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ABSTRACT 

Searchable encryption allows a remote server to search over encrypted documents without knowing the sensitive data 
contents. Prior searchable symmetric encryption schemes focus on single keyword search. Conjunctive Keyword 
Searches (CKS) schemes improve system usability by retrieving the matched documents. In this type of search, the user 
has to repeatedly perform the search protocol for many times. Most of existent (CKS) schemes use conjunctive keyword 
searches with fixed position keyword fields; this type of search is not useful for many applications, such as unstructured 
text. In our paper, we propose a new public key encryption scheme based on bilinear pairings, the scheme supports 
conjunctive keyword search queries on encrypted data without needing to specify the positions of the keywords where the 
keywords can be in any arbitrary order. Instead of giving the server one trapdoor for each keyword in the conjunction set, 
we use a bilinear map per a set of combined keywords to make them regarded as one keyword. In another meaning, the 
proposed method will retrieve the data in one round of communication between the user and server. Furthermore, the 
search process could not reveal any information about the number of keywords in the query expression. Through analysis 
section we determine how such scheme could be used to guarantee fast and secure access to the database. 
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1. INTRODUCTION 

Cloud computing has become the most common phenomenon in the recent years. More and more cloud services have 
flourished all around the world such as computing resource, storage space outsourcing and different kinds of software 
applications. For many reasons like low cost, efficiency, convenience, better connectivity and etc., user often stores his 
data on a remote server. Since more servers are public, there exist a lot of risks for the data in the transition process, the 
user ensures the privacy of his data by storing it in encrypted form, and then he can search the encrypted data and 
retrieve it. The first scheme of searching encrypted data by keyword was tackled by Song et al. [1]. To securely search 
through encrypted data, searchable encryption schemes have been introduced in recent years [2,3,4,5,6,7,8], which can 
be divided into two schemes: symmetric searchable encryption (SSE) and asymmetric searchable encryption (ASE). To 
perform a search on a dataset, an user creates an index of keywords listed in the documents and later on executes the 
search on the index in a way that allows the server to retrieve the documents contain a certain keyword instead of 
retrieving all the encrypted documents back which is fully impractical solution in cloud computing scenarios. Recent 
refinements and extensions to this scheme are given in[7,8]. 

The drawback of all the follow-up works is that they only allow the remote server to retrieve the documents that match a 
specific keyword, but they do not allow for Boolean combinations, conjunctive and disjunctive, of such queries. 

Most classical searchable encryption works focus only on single keyword search [4,5,6,7,1] or multiple keyword search 
[9,10,11,12,13]. In the symmetric key schemes, recently some solutions have been introduced for general Boolean queries 
on encrypted files [14,15], and there are only two related works in the public key setting [16,17]. 

There are many Boolean operations, like disjunction, conjunction and negation. In the disjunctive search, the user can 
search for encrypted documents containing: w1 or w2 or wn. While in the conjunctive search, the user can search for the 
encrypted documents containing: w1 and w2 and wn and finally in the negative search, the user can search for all encrypted 

documents which do not contain particular words. 
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Fig 1: An example of searchable email system 

To support multiple Boolean encrypted keywords, such as conjunction operation, we consider a mail server, shown in 
Figure 1, which retrieves a stream of email encrypted messages, each email will be defined some keyword fields, like 

”From”, ”Date” and ”Status”. Before sending the message, the sender, for example Jack, should encrypt the message 

content by using a public key encryption algorithm with the recipient’s public key, and then adds some additional 

encrypted keywords of the above keyword fields, like ”Jack”, ”11/02/2008” and ”secret”. When the recipient wants to 

retrieve the encrypted messages which are sent by ”Jack” at ”11/02/2008” and having ”secret” status, rather than 

retrieving all messages from ”Jack”, he sends a ”trapdoor” with multi keywords ”Jack” AND ”11/02/2008” AND ”secret” to 
the mail server which in turn routes the corresponding encrypted emails to receiver without learning any information. 

Existent schemes for conjunctive keywords search ([11] and subsequent works) were supporting keyword fields in the 
index. This setting is not useful and much more difficult to search in most systems, such as the database text and the body 
of e-mail.  

Despite the efficiency of Public-key Encryption with Keyword Search scheme PEKS[4], there are some important cases 
relating the use of PEKS, which were studied in[18]. One of these cases is that the scheme did not support the notion of 
the multiple keywords search. 

Our proposed solution to solve the above problem is to define a secure scheme of public key encryption with keyword field 
free conjunctive keyword searches (PKE-KFF-CKS) that allows conjunctive keyword search queries on encrypted data 
without needing to specify the positions of the keywords (hide the keywords positions from the querier) where the 
keywords can be in any arbitrary sequence. Furthermore, instead of giving the server one trapdoor for each keyword in the 
conjunction, we combine individual keywords to make them regarded as one keyword, this can be done using the template 
concatenation function w1||w2||…||wm without needing for conjunctive search mark  , the cloud server cannot know the 

number of keywords, in other meaning if the users want to retrieve the documents that contain a set of keyword, they have 
not to repeatedly perform the search protocol for m keywords times. Also, we show that our scheme is secure against 
adaptive chosen-keyword attacks in the random oracle model ROM under the Bilinear Diffie Hellman assumption. 

1.1. Main Contributions 

Our main contributions can be summarized as: 

(1) Our scheme dealing with keyword field-free conjunctive keyword searches, we design a novel algorithm that converts 
the conjunctive keywords search to a single keyword search and consequently the model cannot support the posting 
list intersection protocol. With this new scheme, we can greatly reduce the search time and the storage cost of the 
searchable index. 

(2) Creating Indistinguishability-Chosen Keyword Attack (IND-CKA) secure index using a bloom filter for each file in a 
collection of files. 

(3) Security of our scheme based on the Bilinear Diffie-Hellman assumption. 

1.2. Previous Work 

Song, Wagner, and Perrig [1] first proposed the notion of searchable encryption for a single-user. They introduced a 
scheme in the symmetric key setting, which encrypts each word of a document separately. Goh [7] proposed a method for 
secure index using the Bloom filters. Each keyword is processed using the keyed hash function f as the pseudo-random 
function and then inserted into a Bloom filter. The trapdoor consists of an indicator of that which bits in the Bloom filter 
should be tested. In the public key setting, Boneh et al.[4] first proposed public key module for keyword search, where 
anyone can use public key and write to the data stored on remote server, but only authorized users with the secret key 
can search. Furthermore, the keyword security could not be protected in the public key setting since remote server could 
encrypt any keyword with public key and then use the received trapdoor to evaluate this ciphertext. However, these above 
approaches focus only on single keyword search. To improve search functionalities, many boolean keyword search 
schemes over encrypted data have been proposed. Obviously, there are two naive solutions to achieve conjunctive 
keyword search: the first is to get the intersection of all sets of documents where each set is the searching result for every 
keyword in the conjunctive; the second is to define a meta-keyword for every possible keywords conjunction. The first 
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work for conjunctive keyword-searchable encryption was proposed by Golle et al.[11], their works consisted of two 
schemes: the first scheme compares two hash codes of the keywords to find the required documents, the transmission 
cost of the trapdoors is very high. The second scheme tests two outputs of bilinear pairing constructed from input 
keywords and checks if the keywords are included in the document. Boneh and Waters [19] introduced a public key CKS 
scheme from a generalization of anonymous identity based encryption. Their paper supports comparison queries and 
general subset queries. Byun et al. [20] presented an efficient scheme using bilinear pairings, which has a constant size of 
trapdoors and requires two pairing operations per document for searching. The scheme is more efficient than both 
schemes by Golle et al.[11] in terms of communication overhead, but it has higher computational overhead for the 
encryption process of each document by requiring as many pairing operations as the number of the associated total 
keywords. Ryu and Takagi [21] introduced an efficient scheme for conjunctive keyword searches where the size of the 
trapdoors for several keywords is nearly the same as for a single keyword. They use asymmetric pairings in groups of 
prime order. The encryption process requires one pairing per document and the server has to perform two pairings per 
document to search. Hwang and Lee [12] introduced a public key encryption scheme with conjunctive keyword search 
(PECK) and gave a new concept called multiuser PECKS. The notion of their scheme is to minimize the communication 
and storage overhead for the remote server and also for the user. 

Recently Wang et al. [22] proposed the first keyword-field-free conjunctive keyword search scheme KFF-CKS for dynamic 
groups that is proven secure in the ST model. The notion is to remove the keyword fields by using a bilinear map per 
keyword per document index. 

1.3. Security Requirements 

1. Data security [23]: when the data owners encrypt the keywords and the message using the authorized user’s public 
key, only the corresponding secret key can decrypt the content, that mean no one could derive the embedded 
keywords from the cipher-text. 

2. User authentication: After encrypting, no information can be extracted from the trapdoor and the ciphertexts, but the 
remote server still has to check whether the users who send the trapdoor are the authorized users. [24,25,26]. 

3. Trapdoor security [23]: Whenever the receiver wants to search the encrypted data, he sends the trapdoor containing 
the corresponding keywords to the remote server; other users can get nothing from the trapdoor even if the trapdoors 
are obtained by the adversaries. 

4. Against off-line keyword-guessing attack: any proposed security scheme should stand against outside adversaries 
and inside attackers (malicious servers) [10,12]. 

1.4. Outline  

The rest of the paper is organized as follows. Section 2 introduces the preliminaries. Then we provide the outline of the 
proposed work, notations, semantic security of the PKE-KFF-CKS scheme and construction of PKE-KFF-CKS in Section 
3. Section 4 gives the security analysis, performance and comparisons. Finally, Section 5 introduces the brief conclusions. 

2. PRELIMINARIES 

2.1. The Bilinear Pairings and Complexity Assumptions 

We briefly show theoretical background and complexity assumptions that used throughout our paper. 

(1) Bilinear maps: Let    and    be two cyclic groups of prime order q.  ̂          be a map which satisfies the 

following properties: 

 Bilinear: for all     and       ,  ̂(     )   ̂        

 Non-degenerate: there exist        such that  ̂       , where 1 is the identity of   . 

 Computable: for all            is computable in polynomial time. 

(2) Bilinear Diffie-Hellman (BDH) problem: given              , output  ̂           . 

An algorithm   solves BDH problem with the probability   if Pr[  (          ) = ̂        ]  ́, where the probability is 

over the random choice of generator     
 , the random choice of         

  and random coins consumed by  . 

2.2. Outline of the Conjunctive Keyword Searchable Encryption [11].  

A conjunctive keyword searchable encryption (CKSE) consists of the following four algorithms: 

 KeyGen(k): It is run by the data owner to initiate the scheme. It takes a security parameter k, and returns a secret 
key SK. 

 Enc(SK,Di): It is run by the data owner to create searchable ciphertexts. It takes a secret key SK and a document 
Di= {Wi,1, ...,Wi,m} as inputs, and returns a ciphertext Ci which is a conjunctive keyword searchable encryption of Di.  
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  Trapdoor(SK,{j1,…, jl},{Wj1,…,Wjl}): It is run by the data owner to create a trapdoor for given keywords. It takes a 
secret key SK, keyword field indices j1,…, jl (     ) and   keywords Wj1 , ...,Wjl as inputs, and returns a trapdoor 
value T. 

 Test(T,Ci): It is run by the remote server in order to search for the documents containing some specific keywords. It 
takes a trapdoor T=Trapdoor(SK,{j1,…, jl}, {Wj1 ,…,Wjl}) and a ciphertext Ci = Enc(SK, Di) as inputs, and returns true if 

the condition ((Wi,j1 = Wj1) (Wi,j2 = Wj2 )  …  (Wi, jl = Wjl )) holds and false otherwise. 

2.3. Outline of the PEKS scheme [4].  

A public key encryption with keyword search (PEKS) scheme consists of the following algorithms: 

(1) KeyGen( ): Takes a security item   as input, and creates a public/private key (Rpub, Rpriv) for the receiver. 

(2) PEKS(Rpub,W) : Given Receiver’s public key Rpub and a word W, computes a searchable encryption S for W. 

(3) Trapdoor(Rpriv,W): Given Receiver’s private key Rpriv and a keyword W, computes a trapdoor TW for W. 

(4) Test(Rpub,S,TW): Given Receiver’s public key Rpub, a searchable encryption S=PEKS(Rpub,  ), and a trapdoor TW 

Trapdoor (Rpriv,W), outputs ’yes’ if W =   
 and ’no’ otherwise. 

IND-CKA game: 

 KeyGen: The challenger   runs the KeyGen( ) algorithm to create the public key pk and the secret key sk. He gives 
pk to the attacker, while sk is kept secret from him. 

 Phase 1:   can adaptively ask   for the trapdoor TW for any keyword W         of his choice. 

 Challenge: At some point,   sends   two words W0,W1 on which it wishes to be challenged. The only restriction is that 

  did not previously ask for the trapdoors TW0 or TW1.   picks a random b        and gives the attacker 
 =PEKS(pk,Wb) as the challenge PEKS ciphertext. 

 Phase 2: The attacker continues to ask for trapdoors TW for any keyword W of his choice as long as W , W0,W1. 

 Response: Finally,   outputs           and wins the game if     .  

Such an adversary   is called an IND-CKA adversary.  ’s advantage in attacking the scheme   is defined as the 

following function of the security parameter : 

|             [    ]     | 

The probability is over the random bits used by the challenger and the adversary. A PKES scheme    is IND-CKA 

secure if for any polynomially time adversary,           is negligible. 

2.4. Bloom Filter BF 

Bloom filter is a space-efficient data structure which is used to check whether an element is a member of a set. Burton H. 
Bloom [27] introduced this data structure in 1970. BF is used to test whether an element s is a member of a set F = 
(w1,…,wn). The set F is coded as an array BF of x bits, where all bits are initially set to 0. The filter uses r independent 

hash functions h1,…,hr, to map items into a domain between 0 and x-1. For each element wi    F where 1  i   n, the array 

bits at the positions h1(wi),…,hr(wi) are set to 1. Note that, a location may be set to 1 multiple times. The elements 
themselves are not stored in BF, only their membership may be queried by an application. To determine if a word s   F, 

we check whether the bits at positions h1(s),…, hr(s) in BF are all 1. If any bit is 0, then s   F. Otherwise, we say   F with 

high probability. 

A false positive is possible which can be controlled by changing the filter length x as follows: 

  
           

       
                       

where n is the number of elements, FPR is the user defined False Positive Rate, (FPR) can be approximated as: 

        
   
    

False positive matches are possibly occurred, but false negatives are not, thus a Bloom filter has a 100% recall rate.  

The amount of space required to store bloom file is significant less compared to data structures, such as self-balancing 
binary search trees, hash tables, or simple arrays or linked lists, etc. 

The time required either to add elements or to check whether an element is in the set or not is a completely independent 
of the number of elements already in the set. We just need to find the r indexes using r hash functions. In a hardware 
implementation, the Bloom filter regards as a perfect scheme because its r lookups are independent and can be 

parallelized. 

3. OUTLINE OF THE PROPOSED SCHEME 
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3.1. Notations 

 D: the collection of n plaintext document to be outsourced, denoted as D = {D1, D2,…,Dn}. 

 ID: the collection of n documents identifiers, denoted as ID = {ID1, ID2,…, IDn}. 

 EncDoc: the collection of n encrypted data documents stored in the remote server, denoted as EncDoc = {EncD1, 
EncD2,…, EncDn}. 

 DecDoc: the collection of n decrypted data documents stored in the remote server, denoted as DecDoc = {DecD1 , 
DecD2 ,…, DecDn}. 

 EncD: the collection of k retrieved documents from the remote server contained the conjunctive keyword, denoted as 
EncD = {EncD1 , EncD2 ,…, EncDk}. 

 WD: the collection of s distinct keywords extracted from each document Di in collection D, denoted as WD = 
{w1,w2,…,ws}. 

 WDi: the collection of m distinct keywords per trapdoor extracted from each document Di in collection D, denoted as 
WDi = {w1,w2,…, wm}. 

 P: the collection of possible permutation extracted from keywords sequence WDi, denoted as P = {per1, per2,…, perm!}. 

 Perj: the collection of m keywords regards as one keyword using concatenation operation, denoted as perj = 
fw1||w2||…||wm},  j = 1…m!. 

 Q: the collection of l keywords in a search request, denoted as Q = {q1, q2,…, ql}. 

 Tq: the trapdoor for l conjunctive queried keywords denoted as Tq = {q1||q2||…||ql}. 

 ID: the collection of n indexes IDi , denoted as ID = {ID1 , ID2 ,…, IDn }. 

3.2. Semantic Security of the PKE-KFF-CKS Scheme.  

The proposed scheme is semantically secure (indistinguishability) against an adaptive chosen keyword attack IND-CKA if 
every PPT (Probabilistic Polynomial Time) attacker has a negligible advantage. PKE-KFF-CKS consists of two public key 
encryption algorithms, i.e., algorithms BuildIndex and DocEncrypt, where BuildIndex algorithm closely follows the PEKS 
algorithm. Therefore, we define security for the PKE-KFF-CKS scheme in the sense of semantic security of [4] as follows: 

Given the security parameter  ), the challenger   calls the key generation algorithm KeyGenerator( ) to generate secret 

key Usk and public key Upub, then he sends Upub to   and keeps Usk to itself. Let   be an adversary that can adaptively ask 

the challenger for the trapdoor TW for any keyword W         of it’s choice, where W = {w1||w2||…||ws}. Firstly,   chooses 
two sets of conjunctive words W0 = {w01||w02||…||w0s} and W1={w11||w12||…||w1s}, which are not to be asked for the trapdoors 

TW0 or TW1 previously, and sends them to the challenger. Then   picks a random          and creates the secure index Iw  

using the BuildIndex algorithm and gives the attacker  W  = {Upub, Iw }.   can continue to ask for trapdoors TW for any 

keyword W = {w1||w2||…||ws} of his choice as long as W W0,W1. Finally,   outputs a guess           and wins the game if  
   . 

We define  ’s advantage in breaking the PKE-KFF-CKS scheme as: 

|           [    ]     |. 

3.3. Construction of PKE-KFF-CKS 

Contrary to Golle et al. scheme[11] we do not target the fixed field keyword; we rather consider an enhanced query model 
consisting of Boolean expression on keywords expressed in the conjunctive form without needing to specify the positions 
of the keywords where the keywords can be in any arbitrary order.  

In our model, we have the data owner O, the data user U and the cloud server S. Let D be a document collection 
consisting of n documents, where IDi is a unique document identifier. O extracts m keywords from each document Di as 
W={w1,w2,…,wm} and combines them as one keyword with different m! possible permutations P={per1, per2,…,perm!}, 

where each permutation set perj has m combined keywords, Perj = {w1||w2||…||wm} where j   [1,m!]. For example, if m = 3 

keywords, and the keywords are A,B,C. The Owner creates 6 different permutations of keywords sequence and each 
permutation, consists of three keywords, regards as one keyword using concatenation operation PABC={(A||B||C); (A||C||B); 
(B||A||C); (B||C||A); (C||A||B); (C||B||A)}. Based on Goh et al. [7], we use a Bloom Filter as a per document index to track 
the conjunctive keyword in each document, each bloom filter represents a set of m! possible permutations P of m 
keywords sequence. This is best shown by the toy example illustrated in Figure 2, where 6 permutations are actually 
stored in a Bloom filter with 3 hash functions. After that O encrypts each bloom filter and sends it with the encrypted 
documents to S. 
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Fig 2: A Toy Example of Bloom Filter 

When the data user wants to retrieve the document IDi that has the following keywords (A and B and C), he can create a 
trapdoor in arbitrary order as one search token, that’s mean he can send one of the following combined keywords 
(A||B||C), (A||C||B), (B||A||C), (B||C||A), (C||A||B) or (C||B||A) as a query to the remote server. Then the server tests the 
Bloom filter against the trapdoor and retrieves the associated matched document to the U without needing for the posting 
list intersection protocol. 

Our scheme consists of six algorithms KeyGenerator, BuildIndex, DocEncrypt, TrapdoorGen, SearchIndex and 
DocDecrypt which are scattered between two phases, Sender Phase and Retrieval Phase. 

3.3.1. Sender Phase  

This phase includes three algorithms as detailed below: 

1: Key generator: The data owner O initiates the scheme by using KeyGenerator( ) algorithm. This algorithm takes the 

security parameter   as input to obtain the public parameters PP={Upub,Opub,V,q, , ̂  ,         } and the private keys 
PR={Upr,Opr}. 

2: Index construction: For each document Di   D, O dedicates a secure index IDi, which is stored at the service provider 

that will help O perform a keyword search by calling BuildIndex(Di,WDi,PP,Opr). Each document Di comprising of an 

unique identifier IDi       . Firstly, to protect the document Identifiers IDi, O encrypts this IDi with El Gamal encryption 
technique, such technique assurances that if the same document identifier is encrypted multiple times, it will create 
different ciphertexts but all decrypted to the same value. Then O creates one Bloom filter BF for each document, this 
filter consists of an array of x-bits, and uses r independent hash functions h1,…,hr. The filter allows the data owner to 
perform keyword searches efficiently, but could result in some false positive retrieval. A classical Bloom Filter may 
reveal information about the contents of the document since the hash functions are publicly known. So, in our work a 
suitable solution to create a searchable index using Bloom Filter is to instead index each conjunctive keyword by its 
encrypted image. To do so, we apply bilinear maps on elliptic curves, we use two groups    and    of prime order q 

and a bilinear map  ̂         , also we need three hash functions         
    ,                 and 

            . The owner creates m! possible permutations of these keywords sequence P = {per1, per2,…, perm!} 
and makes each permutation perj looks like one keyword using concatenation operation as perj = {w1||w2||…||wm} 

where j   [1,m!]. We use such a bilinear map with each permutation perj as Encperj =   ( ̂(Upub,   (perj)
a
)). Then the 

BFIDi will be constructed using the hash values on the conjunctive string hz(Encperj ), z = 1,…, r, instead of applying the 
hash values on perj directly. After that the array bits at the positions h1(Encperj ),…, hr(Encperj) are set to 1. Finally, O 
stores the encrypted ID EncIDi and associated bloom filter BFIDi in IDi.  

In Bloom Filter, the number of 1s is reliant on the number of BF entries, in this case, the number of different 
permutations. As a consequence, the scheme reveals the number of keywords in each document. To avoid this 
problem, padding number of dummy keywords may be used to make sure that the number of 1s in the Bloom Filter is 
nearly the same for various documents. Padding process is costly compared to the scheme without it because the 
higher rate of false-positive. 

 

3: Document collection encryption: To protect data privacy and undesired accesses, the document collection should 
be encrypted before outsourcing them onto remote servers which are not within their trusted domains. To do so, O 
calls DocEncrypt(D,PP,Opr) algorithm to encrypt each file Di    D using El Gamal encryption technique. 

The final step in the sender phase algorithm is sending the ID and encrypted documents EncDoc set to remote server.  

The algorithms 1,2 and 3 below show the key generator algorithm, build index algorithm and document set encryption 
algorithm respectively. 

Algorithm 1- KeyGenerator( ) 

Given a security parameter       
 which determines the size of    and   , the algorithm works as follows: 

1: generate a prime q, two groups   ,    of order q and a bilinear map  ̂         . 

2: select a random generator   of   . 

3: pick a random       
  as a private key, Upr =  , for user and calculate the corresponding public Upub =   . 

4: pick a random       
 

 as a private key, Opr =  , for owner and calculate the corresponding public Opub =   . 

5: pick a random       
  as an escrow key, and calculate V =   . 
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6: select three hash functions         
    ,                 and               where        and    are random 

oracles. 

7: select   hash functions for the bloom filter   = {h1,…,hr}. 

8: output(public parameter PP={Upub,Opub,V,q,  , ̂  ,         }, private key PR={Upr,Opr}). 

Algorithm 2: BuildIndex(Di,WDi,PP,Opr) 

The algorithm is executed by the owner O to encrypt the conjunctive keyword WDi and produce a searchable encrypted 
index IDi as follows: 

1: encrypt the IDi using El Gamal cipher under O’s private key   and U’s public key Upub as EncIDi =IDi     (G
a
), where 

G= ̂(Upub,V). 

2: compute the length x of the Bloom filter BFIDi as in equation (1). 

3: initialize the Bloom filter BFIDi of x zero-bits. 

4: generate m! permutations of conjunctive keyword from m keywords P = {per1, per2,…, perm!}. 

5: for each perj for j   [1,m!] do 

6: encrypt perj, set the encrypted keyword as   =  ̂(Upub,   (perj)
a
). 

7: EncW =   ( ). 

8: for z = 1 to r do 

9: calculate independent hash functions: bz = hz(EncW) 

10: set BFIDi [bz] = 1. 

11: end for 

12: end for 

13: pad number of dummy keywords. 

14: store {EncIDi , BFIDi } in IDi. 

15: return the index IDi as the index for Di. 

Algorithm 3: DocEncrypt(D,PP,Opr) 

The algorithm is executed by the owner to encrypt the plaintext of D as follows: 

1: for each document Di   D for i   [1,n] do 

2: encrypt the plaintext of Di using also El Gamal cipher under O’s private key a and U’s public key Upub as EncDi = Di 
  (G

a
), where G= ̂(Upub,V). 

3: end for. 

4: return EncDoc. 

3.3.2. Retrieval Phase 

This phase includes three algorithms as detailed below: 

1: Trapdoor Generator: To retrieve only the documents containing keywords Q, the data user U has to ask the O for 
public key Opub to generate trapdoors; If O is offline these owners’ data can’t be retrieved in time. If not, U will get the 
public key Opub and create one trapdoor for a conjunctive keyword set Q = {q1, q2,…, ql}, using TrapdoorGen(Q,PP,Upr) 
algorithm. Firstly, the data user combines the conjunctive query to make them look like one query, Tq = {q1||q2||…||ql}, 
then U will compute the trapdoor of the search request of concatenated conjunctive keyword Tq under his private key 
b, Tw =   (Tq)

b
     . Finally, U submits Tw to the cloud server. 

2: Search Index: Upon receiving the trapdoor Tw, server will call the SearchIndex(IDi,Tw,PP) algorithm on each 

searchable index and return the associated Bloom filter BFIDi , then compute T=  (Opub,Tw)     and independent 
hash functions hi(T) where i = 1…r. Then S test BF in all r locations, if all r locations of all independent hash functions 
in BF are 1, the remote server returns the relevant encrypted file corresponding the IDi to U. In other words, 
searchable index ID can be used to check set membership without leaking the set items, and for accumulated hashing. 

3: Document collection decryption: Once U receives the encrypted files from cloud server, he calls 

DocDecrypt(EncD,PP,Upr) algorithm to decrypt each retrieved document EncDi   EncD using El Gamal encryption 
technique. 

The algorithms 4,5 and 6 below show the trapdoor generator algorithm, search index algorithm and document set 
decryption algorithm respectively.  
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Algorithm 4: TrapdoorGen(Q,PP,Upr) 

The algorithm is executed by the user to generate a trapdoor as follows: 

1: create the combined keywords set as Tq = {q1||q2||…||ql}. 

2: compute trapdoor under U’s private key   as: Tw=  (Tq)
b

      

3: send the generated trapdoor Tw to the server. 

Algorithm 5: SearchIndex(IDi,Tw,PP) 

The algorithm is executed by the server S to determine whether a given Index IDi contains a conjunctive keyword Tq as 
follows: 

1: compute T =   ( ̂(Opub,Tw)). 

2: calculate independent hash functions: h1(T), h2(T),…, hr(T). 

3: for each IDi 

4: if all r locations of all independent hash functions in BFIDi are 1, then return the relevant encrypted document EncDi to U. 

5: end for 

Algorithm 6: DocDecrypt(EncD,PP,Upr) 

The algorithm is executed by the user to decrypt the encrypted documents 

1: for each retrieved document EncDi   EncD for i   [1,k] do 

2: decrypt the ciphertext of EncDi using El Gamal cipher under U’s private key   and O’s public key Opub as DecDi = EncDi  

  ( ̂(Opub,V)
b
). 

3: end for 

4: return DecD. 

4. ANALYSIS 

4.1. Security Analysis 

Theorem 4.1. The proposed PKE-KFF-CKS scheme is semantically secure against chosen keyword attacks under the 

BDH assumption. 

Proof. Suppose there is an attack algorithm   that has advantage   in breaking our scheme. Suppose   makes qH2 hash 

queries to    and qT trapdoor queries. Then we built an algorithm   that solves the BDH problem with the advantage at 

least    =  / ((m!) qT +1) where m! is the number of conjunctive keyword sets. Algorithm   is given (q,  ,  , ̂  ,  ,     ). 

It’s goal is to compute  ̂ (   )
abc

     .   sets  =  ,  =  ,  =  , where  ,  ,   are random elements in   . 

- KeyGen:   sends [ , ] as the public key to  . 

  ,   -Hash queries. To respond to    queries, the challenger   maintains a list of tuples <Wj,hj> called the   -list. 

The list is initially empty. When the attacker   issues a hash query for a conjunctive keyword Wi = {w1||w2||…||ws}, 

algorithm   checks whether Wi = Wj, if so, algorithm   answers consistently with the previous queries by responding 

with   (Wi)=hi. And the corresponding pair (Wi,hi) has to be saved in memory for future use. Otherwise,   generates a 

random coin  i   {0,1} so that Pr[ i = 0] = 1/(qT +1), then   selects a random element  i    , if  i =0,   computes hi = 

 .    
 =       

 =       , otherwise,   computes hi =    ,   adds the tuple <Wi,hi> to   -list, and responds to   with 
  (Wi)=hi.   can construct the searchable index ID, using   as a part of BDH challenge, by executing the algorithm 

BuildIndex(D,Wi,PP,PR). Then it returns the index ID to  . 

To answer    queries from  , the algorithm   maintains a list of tuples < j, j> called the   - list. The list is initially 

empty. When   queries    at a point of Q’j ,   checks weather  i =  j. If so,   responds to   with   ( ) =  j, where 

  {0,1}
logq

 . Otherwise   chooses a random element  i, adds the tuple < i, i> to   -list, and answers   with 

  ( i)= i. 

- Trapdoor queries.   can use the algorithm trapdoor(Q,PP,PR) to issue the trapdoor Tw corresponding the 

conjunctive keyword query Tq={q1||q2||…||ql}. Tw is a valid trapdoor for Q, because   uses the same value for the 

conjunctive keyword Q under the public key [ , ]. 

- Challenge. Algorithm   picks and sends a pair of conjunctive keyword W0={w01||w02||…||w0s} and 

W1={w11||w12||…||w1s} to   on which it wishes to be challenged, and   must not have asked previously for the 

trapdoors of any conjunctive word W0 or W1. For each conjunctive keyword Wi  where i   {0,1}, algorithm   calls the 

above random oracle algorithm for responding to   -queries to obtain hi     , where   (Wi)=hi. Let <Wi,,hi> be the 

corresponding tuple on the   -list, if both  0 and  1 are not 0 then   reports failure and terminates. Otherwise, both  0 

and  1 are equal to 0,   creates a random coin     {0,1} If only one    is equal to 0 then no randomness is needed. 
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Since   is given  ,  ,     
 as part of BDH challenge,   creates the secure index ID  by executing the algorithm 

BuildIndex(D,W ,PP,PR) and sends the challenge  =[ ,ID  ] to  . The index includes s! encrypted permutations of W , 

T  =  ( ̂(  (W ),  )), that means T  =  ( ̂(       ,    )) =   ( ̂(            )   {0,1}
logq

 . BF =h1(T ), h2(T ),…, hr(T ) if all 

r locations of all independent hash functions in BF are 1, then   is a valid encryption for W  as required. 

- More queries. After the above challenge query,   is allowed again to query   with the same restriction that Wi   

W0,W1,   responds to these queries in the same way as before. Upon receiving the challenge,   can call the 
algorithm SearchIndex(ID,Tw,PP) on the secure index ID  to determine if the conjunctive keyword in the ID  is the same 
of W  or not.   does not know the private key  that is chosen independently of any conjunctive keyword, that’s mean, 

at this stage,   has no solution to distinguish the   from 0 or 1. 

- Output. Finally,   returns its guess  ’   {0,1} indicating whether the challenge   is the result of encryption process 

for W0 or W1. As this point, algorithm   selects a random pair ( , ) from the   -list and returns            as its guess 
for  ̂(   )

abc
, A must have deliver his query for either   ( ̂(W0,  )) or   ( ̂(W1,  )). Hence, with probability 1/2   -list 

includes a pair whose left hand is  = ̂(W ,  )= ̂(            . If   selects this pair (   ) from the   -list then 

 /        
 = ̂(   )

abc
 as required. 

To complete the proof of theorem (4.1), we now use the same approach as in [4] to analyze the probability that   does not 

abort during the above experiment. We define the following three events: 

- Ev1:   does not abort during the Trapdoor queries. 

- Ev2:   does not abort during the Challenge queries. 

- Ev3:   does not issue a query for either   ( ̂(  ,  (W0))) or   ( ̂(  ,   (W1))). 

We suppose that both events Ev1 and Ev2 occur with sufficiently high probability. Let we consider the first event Ev1, the 

probability of Ev1 is (1-1/(qT +1)
qT )  1/e, where 1/(qT +1) is the probability that a trapdoor query makes   to abort. 

For the second event Ev2, the algorithm   does not abort during the challenge phase if one of  0 and  1 is 0. By the 

definition of   -list Pr[ i] =1/(qT +1) where i   {0,1} and the two values are independent of one another, we have that both 

Pr[ 0 =  1 = 1] =1-1/qT  (1-1/(qT+1))
2
. Hence, the Pr[Ev2] is at least 1/qT . Since   never issues trapdoor queries for target 

keyword vectors, Ev1 and Ev2 are independent. Hence, the probability that   does not abort during the entire simulation, 

that is Pr[Ev1  Ev2]  1/(eqT ). 

For the last event, when Ev3 occurs, the bit    {0,1} indicating whether the challenge, an encryption of W0 or W1, is 

independent of  ’s view 

Pr[  =   ]= Pr[  =   |Ev3] Pr[Ev3] + Pr[  =   | Ev3]Pr[ Ev3] 

  Pr[  =    |Ev3] Pr[Ev3] + Pr[ Ev3] 

= 
 

 
Pr[Ev3] + Pr[ Ev3] 

=
 

 
 

 

 
 Pr[ Ev3] 

It follows that    |Pr[  =   ] – 1/2|  1/2 Pr[ Ev3].Hence, Pr[ Ev3]     By Ev3, if   does not abort during the simulation, it 

will choose a correct tuple in   -list with probability at least 1/qH2 , and will produce the correct answer with probability at 

least  /qH2. Overall by combining Ev1, Ev2 and Ev3, we have  's success probability is at least  /eqTqH2. 

4.2. Performance 

1. Time Efficient: In the former works, when the user U wants to retrieve documents containing each of several 

keywords, he must give the server trapdoors for each of the keywords individually and rely on an intersection 
operation. This solution is not desirable, it requires O(n) m search time, where n is the number of documents and m is 
the number of keywords in conjunctive string. In other words, the sever needs O(n) search time for each keyword in 
conjunctive string. While in our work, the user computes one trapdoor for all conjunctive keyword and sends it to the 
remote server and with one round over all conjunctive keywords, a server calls SearchIndex algorithm once on each 
trapdoor. Documents whose indexes match trapdoors are returned to U. The overhead of such Boolean queries is 

linear with the number of keywords in the Boolean expression, but can be completed with a one round over the 
document without needing intersection operation, whereas the naive solution of performing such boolean queries 
involves multiple rounds over the document. Hence the proposed scheme, based on Bloom filters [7], requires O(n) 
search time for all keywords in conjunctive string, and O(1) for communication cost. The scheme tests each BF only 

once per search. in other words, the time required to check whether a conjunctive keyword is present or not is 
independent of the number of keywords present in the set, we just need O(n) to find the r indexes using r hash 
functions.  

The overall performance of our scheme includes the cost of index construction and the time necessary for searches. 
Updating or adding the documents require calling BuildIndex algorithm, which has cost linear in the size of the 
documents, while deleting the documents requires a constant time computation. 

2. Space Efficient: Using Bloom Filter makes the required space to represent PKE-KFFCKS is sufficiently less as 

compared to other data structures like hash tables, linked lists, arrays, etc. a Bloom filter BF requires a fixed number of 
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bits to store all the items. Hence the server storage cost that required to store the Index ID is O(n) which is very small 
compared to the amount of data. 

 

Fig 3: Time cost of query for different size of the file 
collection with the fixed keywords number m=5 in the 

query 

Fig 4: Time cost of query for different size of the query 
collection in the same dataset, n= 500. 

4.3. Experimental Evaluation 

Figure 3 demonstrates the time consumption of a remote server for performing a search query with both normal 
conjunctive search and PKE-KFF-CKS on the encrypted Bloom filter. Obviously, with the increasing of the number of files 
n, the time spend using the proposed scheme is much less than the time spend using normal conjunctive search, in other 
words, the efficiency of PKE-KFF-CKS is far higher than normal conjunctive search method. Figure 4 shows that the time 
consumption using the normal conjunctive search grows linearly with the size of the query collection m, while the time 
consumption using the proposed scheme has little impact with the size of the query collection m, where the number of the 
keywords in the query m increases from 5 to 30. Furthermore, while the search cost is linear with the number of query 
keywords in other conjunctive keyword search schemes [11,19], PKE-KFF-CKS introduce nearly constant overhead while 
increasing the number of the keywords in the query. 

Table 1. Comparison of security assumption and other attributes 

Scheme Security assumption 
Keyword 
filed free 

Using in 
unstructured 

data 
Index generation User 

Golle et al.-I [11] 
IND1-CKA under DDH in the 

ROM 
    - 

single 
user 

Golle et al. -II [11] 
IND1-CKA under new 
nonstandard hardness 

assumption 
    - 

single 
user 

Ballard et al. [9] 
IND1-CKA based on the 
security of SSS in the ST 

    
uses a pseudorandom 

function per keyword 

single 
user 

Byun et al. [20] 
IND1-CKA under BDH in 

ROM 
    - 

single 
user 

Wang et al. [22] 
IND1-CKAt under DL, 1-DDHI 

in ST 
    

uses l-degree polynomial per 
document and compute l 

hash functions 

multi 
user 

Ryu et al. [21] 
IND1-CKA under coXDH in 

ROM 
    - 

single 
user 

Cash et al. [14] IND2-CKA under DDH     
uses pseudo – random 

function and hash function 
multi 
user 

Our scheme 
IND1-CKA under BDH in 

ROM 
    

uses Bloom filter and hash 
function 

single 
user 

4.4. Comparisons 
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We compare our scheme to the previous conjunctive keyword schemes in terms of security assumption with other 
attributes in Table 1. The table is arranged by the query expressiveness. The first column shows the paper and reference. 
The ”security assumption” column shows the security definitions, assumptions, and if ROM is used to prove the secure of 
the scheme. The ”keyword field free” column shows whether the scheme uses the fixed-position keyword field keyword 
search or the keyword field free keyword search. The ”using in unstructured data” column shows whether the scheme is 
practical for using in unstructured data or not. The ”Index generation” column shows whether the construction of each 
scheme is based on the index generation or not. The last column shows whether the schemes can be used with a single 
or multi user. Compared with previous conjunctive keyword search schemes we show that, in the last row, just our scheme 
uses the bloom filter with such a search. Finally, the last difference between these schemes and PKE-KFF-CKS is that the 
formers use the different public and symmetric key encryption algorithms to encrypt the data set without specifying their 
specific implementation, whereas our scheme specifies the encryption and decryption operations by using El Gamal 
algorithm to encrypt D under O’s private key and U’s public key, and decrypt the encrypted document under U’s private 
key and O’s public key. 
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