyword search
schemes over encrypted data have been proposed. Obviously, there are two naive solutions to achieve conjunctive
keyword search: the first is to get the intersection of all sets of documents where each set is the searching result for every
keyword in the conjunctive; the second is to define a meta-keyword for every possible keywords conjunction. The first

 I S S N 2 2 7 7 - 3 0 6 1
V o l u m e 1 5 N u m b e r 1 4

I N T E R N A T I O N A L J O U R N A L O F C O M P U T E R S & T E C H N O L O G Y

7 4 2 5 | P a g e

D e c e m b e r , 2 0 1 6 w w w . c i r w o r l d . c o m

work for conjunctive keyword-searchable encryption was proposed by Golle et al.[11], their works consisted of two
schemes: the first scheme compares two hash codes of the keywords to find the required documents, the transmission
cost of the trapdoors is very high. The second scheme tests two outputs of bilinear pairing constructed from input
keywords and checks if the keywords are included in the document. Boneh and Waters [19] introduced a public key CKS
scheme from a generalization of anonymous identity based encryption. Their paper supports comparison queries and
general subset queries. Byun et al. [20] presented an efficient scheme using bilinear pairings, which has a constant size of
trapdoors and requires two pairing operations per document for searching. The scheme is more efficient than both
schemes by Golle et al.[11] in terms of communication overhead, but it has higher computational overhead for the
encryption process of each document by requiring as many pairing operations as the number of the associated total
keywords. Ryu and Takagi [21] introduced an efficient scheme for conjunctive keyword searches where the size of the
trapdoors for several keywords is nearly the same as for a single keyword. They use asymmetric pairings in groups of
prime order. The encryption process requires one pairing per document and the server has to perform two pairings per
document to search. Hwang and Lee [12] introduced a public key encryption scheme with conjunctive keyword search
(PECK) and gave a new concept called multiuser PECKS. The notion of their scheme is to minimize the communication
and storage overhead for the remote server and also for the user.

Recently Wang et al. [22] proposed the first keyword-field-free conjunctive keyword search scheme KFF-CKS for dynamic
groups that is proven secure in the ST model. The notion is to remove the keyword fields by using a bilinear map per
keyword per document index.

1.3. Security Requirements

1. Data security [23]: when the data owners encrypt the keywords and the message using the authorized user’s public
key, only the corresponding secret key can decrypt the content, that mean no one could derive the embedded
keywords from the cipher-text.

2. User authentication: After encrypting, no information can be extracted from the trapdoor and the ciphertexts, but the
remote server still has to check whether the users who send the trapdoor are the authorized users. [24,25,26].

3. Trapdoor security [23]: Whenever the receiver wants to search the encrypted data, he sends the trapdoor containing
the corresponding keywords to the remote server; other users can get nothing from the trapdoor even if the trapdoors
are obtained by the adversaries.

4. Against off-line keyword-guessing attack: any proposed security scheme should stand against outside adversaries
and inside attackers (malicious servers) [10,12].

1.4. Outline

The rest of the paper is organized as follows. Section 2 introduces the preliminaries. Then we provide the outline of the
proposed work, notations, semantic security of the PKE-KFF-CKS scheme and construction of PKE-KFF-CKS in Section
3. Section 4 gives the security analysis, performance and comparisons. Finally, Section 5 introduces the brief conclusions.

2. PRELIMINARIES

2.1. The Bilinear Pairings and Complexity Assumptions

We briefly show theoretical background and complexity assumptions that used throughout our paper.

(1) Bilinear maps: Let and be two cyclic groups of prime order q. ̂ be a map which satisfies the

following properties:

 Bilinear: for all and , ̂() ̂

 Non-degenerate: there exist such that ̂ , where 1 is the identity of .

 Computable: for all is computable in polynomial time.

(2) Bilinear Diffie-Hellman (BDH) problem: given , output ̂ .

An algorithm solves BDH problem with the probability if Pr[() = ̂] ́, where the probability is

over the random choice of generator
 , the random choice of

 and random coins consumed by .

2.2. Outline of the Conjunctive Keyword Searchable Encryption [11].

A conjunctive keyword searchable encryption (CKSE) consists of the following four algorithms:

 KeyGen(k): It is run by the data owner to initiate the scheme. It takes a security parameter k, and returns a secret
key SK.

 Enc(SK,Di): It is run by the data owner to create searchable ciphertexts. It takes a secret key SK and a document
Di= {Wi,1, ...,Wi,m} as inputs, and returns a ciphertext Ci which is a conjunctive keyword searchable encryption of Di.

 I S S N 2 2 7 7 - 3 0 6 1
V o l u m e 1 5 N u m b e r 1 4

I N T E R N A T I O N A L J O U R N A L O F C O M P U T E R S & T E C H N O L O G Y

7 4 2 6 | P a g e

D e c e m b e r , 2 0 1 6 w w w . c i r w o r l d . c o m

 Trapdoor(SK,{j1,…, jl},{Wj1,…,Wjl}): It is run by the data owner to create a trapdoor for given keywords. It takes a
secret key SK, keyword field indices j1,…, jl () and keywords Wj1 , ...,Wjl as inputs, and returns a trapdoor
value T.

 Test(T,Ci): It is run by the remote server in order to search for the documents containing some specific keywords. It
takes a trapdoor T=Trapdoor(SK,{j1,…, jl}, {Wj1 ,…,Wjl}) and a ciphertext Ci = Enc(SK, Di) as inputs, and returns true if

the condition ((Wi,j1 = Wj1) (Wi,j2 = Wj2) … (Wi, jl = Wjl)) holds and false otherwise.

2.3. Outline of the PEKS scheme [4].

A public key encryption with keyword search (PEKS) scheme consists of the following algorithms:

(1) KeyGen(): Takes a security item as input, and creates a public/private key (Rpub, Rpriv) for the receiver.

(2) PEKS(Rpub,W) : Given Receiver’s public key Rpub and a word W, computes a searchable encryption S for W.

(3) Trapdoor(Rpriv,W): Given Receiver’s private key Rpriv and a keyword W, computes a trapdoor TW for W.

(4) Test(Rpub,S,TW): Given Receiver’s public key Rpub, a searchable encryption S=PEKS(Rpub,), and a trapdoor TW

Trapdoor (Rpriv,W), outputs ’yes’ if W =
 and ’no’ otherwise.

IND-CKA game:

 KeyGen: The challenger runs the KeyGen() algorithm to create the public key pk and the secret key sk. He gives
pk to the attacker, while sk is kept secret from him.

 Phase 1: can adaptively ask for the trapdoor TW for any keyword W of his choice.

 Challenge: At some point, sends two words W0,W1 on which it wishes to be challenged. The only restriction is that

 did not previously ask for the trapdoors TW0 or TW1. picks a random b and gives the attacker
 =PEKS(pk,Wb) as the challenge PEKS ciphertext.

 Phase 2: The attacker continues to ask for trapdoors TW for any keyword W of his choice as long as W , W0,W1.

 Response: Finally, outputs and wins the game if .

Such an adversary is called an IND-CKA adversary. ’s advantage in attacking the scheme is defined as the

following function of the security parameter :

| [] |

The probability is over the random bits used by the challenger and the adversary. A PKES scheme is IND-CKA

secure if for any polynomially time adversary, is negligible.

2.4. Bloom Filter BF

Bloom filter is a space-efficient data structure which is used to check whether an element is a member of a set. Burton H.
Bloom [27] introduced this data structure in 1970. BF is used to test whether an element s is a member of a set F =
(w1,…,wn). The set F is coded as an array BF of x bits, where all bits are initially set to 0. The filter uses r independent

hash functions h1,…,hr, to map items into a domain between 0 and x-1. For each element wi F where 1 i n, the array

bits at the positions h1(wi),…,hr(wi) are set to 1. Note that, a location may be set to 1 multiple times. The elements
themselves are not stored in BF, only their membership may be queried by an application. To determine if a word s F,

we check whether the bits at positions h1(s),…, hr(s) in BF are all 1. If any bit is 0, then s F. Otherwise, we say F with

high probability.

A false positive is possible which can be controlled by changing the filter length x as follows:

where n is the number of elements, FPR is the user defined False Positive Rate, (FPR) can be approximated as:

False positive matches are possibly occurred, but false negatives are not, thus a Bloom filter has a 100% recall rate.

The amount of space required to store bloom file is significant less compared to data structures, such as self-balancing
binary search trees, hash tables, or simple arrays or linked lists, etc.

The time required either to add elements or to check whether an element is in the set or not is a completely independent
of the number of elements already in the set. We just need to find the r indexes using r hash functions. In a hardware
implementation, the Bloom filter regards as a perfect scheme because its r lookups are independent and can be

parallelized.

3. OUTLINE OF THE PROPOSED SCHEME

 I S S N 2 2 7 7 - 3 0 6 1
V o l u m e 1 5 N u m b e r 1 4

I N T E R N A T I O N A L J O U R N A L O F C O M P U T E R S & T E C H N O L O G Y

7 4 2 7 | P a g e

D e c e m b e r , 2 0 1 6 w w w . c i r w o r l d . c o m

3.1. Notations

 D: the collection of n plaintext document to be outsourced, denoted as D = {D1, D2,…,Dn}.

 ID: the collection of n documents identifiers, denoted as ID = {ID1, ID2,…, IDn}.

 EncDoc: the collection of n encrypted data documents stored in the remote server, denoted as EncDoc = {EncD1,
EncD2,…, EncDn}.

 DecDoc: the collection of n decrypted data documents stored in the remote server, denoted as DecDoc = {DecD1 ,
DecD2 ,…, DecDn}.

 EncD: the collection of k retrieved documents from the remote server contained the conjunctive keyword, denoted as
EncD = {EncD1 , EncD2 ,…, EncDk}.

 WD: the collection of s distinct keywords extracted from each document Di in collection D, denoted as WD =
{w1,w2,…,ws}.

 WDi: the collection of m distinct keywords per trapdoor extracted from each document Di in collection D, denoted as
WDi = {w1,w2,…, wm}.

 P: the collection of possible permutation extracted from keywords sequence WDi, denoted as P = {per1, per2,…, perm!}.

 Perj: the collection of m keywords regards as one keyword using concatenation operation, denoted as perj =
fw1||w2||…||wm}, j = 1…m!.

 Q: the collection of l keywords in a search request, denoted as Q = {q1, q2,…, ql}.

 Tq: the trapdoor for l conjunctive queried keywords denoted as Tq = {q1||q2||…||ql}.

 ID: the collection of n indexes IDi , denoted as ID = {ID1 , ID2 ,…, IDn }.

3.2. Semantic Security of the PKE-KFF-CKS Scheme.

The proposed scheme is semantically secure (indistinguishability) against an adaptive chosen keyword attack IND-CKA if
every PPT (Probabilistic Polynomial Time) attacker has a negligible advantage. PKE-KFF-CKS consists of two public key
encryption algorithms, i.e., algorithms BuildIndex and DocEncrypt, where BuildIndex algorithm closely follows the PEKS
algorithm. Therefore, we define security for the PKE-KFF-CKS scheme in the sense of semantic security of [4] as follows:

Given the security parameter), the challenger calls the key generation algorithm KeyGenerator() to generate secret

key Usk and public key Upub, then he sends Upub to and keeps Usk to itself. Let be an adversary that can adaptively ask

the challenger for the trapdoor TW for any keyword W of it’s choice, where W = {w1||w2||…||ws}. Firstly, chooses
two sets of conjunctive words W0 = {w01||w02||…||w0s} and W1={w11||w12||…||w1s}, which are not to be asked for the trapdoors

TW0 or TW1 previously, and sends them to the challenger. Then picks a random and creates the secure index Iw

using the BuildIndex algorithm and gives the attacker W = {Upub, Iw }. can continue to ask for trapdoors TW for any

keyword W = {w1||w2||…||ws} of his choice as long as W W0,W1. Finally, outputs a guess and wins the game if
 .

We define ’s advantage in breaking the PKE-KFF-CKS scheme as:

| [] |.

3.3. Construction of PKE-KFF-CKS

Contrary to Golle et al. scheme[11] we do not target the fixed field keyword; we rather consider an enhanced query model
consisting of Boolean expression on keywords expressed in the conjunctive form without needing to specify the positions
of the keywords where the keywords can be in any arbitrary order.

In our model, we have the data owner O, the data user U and the cloud server S. Let D be a document collection
consisting of n documents, where IDi is a unique document identifier. O extracts m keywords from each document Di as
W={w1,w2,…,wm} and combines them as one keyword with different m! possible permutations P={per1, per2,…,perm!},

where each permutation set perj has m combined keywords, Perj = {w1||w2||…||wm} where j [1,m!]. For example, if m = 3

keywords, and the keywords are A,B,C. The Owner creates 6 different permutations of keywords sequence and each
permutation, consists of three keywords, regards as one keyword using concatenation operation PABC={(A||B||C); (A||C||B);
(B||A||C); (B||C||A); (C||A||B); (C||B||A)}. Based on Goh et al. [7], we use a Bloom Filter as a per document index to track
the conjunctive keyword in each document, each bloom filter represents a set of m! possible permutations P of m
keywords sequence. This is best shown by the toy example illustrated in Figure 2, where 6 permutations are actually
stored in a Bloom filter with 3 hash functions. After that O encrypts each bloom filter and sends it with the encrypted
documents to S.

 I S S N 2 2 7 7 - 3 0 6 1
V o l u m e 1 5 N u m b e r 1 4

I N T E R N A T I O N A L J O U R N A L O F C O M P U T E R S & T E C H N O L O G Y

7 4 2 8 | P a g e

D e c e m b e r , 2 0 1 6 w w w . c i r w o r l d . c o m

Fig 2: A Toy Example of Bloom Filter

When the data user wants to retrieve the document IDi that has the following keywords (A and B and C), he can create a
trapdoor in arbitrary order as one search token, that’s mean he can send one of the following combined keywords
(A||B||C), (A||C||B), (B||A||C), (B||C||A), (C||A||B) or (C||B||A) as a query to the remote server. Then the server tests the
Bloom filter against the trapdoor and retrieves the associated matched document to the U without needing for the posting
list intersection protocol.

Our scheme consists of six algorithms KeyGenerator, BuildIndex, DocEncrypt, TrapdoorGen, SearchIndex and
DocDecrypt which are scattered between two phases, Sender Phase and Retrieval Phase.

3.3.1. Sender Phase

This phase includes three algorithms as detailed below:

1: Key generator: The data owner O initiates the scheme by using KeyGenerator() algorithm. This algorithm takes the

security parameter as input to obtain the public parameters PP={Upub,Opub,V,q, , ̂ , } and the private keys
PR={Upr,Opr}.

2: Index construction: For each document Di D, O dedicates a secure index IDi, which is stored at the service provider

that will help O perform a keyword search by calling BuildIndex(Di,WDi,PP,Opr). Each document Di comprising of an

unique identifier IDi . Firstly, to protect the document Identifiers IDi, O encrypts this IDi with El Gamal encryption
technique, such technique assurances that if the same document identifier is encrypted multiple times, it will create
different ciphertexts but all decrypted to the same value. Then O creates one Bloom filter BF for each document, this
filter consists of an array of x-bits, and uses r independent hash functions h1,…,hr. The filter allows the data owner to
perform keyword searches efficiently, but could result in some false positive retrieval. A classical Bloom Filter may
reveal information about the contents of the document since the hash functions are publicly known. So, in our work a
suitable solution to create a searchable index using Bloom Filter is to instead index each conjunctive keyword by its
encrypted image. To do so, we apply bilinear maps on elliptic curves, we use two groups and of prime order q

and a bilinear map ̂ , also we need three hash functions
 , and

 . The owner creates m! possible permutations of these keywords sequence P = {per1, per2,…, perm!}
and makes each permutation perj looks like one keyword using concatenation operation as perj = {w1||w2||…||wm}

where j [1,m!]. We use such a bilinear map with each permutation perj as Encperj = (̂(Upub, (perj)
a
)). Then the

BFIDi will be constructed using the hash values on the conjunctive string hz(Encperj), z = 1,…, r, instead of applying the
hash values on perj directly. After that the array bits at the positions h1(Encperj),…, hr(Encperj) are set to 1. Finally, O
stores the encrypted ID EncIDi and associated bloom filter BFIDi in IDi.

In Bloom Filter, the number of 1s is reliant on the number of BF entries, in this case, the number of different
permutations. As a consequence, the scheme reveals the number of keywords in each document. To avoid this
problem, padding number of dummy keywords may be used to make sure that the number of 1s in the Bloom Filter is
nearly the same for various documents. Padding process is costly compared to the scheme without it because the
higher rate of false-positive.

3: Document collection encryption: To protect data privacy and undesired accesses, the document collection should
be encrypted before outsourcing them onto remote servers which are not within their trusted domains. To do so, O
calls DocEncrypt(D,PP,Opr) algorithm to encrypt each file Di D using El Gamal encryption technique.

The final step in the sender phase algorithm is sending the ID and encrypted documents EncDoc set to remote server.

The algorithms 1,2 and 3 below show the key generator algorithm, build index algorithm and document set encryption
algorithm respectively.

Algorithm 1- KeyGenerator()

Given a security parameter
 which determines the size of and , the algorithm works as follows:

1: generate a prime q, two groups , of order q and a bilinear map ̂ .

2: select a random generator of .

3: pick a random
 as a private key, Upr = , for user and calculate the corresponding public Upub = .

4: pick a random

 as a private key, Opr = , for owner and calculate the corresponding public Opub = .

5: pick a random
 as an escrow key, and calculate V = .

 I S S N 2 2 7 7 - 3 0 6 1
V o l u m e 1 5 N u m b e r 1 4

I N T E R N A T I O N A L J O U R N A L O F C O M P U T E R S & T E C H N O L O G Y

7 4 2 9 | P a g e

D e c e m b e r , 2 0 1 6 w w w . c i r w o r l d . c o m

6: select three hash functions
 , and where and are random

oracles.

7: select hash functions for the bloom filter = {h1,…,hr}.

8: output(public parameter PP={Upub,Opub,V,q, , ̂ , }, private key PR={Upr,Opr}).

Algorithm 2: BuildIndex(Di,WDi,PP,Opr)

The algorithm is executed by the owner O to encrypt the conjunctive keyword WDi and produce a searchable encrypted
index IDi as follows:

1: encrypt the IDi using El Gamal cipher under O’s private key and U’s public key Upub as EncIDi =IDi (G
a
), where

G= ̂(Upub,V).

2: compute the length x of the Bloom filter BFIDi as in equation (1).

3: initialize the Bloom filter BFIDi of x zero-bits.

4: generate m! permutations of conjunctive keyword from m keywords P = {per1, per2,…, perm!}.

5: for each perj for j [1,m!] do

6: encrypt perj, set the encrypted keyword as = ̂(Upub, (perj)
a
).

7: EncW = ().

8: for z = 1 to r do

9: calculate independent hash functions: bz = hz(EncW)

10: set BFIDi [bz] = 1.

11: end for

12: end for

13: pad number of dummy keywords.

14: store {EncIDi , BFIDi } in IDi.

15: return the index IDi as the index for Di.

Algorithm 3: DocEncrypt(D,PP,Opr)

The algorithm is executed by the owner to encrypt the plaintext of D as follows:

1: for each document Di D for i [1,n] do

2: encrypt the plaintext of Di using also El Gamal cipher under O’s private key a and U’s public key Upub as EncDi = Di
 (G

a
), where G= ̂(Upub,V).

3: end for.

4: return EncDoc.

3.3.2. Retrieval Phase

This phase includes three algorithms as detailed below:

1: Trapdoor Generator: To retrieve only the documents containing keywords Q, the data user U has to ask the O for
public key Opub to generate trapdoors; If O is offline these owners’ data can’t be retrieved in time. If not, U will get the
public key Opub and create one trapdoor for a conjunctive keyword set Q = {q1, q2,…, ql}, using TrapdoorGen(Q,PP,Upr)
algorithm. Firstly, the data user combines the conjunctive query to make them look like one query, Tq = {q1||q2||…||ql},
then U will compute the trapdoor of the search request of concatenated conjunctive keyword Tq under his private key
b, Tw = (Tq)

b
 . Finally, U submits Tw to the cloud server.

2: Search Index: Upon receiving the trapdoor Tw, server will call the SearchIndex(IDi,Tw,PP) algorithm on each

searchable index and return the associated Bloom filter BFIDi , then compute T= (Opub,Tw) and independent
hash functions hi(T) where i = 1…r. Then S test BF in all r locations, if all r locations of all independent hash functions
in BF are 1, the remote server returns the relevant encrypted file corresponding the IDi to U. In other words,
searchable index ID can be used to check set membership without leaking the set items, and for accumulated hashing.

3: Document collection decryption: Once U receives the encrypted files from cloud server, he calls

DocDecrypt(EncD,PP,Upr) algorithm to decrypt each retrieved document EncDi EncD using El Gamal encryption
technique.

The algorithms 4,5 and 6 below show the trapdoor generator algorithm, search index algorithm and document set
decryption algorithm respectively.

 I S S N 2 2 7 7 - 3 0 6 1
V o l u m e 1 5 N u m b e r 1 4

I N T E R N A T I O N A L J O U R N A L O F C O M P U T E R S & T E C H N O L O G Y

7 4 3 0 | P a g e

D e c e m b e r , 2 0 1 6 w w w . c i r w o r l d . c o m

Algorithm 4: TrapdoorGen(Q,PP,Upr)

The algorithm is executed by the user to generate a trapdoor as follows:

1: create the combined keywords set as Tq = {q1||q2||…||ql}.

2: compute trapdoor under U’s private key as: Tw= (Tq)
b

3: send the generated trapdoor Tw to the server.

Algorithm 5: SearchIndex(IDi,Tw,PP)

The algorithm is executed by the server S to determine whether a given Index IDi contains a conjunctive keyword Tq as
follows:

1: compute T = (̂(Opub,Tw)).

2: calculate independent hash functions: h1(T), h2(T),…, hr(T).

3: for each IDi

4: if all r locations of all independent hash functions in BFIDi are 1, then return the relevant encrypted document EncDi to U.

5: end for

Algorithm 6: DocDecrypt(EncD,PP,Upr)

The algorithm is executed by the user to decrypt the encrypted documents

1: for each retrieved document EncDi EncD for i [1,k] do

2: decrypt the ciphertext of EncDi using El Gamal cipher under U’s private key and O’s public key Opub as DecDi = EncDi

 (̂(Opub,V)
b
).

3: end for

4: return DecD.

4. ANALYSIS

4.1. Security Analysis

Theorem 4.1. The proposed PKE-KFF-CKS scheme is semantically secure against chosen keyword attacks under the

BDH assumption.

Proof. Suppose there is an attack algorithm that has advantage in breaking our scheme. Suppose makes qH2 hash

queries to and qT trapdoor queries. Then we built an algorithm that solves the BDH problem with the advantage at

least = / ((m!) qT +1) where m! is the number of conjunctive keyword sets. Algorithm is given (q, , , ̂ , ,).

It’s goal is to compute ̂ ()
abc

 . sets = , = , = , where , , are random elements in .

- KeyGen: sends [,] as the public key to .

 , -Hash queries. To respond to queries, the challenger maintains a list of tuples <Wj,hj> called the -list.

The list is initially empty. When the attacker issues a hash query for a conjunctive keyword Wi = {w1||w2||…||ws},

algorithm checks whether Wi = Wj, if so, algorithm answers consistently with the previous queries by responding

with (Wi)=hi. And the corresponding pair (Wi,hi) has to be saved in memory for future use. Otherwise, generates a

random coin i {0,1} so that Pr[i = 0] = 1/(qT +1), then selects a random element i , if i =0, computes hi =

 .
 =

 = , otherwise, computes hi = , adds the tuple <Wi,hi> to -list, and responds to with
 (Wi)=hi. can construct the searchable index ID, using as a part of BDH challenge, by executing the algorithm

BuildIndex(D,Wi,PP,PR). Then it returns the index ID to .

To answer queries from , the algorithm maintains a list of tuples < j, j> called the - list. The list is initially

empty. When queries at a point of Q’j , checks weather i = j. If so, responds to with () = j, where

 {0,1}
logq

 . Otherwise chooses a random element i, adds the tuple < i, i> to -list, and answers with

 (i)= i.

- Trapdoor queries. can use the algorithm trapdoor(Q,PP,PR) to issue the trapdoor Tw corresponding the

conjunctive keyword query Tq={q1||q2||…||ql}. Tw is a valid trapdoor for Q, because uses the same value for the

conjunctive keyword Q under the public key [,].

- Challenge. Algorithm picks and sends a pair of conjunctive keyword W0={w01||w02||…||w0s} and

W1={w11||w12||…||w1s} to on which it wishes to be challenged, and must not have asked previously for the

trapdoors of any conjunctive word W0 or W1. For each conjunctive keyword Wi where i {0,1}, algorithm calls the

above random oracle algorithm for responding to -queries to obtain hi , where (Wi)=hi. Let <Wi,,hi> be the

corresponding tuple on the -list, if both 0 and 1 are not 0 then reports failure and terminates. Otherwise, both 0

and 1 are equal to 0, creates a random coin {0,1} If only one is equal to 0 then no randomness is needed.

 I S S N 2 2 7 7 - 3 0 6 1
V o l u m e 1 5 N u m b e r 1 4

I N T E R N A T I O N A L J O U R N A L O F C O M P U T E R S & T E C H N O L O G Y

7 4 3 1 | P a g e

D e c e m b e r , 2 0 1 6 w w w . c i r w o r l d . c o m

Since is given , ,
 as part of BDH challenge, creates the secure index ID by executing the algorithm

BuildIndex(D,W ,PP,PR) and sends the challenge =[,ID] to . The index includes s! encrypted permutations of W ,

T = (̂((W),)), that means T = (̂(,)) = (̂() {0,1}
logq

 . BF =h1(T), h2(T),…, hr(T) if all

r locations of all independent hash functions in BF are 1, then is a valid encryption for W as required.

- More queries. After the above challenge query, is allowed again to query with the same restriction that Wi

W0,W1, responds to these queries in the same way as before. Upon receiving the challenge, can call the
algorithm SearchIndex(ID,Tw,PP) on the secure index ID to determine if the conjunctive keyword in the ID is the same
of W or not. does not know the private key that is chosen independently of any conjunctive keyword, that’s mean,

at this stage, has no solution to distinguish the from 0 or 1.

- Output. Finally, returns its guess ’ {0,1} indicating whether the challenge is the result of encryption process

for W0 or W1. As this point, algorithm selects a random pair (,) from the -list and returns as its guess
for ̂()

abc
, A must have deliver his query for either (̂(W0,)) or (̂(W1,)). Hence, with probability 1/2 -list

includes a pair whose left hand is = ̂(W ,)= ̂(. If selects this pair () from the -list then

 /
 = ̂()

abc
 as required.

To complete the proof of theorem (4.1), we now use the same approach as in [4] to analyze the probability that does not

abort during the above experiment. We define the following three events:

- Ev1: does not abort during the Trapdoor queries.

- Ev2: does not abort during the Challenge queries.

- Ev3: does not issue a query for either (̂(, (W0))) or (̂(, (W1))).

We suppose that both events Ev1 and Ev2 occur with sufficiently high probability. Let we consider the first event Ev1, the

probability of Ev1 is (1-1/(qT +1)
qT) 1/e, where 1/(qT +1) is the probability that a trapdoor query makes to abort.

For the second event Ev2, the algorithm does not abort during the challenge phase if one of 0 and 1 is 0. By the

definition of -list Pr[i] =1/(qT +1) where i {0,1} and the two values are independent of one another, we have that both

Pr[0 = 1 = 1] =1-1/qT (1-1/(qT+1))
2
. Hence, the Pr[Ev2] is at least 1/qT . Since never issues trapdoor queries for target

keyword vectors, Ev1 and Ev2 are independent. Hence, the probability that does not abort during the entire simulation,

that is Pr[Ev1 Ev2] 1/(eqT).

For the last event, when Ev3 occurs, the bit {0,1} indicating whether the challenge, an encryption of W0 or W1, is

independent of ’s view

Pr[=]= Pr[= |Ev3] Pr[Ev3] + Pr[= | Ev3]Pr[Ev3]

 Pr[= |Ev3] Pr[Ev3] + Pr[Ev3]

=

Pr[Ev3] + Pr[Ev3]

=

 Pr[Ev3]

It follows that |Pr[=] – 1/2| 1/2 Pr[Ev3].Hence, Pr[Ev3] By Ev3, if does not abort during the simulation, it

will choose a correct tuple in -list with probability at least 1/qH2 , and will produce the correct answer with probability at

least /qH2. Overall by combining Ev1, Ev2 and Ev3, we have 's success probability is at least /eqTqH2.

4.2. Performance

1. Time Efficient: In the former works, when the user U wants to retrieve documents containing each of several

keywords, he must give the server trapdoors for each of the keywords individually and rely on an intersection
operation. This solution is not desirable, it requires O(n) m search time, where n is the number of documents and m is
the number of keywords in conjunctive string. In other words, the sever needs O(n) search time for each keyword in
conjunctive string. While in our work, the user computes one trapdoor for all conjunctive keyword and sends it to the
remote server and with one round over all conjunctive keywords, a server calls SearchIndex algorithm once on each
trapdoor. Documents whose indexes match trapdoors are returned to U. The overhead of such Boolean queries is

linear with the number of keywords in the Boolean expression, but can be completed with a one round over the
document without needing intersection operation, whereas the naive solution of performing such boolean queries
involves multiple rounds over the document. Hence the proposed scheme, based on Bloom filters [7], requires O(n)
search time for all keywords in conjunctive string, and O(1) for communication cost. The scheme tests each BF only

once per search. in other words, the time required to check whether a conjunctive keyword is present or not is
independent of the number of keywords present in the set, we just need O(n) to find the r indexes using r hash
functions.

The overall performance of our scheme includes the cost of index construction and the time necessary for searches.
Updating or adding the documents require calling BuildIndex algorithm, which has cost linear in the size of the
documents, while deleting the documents requires a constant time computation.

2. Space Efficient: Using Bloom Filter makes the required space to represent PKE-KFFCKS is sufficiently less as

compared to other data structures like hash tables, linked lists, arrays, etc. a Bloom filter BF requires a fixed number of

 I S S N 2 2 7 7 - 3 0 6 1
V o l u m e 1 5 N u m b e r 1 4

I N T E R N A T I O N A L J O U R N A L O F C O M P U T E R S & T E C H N O L O G Y

7 4 3 2 | P a g e

D e c e m b e r , 2 0 1 6 w w w . c i r w o r l d . c o m

bits to store all the items. Hence the server storage cost that required to store the Index ID is O(n) which is very small
compared to the amount of data.

Fig 3: Time cost of query for different size of the file
collection with the fixed keywords number m=5 in the

query

Fig 4: Time cost of query for different size of the query
collection in the same dataset, n= 500.

4.3. Experimental Evaluation

Figure 3 demonstrates the time consumption of a remote server for performing a search query with both normal
conjunctive search and PKE-KFF-CKS on the encrypted Bloom filter. Obviously, with the increasing of the number of files
n, the time spend using the proposed scheme is much less than the time spend using normal conjunctive search, in other
words, the efficiency of PKE-KFF-CKS is far higher than normal conjunctive search method. Figure 4 shows that the time
consumption using the normal conjunctive search grows linearly with the size of the query collection m, while the time
consumption using the proposed scheme has little impact with the size of the query collection m, where the number of the
keywords in the query m increases from 5 to 30. Furthermore, while the search cost is linear with the number of query
keywords in other conjunctive keyword search schemes [11,19], PKE-KFF-CKS introduce nearly constant overhead while
increasing the number of the keywords in the query.

Table 1. Comparison of security assumption and other attributes

Scheme Security assumption
Keyword
filed free

Using in
unstructured

data
Index generation User

Golle et al.-I [11]
IND1-CKA under DDH in the

ROM
 -

single
user

Golle et al. -II [11]
IND1-CKA under new
nonstandard hardness

assumption
 -

single
user

Ballard et al. [9]
IND1-CKA based on the
security of SSS in the ST

uses a pseudorandom

function per keyword

single
user

Byun et al. [20]
IND1-CKA under BDH in

ROM
 -

single
user

Wang et al. [22]
IND1-CKAt under DL, 1-DDHI

in ST

uses l-degree polynomial per
document and compute l

hash functions

multi
user

Ryu et al. [21]
IND1-CKA under coXDH in

ROM
 -

single
user

Cash et al. [14] IND2-CKA under DDH
uses pseudo – random

function and hash function
multi
user

Our scheme
IND1-CKA under BDH in

ROM

uses Bloom filter and hash
function

single
user

4.4. Comparisons

 I S S N 2 2 7 7 - 3 0 6 1
V o l u m e 1 5 N u m b e r 1 4

I N T E R N A T I O N A L J O U R N A L O F C O M P U T E R S & T E C H N O L O G Y

7 4 3 3 | P a g e

D e c e m b e r , 2 0 1 6 w w w . c i r w o r l d . c o m

We compare our scheme to the previous conjunctive keyword schemes in terms of security assumption with other
attributes in Table 1. The table is arranged by the query expressiveness. The first column shows the paper and reference.
The ”security assumption” column shows the security definitions, assumptions, and if ROM is used to prove the secure of
the scheme. The ”keyword field free” column shows whether the scheme uses the fixed-position keyword field keyword
search or the keyword field free keyword search. The ”using in unstructured data” column shows whether the scheme is
practical for using in unstructured data or not. The ”Index generation” column shows whether the construction of each
scheme is based on the index generation or not. The last column shows whether the schemes can be used with a single
or multi user. Compared with previous conjunctive keyword search schemes we show that, in the last row, just our scheme
uses the bloom filter with such a search. Finally, the last difference between these schemes and PKE-KFF-CKS is that the
formers use the different public and symmetric key encryption algorithms to encrypt the data set without specifying their
specific implementation, whereas our scheme specifies the encryption and decryption operations by using El Gamal
algorithm to encrypt D under O’s private key and U’s public key, and decrypt the encrypted document under U’s private
key and O’s public key.

ACKNOWLEDGMENTS

The author would like to thank professor Song Feng Lu (School of Computer Science and Technology, Huazhong
University of Science and Technology) for giving advice on this work and improving this paper.

REFERENCES

1. Song D., Wagner D. and Perrig A. 2000. Practical techniques for searches on encrypted data. Proc. of IEEE
Symposium on Security and Privacy.

2. Bao F., Deng R., Ding X. and Yang Y. 2008. Private query on encrypted data in multi-user settings. Proc. Of
ISPEC.

3. Bellare M., Boldyreva A. and ONeill A. 2007. Deterministic and efficiently searchable encryption. Proceedings of
Crypto, 4622 of LNCS. Springer-Verlag.

4. Boneh D., Crescenzo GD., Ostrovsky R. and Persiano G. 2004 Public key encryption with keyword search. Proc.
of EUROCRYP.

5. Chang YC. and Mitzenmacher M. 2005. Privacy preserving keyword searches on remote encrypted data. Proc. of
ACNS.

6. Curtmola R., Garay JA., Kamara S. and Ostrovsky R. 2006. Searchable symmetric encryption: improved
definitions and efficient constructions. Proc. of ACM CCS.

7. Goh EJ. 2003. Secure indexes, Cryptology ePrint Archive. http://eprint.iacr. org/.2003/216.

8. Waters B., Balfanz D., Durfee G. and Smetters D. 2004. Building an encrypted and searchable audit log. Proc. Of
1th Annual Network and Distributed System.

9. Ballard L., Kamara S. and Monrose F. 2005. Achieving efficient conjunctive keyword searches over encrypted
data. In: Qing et al. (eds.) ICICS 2005. LCS, Springer, Heidelberg vol. 3783, pp. 414-426.

10. Chen Z.,Wu C.,Wang D. and Li S. 2012. Conjunctive keywords searchable encryption with efficient pairing,
constant ciphertext and short trapdoor. In: Chau et al. (eds.) PAISI 2012. LNCS, vol. 7299, pp. 176-189. Springer,
Heidelberg.

11. Golle P., Staddon J. and Waters B. 2004. Secure conjunctive keyword search over encrypted data. In:
Jakobsson, M., Yung, M. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 31-45. Springer, Heidelberg.

12. Hwang Y. H. and Lee P. J. 2007. Public key encryption with conjunctive keyword search and its extension to a
multiuser system. In: Takagi et al. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 2-22. Springer, Heidelberg.

13. Park D. J., Kim K. and Lee P. J. 2004. Public key encryption with conjunctive field keyword search. In: Lim, C.H.,
Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp.73-86. Springer, Heidelberg.

14. Cash D., Jarecki S., Jutla C. S., Krawczyk H., Rosu M. and Steiner M. 2013. Highly- Scalable Searchable
Symmetric Encryption with Support for Boolean Queries. In Canetti, R., Garay, J. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 353-373. Springer, Heidelberg.

15. Moataz T. and Shikfa, A. 2013. Boolean symmetric searchable encryption. In: ACM ASIACCS 2013, pp. 265-276.

16. Katz J., Sahai A. and Waters B. 2008. Predicate encryption supporting disjunctions, polynomial equations, and
inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146-162. Springer, Heidelberg.

17. Lai J., Zhou X., Deng R. H., Li Y. and Chen K. 2013. Expressive search on encrypted data. In: ACM ASIACCS
2013, pp. 243-252.

18. Baek, J., Safavi Naini, R. and Susilo, W. 2008. Public key encryption with keyword search revisited. In: Gervasi,
O.,Murgante, B., LaganRa, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA (1). Lecture Notes in Computer
Science, vol. 5072, pp. 1249-1259. Springer.

 I S S N 2 2 7 7 - 3 0 6 1
V o l u m e 1 5 N u m b e r 1 4

I N T E R N A T I O N A L J O U R N A L O F C O M P U T E R S & T E C H N O L O G Y

7 4 3 4 | P a g e

D e c e m b e r , 2 0 1 6 w w w . c i r w o r l d . c o m

19. Boneh D. and Waters B. 2007. Conjunctive, subset, and range queries on encrypted data. Proc. of TCC.pp.535-
554.

20. Byun, J., Lee, D. and Lim J. 2006. Efficient Conjunctive Keyword Search on Encrypted Data Storage System, In
Proceedings of EuroPKI 2006, LNCS 4043, Springer-Verlag, pp.184-196.

21. Ryu, E. K. and Takagi, T. 2007. Efficient conjunctive keyword-searchable encryption. In AINAW. IEEE Computer
Society, Washington, DC, 409414. DOI:http://dx.doi.org/10.1109/AINAW.2007.166.

22. Wang, P., Wang, H. and Pieprzyk, j. 2008. Keyword field-free conjunctive keyword searches on encrypted data
and extension for dynamic groups. In CANS (LNCS), Vol. 5339 pp.178-195, Springer.

23. Zhang, BO. and Zhang, F. 2011. An efficient public key encryption with conjunctive-subset keywords search,”
Journal of Network and Computer Application, vol. 34, no. 1, pp. 262-267.

24. Kumar, M. 2010. A new secure remote user authentication scheme with smart cards, International Journal of
Network Security, vol. 11, no. 2, pp. 88-93, 2010.

25. Lee, C. C. 2009. On security of an efficient nonce-based authentication scheme for SIP, International Journal of
Network Security, vol. 9, no. 3, pp. 201-203.

26. Tsai, C. S. and Lee, C. C., 2006. Hwang M. S.: Pass-word authentication schemes: current status and key
issues, International Journal of Network Security,vol. 3, no. 2, pp.101-115.

27. Bloom, B. H. 1970. Space/time trade-offs in Hash Coding with Allowable Errors, in: Communications of the ACM,
http:// portal.acm.org/ citation.cfm? doid=362686.362692,Volume 13, Issue 7.

