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Abstract 

Drug combinations is considered as an effective strategy designed to control complex diseases like cancer. 

Combinations of drugs can effectively decrease side effects and enhance adaptive resistance. Therefore, 

increasing the likelihood of defeating complex diseases in a synergistic way. This is due to overcoming factors 

such as off-target activities, network robustness, bypass mechanisms, cross-talk across compensatory escape 

pathways and the mutational heterogeneity which results in alterations within multiple molecular pathways. The 

plurality of effective drug combinations used in clinic were found out through experience. The molecular 

mechanisms underlying these drug combinations are often not clear. It is not easy to suggest new drug 

combinations. Computational approaches are proposed to reduce the search space for defining the most 

promising combinations and prioritizing their experimental evaluation. In this paper, we review methods, 

techniques and hypotheses developed for in silico methodologies for drug combination discovery in cancer and 

discuss the limitations and challenges of these methods. 
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Introduction  

The target of cancer therapy is a heterogeneous population of malignant agents, each distinguished by a 

different degree of aggressiveness and response to the therapy. Cancer cells are often resistant to apoptosis 

and develop resistance to cytotoxic agents. Disease progress despite therapy. A pre-existing subpopulation of 

malignant agents is not responsive to a drug and escape the treatments [1,2]. Cancer cells have mechanisms to 

overcome perturbations. Therapies targeting only one pathway can fail in clinical trials, or be defeated by 

mutations at a receptor. Although some tumors are initially sensible to targeted therapies, they ultimately 

become resistant due to mutations in the target or due to bypass of the targeted pathway. Drug combinations 

can reduce the prospect of tumor resistance and be more efficient when targeting heterogeneous populations 

of malignant agents [3]. They are designed to control complex diseases. Targeted drug combinations may also 

overcome the side effects related to high doses of single drugs. They withstand pathway restitution and increase 

cancer cell killing while minimizing overlapping toxicity and allowing reduced dosage of each drug [4,5]. The 

plurality of effective combinatorial drugs used in clinic were detected through experience. This requires labor-

intensive and time consuming “brute force” screening of all possible combinations among the confirmed 

individual drugs. The molecular mechanisms underlying these drug combinations are often not clear which 

makes it difficult to propose new drug combinations. It is not practical to screen all possible drug combinations 

since the number of possible combinations will increase exponentially with the increasing number of single 

drugs. In silico methods are developed for predicting new drug combinations before combination composition 

and practical test in the lab [6,7]. Some of the computational approaches are based on detailed mathematical 

modelling that concentrate on established cancer pathways and metabolic network constructions. Other 

methods use the transcriptional responses of drugs like gene expression profiles before and after drug 

treatments. Some reviews discuss drug combination effects, applications to efficacy and toxicity [96] and the 

challenges in drug combination discovery [97]. Sayed Ali Madani Tonekaboni et al [98] discussed Predictive 

approaches for drug combination discovery in cancer. They extensively discussed Quantification methods of 

experimental drug combination, data sources for predictive drug combination approaches and assessment 

strategies. They discussed computational methods in drug combination prediction narrowly depending on few 

articles. In this review, we present many of these computational methods in greater details and discuss how they 

are applied to biological systems. The proposed approaches for enhancements are also discussed. 

2. Framework of Computational approaches of drug combination discovery 

Computational approaches developed for prediction drug combinations can be categorized according to 

different categorization aspects. These aspects include:  types of data used to apply the computational method, 

types of diseases and the computational methods used for prediction. 

Data that can be used to predict the efficacy of drug combinations include 

- Drug targets data like molecular profiling of tumor such as genomic, proteomic, signaling pathways and 

interaction networks [14].  

- Similarity of drugs chemical structure, biochemical properties and drugs functional classification such as 

anatomical therapeutic classification (ATC).  

- Response of the cancer cells to single and combinatorial therapies are used to discover targets with similar 

response to a drug and drugs with similar mechanisms of action [91].  

Drug combination prediction methods are applied to many complex diseases like Acute myocardial infarction, 

Cancer, Hypertension, Type 2 diabetes mellitus, Parkinson’s disease and Schizophrenia [21]. 
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For validation of the predicted drug combinations, in vitro methods, Chou-Talalay method [87], Loewe additive 

model [88] or Bliss independent model [89] can be used to determine the effect of drug combinations. The 

general work flow of drug combinations prediction is shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this review, we concentrate on computational methods applied in prediction of drug combinations for treating 

cancer diseases. Combining anti-cancer drugs reduces drug resistance and tumour metastatic growth [99]. 

Survival rates for most metastatic cancers are low. The process of developing new anti-cancer drugs is costly 

[100]. Therefore, new approaches that combine anti-cancer drugs are considered.  

Computational methods applied in drug combination prediction can be categorized into 5 methods: 

mathematical optimization methods, statistical modelling, search algorithms, machine learning methods and 

systems biology approaches. 
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Mathematical methods apply mathematical models and statistical tests to predict drug combination synergistic 

effect. They aim to discover the relationship between drug combination effect and transcriptomic changes 

produced by individual drugs via direct mathematical models.  

The main advantages of statistical approaches include simplicity and facility in evaluation of drug combination 

components and interactions, low data input and low computational demands. The existence of noise in 

statistical models can be estimated but noise may becloud the model [83]. Statistical methods are interested in 

defining the shape of the response surface and try to describe the response in terms of the input variables thus 

allow for the continuous analysis of data. However, statistical models are only accurate in the area that 

corresponds to the input experimental data provided. Therefore, predicting responses outside of this area can 

lead to inexact results [84]. Additionally, all statistical models make hypothesis about data features. The quality 

of experimental data cannot be fully captured.  

Search algorithms don’t demand any hypothesis about the relationship between variables. This facilitates 

dealing with highly complex, nonlinear systems. One of the restrictions in this approach is the presence of 

measurement errors and variability in the noisy biological system that may affect the execution of the algorithm 

[11]. Moreover, there is always a probability that the algorithm will converge to a local minimum or maximum. 

Search algorithms identify the optimum based on a discretized grid so they always demand data discretization. 

Too large resolution may decrease the performance of the search algorithm and too small resolution may need 

additional experiments to locate the optimum. 

Machine learning algorithms are flexible when optimizing large data sets with nonlinear models. They do not 

require generalized assumptions about input data or about the relation between input and output parameters. 

This is suitable in the field of biological research where the response surface is still unknown and complex. 

Additionally, machine learning models are more accurate than statistical modelling techniques, as they include 

higher complexity levels. However, machine learning approaches require much input data. Experimental data 

gathered from diverse sources may not be sufficient for taking out accurate predictive models. Absence of 

transparency in machine learning methods may not allow for subsequent analysis. Model training may be very 

long when applied to quite complex networks and executed through an iterative process using the experimental 

data.  

Systems biology approaches can integrate multiple types of data (topology, efficacy, drug targets, etc.). They 

have the ability to reveal temporal and spatial dynamics on the level of individual components [85]. Network 

topology data provide insights into drug interactions and signaling pathway interactions. Additionally, the use 

of simplified network models and the ability to apply data from external sources may help to increase the 

information obtained from minimal experimental data. However, incomplete hypothesis may lead to erroneous 

deduction.  

3. Mathematical Optimization methods  

The Dialogue for Reverse Engineering Assessments and Methods (DREAM) consortium [8] launched two 

community challenges. The challenges aimed at developing in silico methods to rank 91 drug combinations 

from most synergistic to most antagonistic. In the first DREAM drug combination challenge, the combinations 

were tested on OCI-LY3 human diffuse large B-cell lymphoma cell line [6]. AstraZeneca–Sanger Drug 

Combination DREAM Challenge was launched using 85 cancer cell lines and 11,759 drug combination screening 

for 118 drugs [8]. The predictive models were designed to differentiate synergistic, additive and antagonistic 

combinations and predict new synergistic combinations in silico [9-17]. 

The two best-performing methods in DREAM challenge [9] namely DIGRE and IUPUI_CCBB methods applied 

mathematical methods to rank drug combinations. 
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Yang et al [9] hypothesized that if a cell is treated by compound (a) then compound (b), the first compound (a) 

would affect the cell transcriptome and modify the effect of compound (b). The transcriptional expression 

profiles after treatment by individual drugs were compared. A gene-gene interaction network based on KEGG 

pathways was constructed. A compound – compound similarity score was measured using differential expression 

genes of each drug. Drug-response curve information and Compound – Compound similarity score were used 

to estimate the combinatorial effect of the compound combination. Probabilistic concordance index (PC-index) 

[18] was used to measure the performance which scored    ̴0.61.  

For IUPUI_CCBB [9], the differentially expressed genes were identified for each drug treatment. Genes that were 

significantly differentially expressed by both drugs with the same direction of regulation were recognized as 

synergistic.  Genes that were significantly differentially expressed by both drugs with the opposite direction of 

regulation were recognized as antagonistic genes. The numbers of synergistic and antagonistic genes were used 

to compute an interaction score. Probabilistic concordance index (PC-index) [18] was used to measure the 

performance which scored   ̴ 0.61.  

Lee et al [13] applied hypergeometric and Kolmogorov–Smirnov statistical tests to the prediction of drug 

combinations. They hypothesized that drugs that regulate two different disease-specific pathways could be 

synergistic. A list of genes whose expression is significantly related to a disease state is identified. Highly 

enriched pathways in this list of genes were determined. Gene expression pattern matching is implemented to 

measure the similarity between the list of genes and drug perturbation profiles in CMap [19]. They rank drugs 

and performed in vitro validations on non-small cell lung cancer cells.  

Wei et al [20] generated a gene expression signature of glucocorticoid (GC) sensitivity/resistance in acute 

lymphoblastic leukemia (ALL) cells. They queried the Connectivity Map database [19] with this signature to get 

profiles that overlap with it. They performed gene set enrichment analysis based on Kolmogorov–Smirnov 

statistical test to rank profiles according to their similarity to the signature. There was a strong connection 

between glucocorticoid sensitivity and the mammalian target of rapamycin (mTOR) inhibitor sirolimus. 

Rapamycin is an FDA-approved drug that is combined with glucocorticoids to patients with organ transplant. 

The authors proofed that rapamycin increases glucocorticoid sensitivity through down-regulation of MCL1.  

Kaifang Pang et al [21] built a network of drug-target interactions from the Drug Bank database. They used 

mixed integer linear programming to formulate the optimal combination of drugs problem. Given an input 

disease gene set, the algorithm maximizes the coverage on the disease genes and minimizes the off target set. 

They applied their approach on EPAM pathway. They predicted a combination of five drugs and validated the 

predicted combination by literature.  

Yu-Ching Hsu et al [22] hypothesized that drugs with synergistic effects perturb similar genes in biological 

functions. They constructed three scoring systems that measure the commonly disturbed genes between two 

drug treatments, the similarity in enriched gene sets between the two drugs and  commonly disturbed genes 

within the similar enriched gene sets. The third score achieved probabilistic c-index (PC-index) [9] of 0.663 when 

applied on the gold standard of drug pairs of DREAM challenge. They applied their method to the Connectivity 

Map (CMap) dataset [19] and identified novel synergistic drug pairs for breast cancer.   

4. Statistical modelling methods 

Statistical modelling embodies a set of assumptions concerning the generation of some sample data and similar 

data from a larger population. Ying Li et al [56] proposed a method that uses propensity score matching (PSM) 

[55] for drug  combinations  prediction assuming that  one  drug  could  reduce  the  adverse drug reactions  

(ADR) of  the  other. They extracted pairs of Drugs ADRs that were reported in FAERS [57]. A logistic regression 

[101] was applied and the propensity score is estimated as the predicted probability of receiving the drug for 

each case report. They assessed the predicted interaction score against a set of known drug-drug interaction 

(DDI) and their ADRs. They generated receiver operating characteristic (ROC) curves and the AUC is 0.80.  
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Using data provided in the drug combination DREAM challenge, Yiyi Liu and Hongyu Zhao [65] computed two 

similarity measures between two drugs. The measures are structural similarity and gene expression similarity. 

They applied logistic regression models [101] to predict synergistic combinations. They performed 3-fold cross 

validation for four gene expression similarity measures classifiers performed individually and combined with the 

structural similarity measure. They achieved AUC ranging from 0.43 to 0.81.  

Weiss et al [76] used a statistical design of experiment (DOE) approach with an orthogonal array composite 

design (OACD). Through a series of designed experiments and data analysis based on regression modelling, 

they were able to identify a set of effective and synergistic drugs for viability inhibition of renal carcinoma cells. 

They used an initial pool of 10 drugs.  

Pivetta et al [103] used (DOE) approach to sample 60 data points for each two-drug combination to predict their 

synergism. They investigated the correlation between the concentrations of two drugs with the cytotoxicity of 

their combination. They applied third and fourth-order linear regression models. The fit to the experimental data 

of the training set achieved (R from 0.9972 to 0.9993). The fit of the validation and test data sets was lower (R 

from 0.8870 to 0.9869). Due to a problem of data over-fitting, irregularly shaped response surfaces were 

produced. 

Ning et al [104] proposed a method that allow the Hill model to be applied to drug combinations at non-fixed-

dose ratios. The half maximal inhibitory concentration (IC50) is represented as a function of a vector of drugs 

proportions in a drug combination. Their model was applied to three drugs for the inhibition of viability of lung 

cancer cells. The model achieved improved fit over the traditional hill response surface model.  

5. Search algorithms 

Search algorithms have been used in drug combination prediction. Search algorithms are a type of heuristic, 

global optimization technique that optimize a function given input values and selected criteria.  

In Calzolari et al [106], the space of drug combinations is represented by a tree. Single drugs are at the bottom 

of the tree and the combinations are at the top. Starting at the bottom of the tree, the algorithm tests all drug 

pairs and incrementally adds drugs to the most efficient pair. If adding a drug does not enhance the efficacy, 

the algorithm returns to the previous node. This algorithm was applied in lymphoma cells apoptosis. The 

predicted drug combinations achieved more cell viability inhibition than random combinations.  

Tse et al [107] defined the response of tumor cells to chemotherapeutic drugs. They combined adaptive elitist 

genetic algorithm and an iterative dynamic programming (IDP) strategy. Adaptive elitist genetic algorithm 

identify the global optimum. IDP is a local search strategy based on Bellman’s dynamic programming. It searches 

in the neighbourhood of the optimal solutions for improvements. The algorithm was applied to the optimization 

of three-drug chemotherapeutics combinations and outperformed the separate application of IDP and adaptive 

elitist genetic algorithms. 

Zinner et al [11] attempted to find the most effective drugs combinations from a set of 19 drugs based on hill 

climbing search. The first generation was composed of 18 random combinations. At each iteration, a fitness 

function measures the inhibitory effect of each combination. The iterative process changes one element at a 

time and accept combinations with an improved fitness function. The algorithm does not identify the optimal 

drug combination, but identify the drug combinations that are better than the randomly identified ones. 

Park et al [105] applied a function that represents the biological system’s response to drug combinations. 

Gaussian process (GP) regression was used to select data points to be tested. The next input is selected such 

that the expected information gain is maximized. This approach was applied to optimize a drug combination 

targeting three nodes in the epidermal growth factor receptor (EGFR) signaling network. This approach 

outperformed the genetic algorithm by identifying a more effective combination.  
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Kevin Matlock et al [42] formulated the designing of targeted combination therapies as an optimization problem. 

Their goal is to maximize the efficacy on heterogeneous tumor cells while minimizing the toxicity over normal 

cells. They created a probabilistic target inhibition map (PTIM) [43-46] that model the tumor proliferation. They 

generated a set of PTIM models for different breast-cancer and B-cell lymphoma cancer cell lines from the GDSC 

database [47]. They performed an accelerated Lexicographical Search to find the optimal solution and achieved 

minimum cancer sensitivities of 0.45. 

Patrycja Nowak-Sliwinska et al [48] developed a drug combination screening method. An initial set of drugs that 

target non-overlapping endothelial cell signaling pathways is used. An iterative approach of experimental 

testing and Feedback system control (FSC) analysis is applied. They generated dose-response curves to select 

the drug dose input of each drug in a combination. They applied differential evolution (De) algorithm which 

predicts new combinations to be tested in vitro. They identified the effective combinations after ten iterations.  

Wang et al [77] defined the difference in response between three control cell lines and three breast cancer cell 

lines to four chemotherapeutic compounds using Latin hypercube sampling. Each agent was considered at seven 

doses and many drug combinations were tested. The differential evolution search algorithm was used to identify 

the global optimum after only one experimental iteration. 

Weiss et al [78] applied differential evolution to iteratively test the endothelial cell viability. They identified an 

optimal effective three-drug combination which was translated successfully into several in vivo tumor models. 

While some drugs showed synergistic interactions, others showed antagonistic behaviour. In another study, 

Weiss et al [79] identified drug combinations that showed strong synergistic activity on human endothelial 

(ECRF24) and human ovarian carcinoma (A2780) cell viability inhibition.  

6. Machine learning methods 

Machine learning algorithms are data driven. Using machine learning approaches, predictive models can be 

created by learning associations between input data (drug– drug, drug–target and target–target) and drug 

combination effect. Machine learning approaches can be very effective in biological applications as they are 

capable of predicting the behaviour of highly complex, nonlinear systems. They require a large amount of input 

data for model training compared with other methods such as statistical modelling methods or search 

algorithms.  Integration of pharmacological and omic data types play key roles in successful machine learning 

methods prediction [12, 16]. Therefore, machine learning methods could be an effective tool for the drug 

combination problem. In supervised machine learning methods, drug combinations inhibitory effects are 

labelled (effective/ineffective or antagonistic/additive/synergistic drug combinations). Unlabelled drug 

combinations inhibitory effects are used in unsupervised methods. Semi-supervised learning use a mixture of 

labelled and unlabelled drug combination inhibitory effect. 

6.1 Supervised methods 

Application of supervised machine learning methods in drug combination discovery problem suffered from Lack 

of labelled drug combination data. Few studies have used supervised learning methods to predict the label of 

drug combinations. 

Zhao et al [17] designed a set of predictive features to predict novel drug combinations. The features include 

target proteins and corresponding downstream pathways, medical indication areas, therapeutic effects as 

represented in the Anatomical Therapeutic Chemical (ATC) Classification System and side effects. They predicted 

a set of effective combinations using F-measure maximization. They performed 5-fold cross validation to 

evaluate the performance of these features. 60% of the predicted effective combinations have been recognized 

as synergistic combinations in the literature. 
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Li et al [12] proposed an approach called probability ensemble approach (PEA) that combine drugs chemical 

and pharmacological features. Six drug–drug similarity features (drug chemical structure, ATC code, target side 

effect, target sequence, target-target interaction in PPI, and Gene Ontology semantic) for a query drug pair were 

integrated using Bayesian network to calculate a likelihood ratio (LR) which estimates the similarity to a known 

drug pair. LRs are summed up over two sets of approved effective drug combinations (EDCs) and undesirable 

drug–drug interactions (UDDIs) separately. Similarity scores to EDC and UDDI classes are used to decide the 

class of the new drug pair. The area under the receiver operating characteristic curve (AUC) is 0.90. Performance 

of PEA were evaluated using external literature validation, and experimental validation of 55 novel predicted 

drug pairs against the human non-small cell lung cancer A549 cells. 39 effective drug combinations were 

confirmed (71% accuracy).  

Yi Xiong et al [49], developed a computational method for Prediction of effective Drug Combinations using a 

Stochastic Gradient Boosting algorithm, termed PDC-SGB. They integrated six features to describe the drug 

combinations, which include the molecular 2D structures, structural similarity, anatomical therapeutic similarity, 

protein-protein interaction, chemical-chemical interaction, and disease pathways. They applied 10-fold cross 

validation on the training data set and achieved AUC= 0.9775.  

Xiangyi  Li et al [50], built  a  model  for  synergistic  anti-cancer  drug  combinations prediction  based  on  drug  

target  network features  and  pharmacogenomics  features.  The  gene  expression  profiles  of  drug perturbation  

from  DREAM  Challenge [9] was  used  as  the  training  dataset  ,  while the  gene  expression  profiles  of  anti-

cancer  drug  perturbation  from Connectivity  Map [19] was  used  as  a  test  dataset.  Their model  integrated  

21  features  including  drug  chemical structure similarity,  drug  target  network  features  and  drug  

pharmacogenomics  features.  random  forest  (RF)  algorithm  was  applied to  distinguish  synergistic drugs 

from  non-synergistic drugs depending  on  each  feature combination.  They  identified  28  potentially 

synergistic  drug  combinations,  three  of them  had  been  reported  to  be  effective  drug  combinations in  

literatures. 

Gayvert KM et al [51] presented a computational approach for predicting synergistic combinations using single 

drug efficacy. They utilized a high-throughput drug screen performed by Held et al [52].  For each drug pair, a 

feature set formed of the mean and difference of the single agent dose response in each tested cell line and 

features representing the similarity of a drug pair's efficacies in melanoma cell lines were obtained. They trained 

random forest models [53] on 780 drug combinations. Their model achieved (AUC=0.8663) for predicting 

synergy and (AUC=0.8809) for predicting genotype-selective efficacy in context of BRAF melanomas. Their 

predictions were compared to an independent high throughput screen [54] showing a significant number of 

combinations overlapped with this dataset. 

Yin Liu et al [58], used pharmacogenomics profiling data identify combination therapies that may inhibit tumor 

growth. They used CCLE dataset [7]. Drug response for each cell line is determined. Decision tree was applied 

to identify genomic alterations that may influence drug sensitivity across the cell lines. They identified a subset 

of genes whose expression was correlated with drug sensitivity in cells that have particular genomic alterations. 

They performed experimental validation using two lung adenocarcinoma (LUAD) cell lines. Cell proliferation was 

inhibited more by the drug combination.  

Pivetta et al [103] applied artificial neural network (ANN) to predict the synergism of two anti-cancer drug 

combinations. The authors represented the drug synergy as the net multidrug effect index (NMDEI).  Net 

multidrug effect index is the difference between the non-algebraic additive effect and experimentally obtained 

activity of drugs in combination. The ANN models showed accurate fits. In the experimental validation of the 

predicted maximum synergistic effect combinations against human acute T-lymphoblastic leukemia cells (CCRF-

CEM),  the combinations presented high cytotoxic activity with lower drug doses.  
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Minji Jeon et al [108] predicted the synergy between two drugs utilizing genomic and pharmacological 

information and drugs targets. Extremely Randomized Trees (ERT) achieved the best performance. They deduced 

synergistic rules and validated their results by the literature. 

6.2 Unsupervised methods 

In unsupervised methods, no drug combination labels are available, and the hidden structure of the given data 

is aimed to be extrapolated [59].  

Huang et al [15], assumed that synergistic drugs can inhibit modules of disease signaling networks 

complementarily. A drug–drug interaction network was built based on cell lines transcriptional expression data 

and divided to communities using Bayesian nonnegative matrix factorization approach. A disease-specific 

signaling network was built by combining genomic profiles and interactome data. They defined a synergy score 

that prioritize the drug pairs that perturb disease-specific signaling network with similar function. To evaluate 

their method, they applied it on the lung adenocarcinoma and endocrine receptor (ER) positive breast cancer. 

They show the literature evidence of their proposed effective drug combinations.  

Parkkinen and Samuel’s method [14] extends the original CMap’s methodology [19]. They matched the pattern 

of drug perturbation profiles from multiple cell lines. They defined a measure based on group factor analysis 

(GFA) and probabilistic latent factor models to obtain drugs with the most relevant profiles to a single query 

signature. The authors discovered functionally and chemically similar drugs. Their method performed better 

than the original CMap.  

 6.3 Semi-supervised methods  

Lack of sufficient number of labelled drug combinations inhibitory effects call for applying semi-supervised 

learning methods in drug combinations discovery problem. 

Sun et al [16] applied a semi-supervised method, namely Ranking-system of Anti-Cancer Synergy (RACS). Drug 

pairs were represented by a set of 14 pharmacological and genomic features different between labelled samples 

and unlabelled samples. These features include targets distance in PPI network and the proportion of unrelated 

pathways regulated by the targets of the two agents.  Based on a manifold ranking method proposed by Zhou 

et al [67], the drug pairs were ranked based on similarities to the labelled samples. The authors validated their 

method using data provided in the drug combination DREAM challenge [9], and achieved an AUC value of 0.85. 

Chen et al [68], developed an algorithm called Network based Laplacian regularized Least Square Synergistic 

drug combination prediction (NLLSS).  They hypothesized that principal drugs which obtain synergistic effect 

with similar adjuvant drugs are often similar. Principal drug shows activity in disease treatment in synergistic 

drug combination and adjuvant drug shows no effect on disease treatment in synergistic drug combination. The 

authors used the framework of Laplacian Regularized Least Square (LapRLS) classifier [69]. They computed drug 

similarity based on drug target interactions, and drug chemical structures. They derived a score to assess 

synergistic probability of a drug combination. Receiver-operating characteristic (ROC) curve was used to 

evaluative the performance. They implemented experimental validation for the top 10 potential drug 

combinations in the three datasets. They found 7 synergistic combinations. 

Machine learning algorithms have not been frequently used for drug combinations optimization problem. This 

is probably due to the relatively large data requirements for model training. As more drug target and genomic 

data are becoming available through online database sources, there will be an increased interest in applying 

machine learning techniques to combinatorial drug design. 
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7. Systems biology based methods 

The systems biology approach aims to predict cell behaviour based on developing a detailed topology map of 

cellular pathways and interactions. Network modelling approaches have been applied in conjunction with other 

optimization techniques in order to help predict model constants or train network relationships based on 

experimental data and to simplify or expedite the development of the network model. 

Paola Vera-Licona et al [41] tried to identify and prioritize optimal combinations of interventions that perturb 

the paths from source nodes to target nodes in signaling pathways. OCSANA nodes scoring is based on the 

lengths of the paths from the selected node to the targets, the type of the node effect on target nodes 

(activation/inhibition), side effects of the node, the number of paths in which the node is included in and the 

number of targets that node can connect to. They applied their method on EGFR network, ERbB family network 

and HER2+BCN. They achieved enhanced performance over Berge ’s algorithm [109]. In their method, not all 

paths between source and target nodes are tested due to computational time needs. They only consider paths 

of specified lengths. 

Iadevaia et al [80] developed a mass action model of the insulin growth factor (IGF-1) signaling network in a 

breast cancer cell line. They measured changes in protein phosphorylation after stimulation of IGF-1. The 

unknown model parameters were identified using the particle swarm optimization technique. They fit their 

model to the time courses of six proteins based on 126 experimental data points. Model predictions were 

averaged from three randomly sampled sets of the approximated parameter sets. They identified five targets in 

PI3K/AKT and MAPK pathways whose inhibition could optimally inhibit irregular signaling pathways. This 

prediction was experimentally validated.  

Based on a mass-action model of heregulin-induced HER2/3 signaling, Faratian et al [110] predicted that PIK3CA 

inhibition should be combined with RTK inhibitors in tumor cases that have low PTEN.  

Mass-action modelling approaches produce specific values for a large number of parameters, which can be not 

practical in large scale network reconstructions [114]. 

Sahin et al [111] generated a Boolean model of ERBB signaling of G1/S cell cycle transition. They applied 

knockdowns of the network proteins, model deduction based on proteomic data and experimental validation 

with RNAi. They predicted a drug combination that target c-MYC and ERBB2 and reduce ERBB2 breast cancer 

resistance. 

Ranran Zhang et al [112] constructed a Boolean logic model of apoptosis signaling in Leukemic T-Cell large 

granular lymphocytes. They depended on experimental validation to investigate the effect of two defined 

species that dominate apoptosis, sphingosine kinase 1 and NFκB.  

To overcome the limitations which is related to representing species as one or zero in [112] approach,  Aldridge 

et al [113] extended it to adjust intermediate activity states using fuzzy logic. 

It is difficult to explain the results of logic-based modelling approaches because they assign discrete values to 

continuous variable such as concentration of active species. [115]. 

In order to discover drug combinations that target resistant melanoma cells, Korkut et al [82] used a 

computational tool termed as pathway extraction and reduction algorithm (PERA). They integrated signaling 

network pathways, Proteomic data and five phenotypic responses of cell cycle progression after perturbation 

with two-drug combinations or single drugs. The belief propagation (BP) algorithm was used to search the 

network models based on probability distributions that represent the set of network models with the lowest 
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error [81]. The authors predicted an effective combination of c-Myc with either BRAF- or MEK-targeted therapies. 

The predicted combinations were experimentally validated. 

Xiao-Dong Zhang et al [23] hypothesized that drugs that target the same functional network motif could be 

combined to improve the therapeutic efficacy. They extracted drug combinations from the Drug Combination 

Database [25]. They identified some motifs that are significantly enriched with combinatorial drugs targets by 

using FANMOD [24]. They calculated therapeutic similarity between individual drugs that target an interacting 

protein pair, using ATC code. Some predicted drug combinations were found to be clinically used to treat breast 

cancer [26]. Some were found to be effective anticancer therapy for CML [27]. Some affect the dissemination of 

hepatocellular carcinoma (HCC) cells [28]. They recommended some unreported drugs to be used as a 

combination.  

Jordi Serra-Musach et al [35] tried to identify synergistic drug combinations that maximizes the perturbation of 

the cancer network. They obtained proteins and interactions, expression data from cancer cell lines, IC50 for 

unique drugs, mutational status of proto-oncogenes and tumor suppressor genes, Genetic, genomic, and 

molecular alterations identified in cancer cell lines. Cancer network activity (CAN) was defined based on 

weighted communicability [36]. Their study focused on breast cancer PI3K-mTOR signaling. The assessment of 

the inhibitory effect of the predicted combination achieved synergism in nine of 12 instances.  

Samira Jaeger et al [37], represented the potential cross-talk between two therapeutic signaling networks as a 

network. They applied network efficiency measure [38] to compute pathway cross-talk inhibition (PCI). PCI  is 

the reduction of network efficiency after a pharmacologic intervention. They used experimental validation, drug 

combination index, and dose reduction index to validate the performance of their method. The experimental 

validation of ten novel proposed combinations confirmed a synergistic behaviour for seven of them in, at least, 

one of four tested breast cancer cell lines.  

Francesca Vitali et al [39], applied network-based modelling to identify multi-target drugs for triple negative 

breast cancer. They constructed a network of disease proteins (DPs) and their interactors. They selected bridging 

nodes as target proteins (TPs). They ranked the target combinations by applying topological Score of Drug 

Synergy (TSDS) [40]. They extracted a list of approved drugs that interact with the defined TPs. A score, termed 

Path-EFF-index that measures the effect of a drug in a specific pathway is assigned to each drug and drug 

combination. They depended on experimental validation to validate the synergistic effect of one of the proposed 

combinations. 

Pal and Berlow [44] used tumor drug sensitivities and kinase inhibitor profiles to predict sensitivity to drug 

combinations for four canine osteosarcoma cell lines. The authors assumed that inhibiting a super set of a set 

of effective kinases, will also be effective. They also assumed that if blocking a set of kinases is not effective, 

then blocking a subset of this kinases set will not also be effective. They identified drug combinations that inhibit 

a minimal set of kinases with minimal side effects. They achieved a high level of accuracy. Both of the subsets 

and supersets of the proposed new drugs must be present in the data; otherwise the method will become non-

determinable, as it takes 0 or 1 irrespective of the actual profile of new drugs.  

Jing Tang et al [60], presented a computational strategy named TIMMA (Target Inhibition inference using 

Maximization and Minimization Averaging). Their method is based on the work of Pal and Berlow [44]. In TIMMA, 

a drug–target inhibition profile was built for each drug. The inhibition profile of a drug combination is the union 

of the inhibition profiles of individual drugs. A set of cancer-specific targets is identified using a Sequential 

forward floating search (SFFS) algorithm [61]. A new Maximization and Minimization averaging rule was applied 

to overcome limitations of PKIM, so TIMMA achieved enhanced prediction accuracy in cross validation and 

significant reduction in computation times. TIMMA authors succeeded to identify effective drug combinations 

for breast and pancreatic cancer cells. The authors reported the R implementation of the algorithm (TIMMA-R), 

which is much faster than the original MATLAB code [62].  
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D.Chen et al [63], performed a model termed pathway and pathway interaction (WWI) based on the assumption 

that drugs targeting related pathways will be more likely to be synergistic drug combinations. The authors built 

two networks, namely, a protein protein Interaction network based on HPRD [64] database and a WWI network 

based on KEGG database. For each drug pair, they defined a Score which indicates the connectivity of pathways 

perturbed by the individual drug of drug combinations on the WWI network and drug targets on the PPI 

network. They applied receiver operating characteristic (ROC) curves to estimate the performance of their 

scoring system in predicting SDPs achieving (AUC= 0.75). 

8. Conclusions 

With the problem of great growth of high-throughput data, in silico methodologies are successfully applied in 

drug combination prediction. Application of mathematics, computer science, and biology can extremely speed 

up the discovery of optimal drug combinations [86]. We reviewed five computational approaches applied in 

drug combination optimization. Second order linear regression models were successfully applied in drug 

combinations prediction. Higher-order linear regression models resulted in the over-fitting of data [103]. 

Genomic and drug target data becomes more available. Greater attention will be paid to applying machine 

learning techniques to drug combinations discovery. Drug metabolism processes like absorption, transportation, 

metabolism, and clearance are very important for the treatment efficacy of the diseases [71]. For example, 

overexpression of the P-glycoprotein (P-gp) result in drug resistance [72] and it has been reported that inhibition 

of it can improve the drug efficacy [73-75] and participate in drug synergistic effect. Drug metabolism processes 

should be considered in future combinatorial drug prediction models. Interactions between drugs are not 

handled by the existing computational methods. To be more applicable, other data types such as 

pharmacokinetic parameters must be considered in the future predictive computational approaches. Molecular 

data such as mutation, copy number variation and methylation data should be used more widely beside 

Transcriptomic profiles, interaction networks and biological pathways to predict drug combination efficacy on 

target cells. Functions of the target proteins differ between their wild and mutated type. So, targeting mutated 

proteins may cause synergistic effect better than targeting their wild-type and vice versa. To make the 

predictions more applicable in clinics, there is a need to discover the similarities between in vitro and patient 

data in a personalized setting. The methodologies that depend on data that is available for few cells lines in 

restricted tissue types, makes the models less practical in clinical settings [70]. Successful drug combinations 

used in clinical practice articulate that more awareness should be given to outside tumor cell targets. In drug 

combination trials for 521 non-small-cell lung carcinoma [92], 184 integrate drugs that have inside tumor cell 

targets, 110 trials integrate tumor-cell-targeting drugs with angiogenic agents and 94 with immune-targeting 

agents. The agents that stimulate antitumor immune response has been successfully led to dramatic improved 

survival in various tumor types [95]. Metastasis lead to an advanced cancer that comprise various subclonal 

tumors, each with independent genetic controllers and responses to drugs [93]. More attention should be given 

to drug combination approaches that target subclonal populations that are resistant to the primary therapy [94]. 

Epigenetic changes in cell state can produce cell populations that participate in the development of resistant 

tumor-cell populations [93]. Combination therapies that decrease the plasticity of tumor cells, preserve 

sensitized tumor cell states, or target epigenetic deregulation are aimed to participate in the prevention of drug 

resistance and tumor evolution. 
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