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ABSTRACT 

Several biometric security systems have been implemented. Biometric is the use of a person’s physiological or 
behavioural characteristics to identify the individual. An example of behavioural method of biometric is signature 
identification. Signature identification is the use of handwritten signature to identify a person. This paper attempts to 
design and implement an algorithm for handwritten signature identification. The signature identification system consists of 
signature acquisition, preprocessing, features extraction and matching stages. Signature acquisition can be either online 
or offline (both were considered in this research work). Online signatures are obtained by signing on digital tablets while 
offline signatures are scanned (or snapped) into the system. Preprocessing stage of the system include turning the image 
to greyscale. The grey image is further converted to binary (black and white). The image is then thinned, using Stentiford 
thinning algorithm. Stentiford thinning algorithm in an iterative thinning method with a good thinned imaged output. The 
image is finally cropped to rid the image of unnecessary white spaces. For features extraction, principal component 
analysis is used. Principal Component Analysis is a good statistical tool for identifying pattern in data. Features extracted 
from each signature are stored as a template. After features extraction, the distances between signature templates are 
computed using Manhattan distance. If the distance exceeds a certain threshold, the test signature is rejected (otherwise it 
is accepted). The designed system has a FAR of 4% and an FRR of 6% for offline signatures. A FAR of 2% and an FRR 
of 3% were obtained for online signatures 
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1.0. INTRODUCTION 

Identification is the process of recognizing someone or something because of previous knowledge. Handwritten signature 
can be seen as the scripted name or legal mark of an individual executed by the hand for the purpose of authenticating 
writing in a permanent form (Vamsi, 2008). Handwritten signature can be written on a paper with a pen or on a sensitive 
tablet. Hand written signature is a form of behavioural traits in Biometrics, which involves muscles of the finger, hand, wrist 
and in some cases arm. These muscles are controlled by the nerve impulse. As soon as a person gets used to writing 
his/her signature, it then becomes controlled by the brain with little or no attention. 

In identification, a person to be identified submits a claim; which is either accepted or rejected. In literature, however, 
verification and identification are interchangeably used for biometrics recognition (Jain et.al., 1997; Sandhu et.al., 2009). 
Signature forgery refers to the act of falsely replicating the signature of another person. The three types of signature 
forgery (Abu, 2010) include the random forgery where a signature is written by a person without prior knowledge of the 
shape of the original signature. This type of forgery is easy to detect. It usually does not have the shape of the original 
signature. The second been the simple forgery, which is written by a person with knowledge of the shape of the original 
signature but with less practice and the skilled forgery that is probably the most difficult to detect. The signer is skilled at 
forgery and he does this by tracing, drawing or imitating the original signature. This type of forgery is written with good 
imitation of the genuine signature. 

Signature identification is needed to detect forged signatures from genuine signature. Signature identification is a process 
in which the signature of an individual is verified whether the signature belongs to the claimed person or not. It is a 
technique that finds for each sample in one of the signatures, the corresponding sample in the other signature that is 
closest to the original sample using some predefined metrics (Abu, 2010). Identity verification is a present day challenge 
across the globe. Every day, billions worth of contracts are concluded by handwritten signatures on documents, and how 
these can be replaced by electronic signature is a hot policy in technology (Parvinder, 2009). 

Signature as a means of identification has been in use for a while. Its use moves through different areas, banking, 
education, offices, just to mention a few. Now the probability that a forged signature will be accepted as genuine mainly 
depends on the amount of care taken when examining it. Many bank card transactions in stores are accepted without 
even a glance at the specimen signature on the card. But even diligent signature checking does not reduce the risk of 
fraud to zero. An experiment shows that 105 professional document examiners, who each did 144 pairwise comparisons, 
misattributed 6.5% of documents. Meanwhile, a control group of 34 untrained people of the same educational level got it 
wrong 38.3% of the time, and the nonprofessionals’ performance could not be improved by giving them monetary 
incentives. Errors made by professionals are a subject of continuing discussion in the industry but are thought to reflect 
the examiner’s preconceptions and context (Parvinder, 2009). 

In this paper, an attempt is made to develop a signature identification system to process and identify both online and 
offline signature using principal component analysis and Stentiford thinning algorithms. Performance analysis of the 
algorithm is also carried out and reported. 

2.0 LITERATURE REVIEW 

Several systems have been proposed for signature verification, one of which is by Shohel, (2007). In the paper, hand 
glove was used to extract features and PCA was used to remove noise from the extracted features. In the use of PCA, 
some valuable information is also removed. This in turn affects the performance of the system. Ravi and Sudhir, (2011) 
used neural network which took time to process based on the number of signatures to train. An assumption that the values 
of feature set or structural description extracted from genuine signature are more stable than forged ones. Abu and Sabbir, 
(2010) used a simplified skeletonization technique for their offline signature identification. The output of the thinned image 
was poor and this affected the efficiency of the system. Skeletonization is a key preprocessing step for offline signature 
identification. This is because it reduces the image to a more compact image. A point that has more than a pixel is 
represented with a pixel, after thinning is performed on the image. Thinning removes points that are not connected to 
another point from the image. This makes the signature image more stable. 

Rosario, (2010) considered the use of signature image divided into sectors. The changes in the size of signatures were 
not considered, however, it was a key factor that affected the performance of the system. The concept of graph theory 
(Tomislav and Miroslav, 2011; Martens, 1996) was used for online signature verification, however not all graph types were 
considered and some graph characteristics are not simple. The paper attempt to provide an enhanced algorithm for online 
and offline signature identification system, that can accept, process and identify user signature. 

According to Rosario, (2010), several works has been done appreciably in the area of handwritten signature detection and 
analysis. Among them are Sayeed, Andrews, Besar, and Kiong, (2007). They worked on Forgery Detection in Dynamic 
Signature Verification by Entailing Principal Component Analysis (DiLecce et.al., 2000). They used a hand glove of 5DT 
Data Glove 14 Ultra model. The data glove interfaces with the computer via a cable to the platform independent USB port. 
This structure can be further simplified by interfacing with the computer wirelessly by means of Bluetooth technology with 
up to 20m distance. The limitation of this work is the lack of use of the offline features of the signature and also the fact 
that some useful information are eliminated when the PCs were taken. The advantage of increased discernment in 
between the original and forged signatures using 14-electrode glove over 5-electrode glove has been discussed here and 
proved by experiments with many subjects. Calculation of the sum of mean squares of Euclidean distance has been used 
to project the advantage of our proposed method. 3.1% and 7.5% of equal error rates for 14 and 5 channels further 
reiterate the effectiveness of this technique. The paper Rigoli and Kosmala, (2012) presents an extensive investigation of 
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various HMM-based techniques for signature verification. Different feature extraction methods and HMM topologies are 
compared in order to obtain an optimized high performance signature verification system. Furthermore, the paper 
compared online and off-line methods for signature verification. No system was developed and as so the real life condition 
(such as emotions) was not really considered in the work.  Results of the off-line and on-line systems show preference for 
on-line verification system though not an efficient method. 

Kumar and Babu, (2011) proposed a new approach for offline signature verification and implemented. The proposed 
signature authentication system functions based on global and texture features of a given signature sample (Kalenova, 
2003). This method makes use of the global features pulled out from the skeleton of the signature. While legitimate 
signatures of the same person may show some differences over a period, the differences between a skilled forgery and an 
actual signature may be imperceptible. When a genuine sample is given for enrollment, the system will automatically train 
the network with statistics generated from the given samples. The back propagation network used verifies the global 
features for validity. The result is a gray level co-occurrence matrix re presentation of the signature sample, which is 
obtained from the picture matrix of spatial or texture features extracted. Based on the values obtained the network will 
decide the appropriateness of the signature. The field of neural networks has provided the most excellent way of finding 
solution the problems that are most difficult to solve by traditional computational methods. Back propagation (Hanmandlu, 
2005) is one such best algorithm which has hugely contributed to neural network. In back propagation network (BPN), 
whenever a network is being trained, it is not only given the input but it is also given a value that the network is needed to 
produce. The well-known BPN learns by example, which means it must be provided with a learning set that consists of few 
input examples and some known-correct output for every case. The neural network approach provides a major advantage 
with a Neural Network solution, that there is no need to understand the solution of the problem. A new feature extraction 
approach for on-line signature verification based on a circular grid is presented in (Argentina, 2010). Here, a circular chart 
enclosing the signature is divided into N identical sectors, and graphometric features are computed for each sector. The 
circular grid is placed so that the center of the grid matches the center of mass of the binary image of the signature.  

The paper Fotak, Baca and Koruga (2011) presents previous work in the field of signature and identification to show the 
historical development of the idea and defines a new promising approach in handwritten signature identification based on 
some basic concepts of graph theory. From the above approach, not all signatures form a special graph and the dynamic 
property of the signature such as the time and pressure were not used in the identification process. 

Prakash et al. (2010) examined the problem of quick retrieval of offline signatures in the context of database of signature 
images. The geometric center of the signature image is located. In this paper, the problem of quick retrieval of offline 
signatures in the context of database of signature images is addressed. The proposed methodology retrieves signatures in 
the database of signature images for a given query signature according to the decreasing order of their spatial similarity 
with the query. Similarity computed is based on orientations of corresponding edges drawn in between geometric centers 
(centroids) of the signature image. We retrieve the best hypotheses in a simple yet efficient way to speed up the 
subsequent robust recognition stage. The runtime of the signature recognition process is reduced, because the scanning 
of the entire database for a given query is narrowed down to comparing the query with a few top retrieved hypotheses. 
The experimentation conducted on a large MCYT signature database has shown promising results.  

Abu et al. (2010) proposed a new technique of curve matching for comparing two signatures. This method includes curve 
and peak detection as features extracted from a signature. The necessary preprocessing were performed on the image of 
the signature. Peak detection is one of the most important time-domain functions performed in signal monitoring. Peak 
detection is the process of finding the locations and amplitudes of local maxima and minima. Peak detection can be 
performed, such as threshold peak detection and curve-fitting-based peak detection. Here we used the curve fitting based 
pick detection. The values of using Gaussian Elimination method was calculated and these value were stored for training 
pattern in database and later on for test the new pattern, these were used with the new   ,  ,   and the error rate 

calculation gives the result of comparison. If we consider the value of   can be learned as   ∑    
        . The 

values of y for two signatures are then compared to find error. 

A new warping technique called the extreme points warping (EPW) was proposed by Feng and Wah (2003). They have 
used new technique of curve matching for comparing two signatures. The curve generated in this procedure has been 
compared with the curve of the signatures generated in same way stored in the database. For rotational displacement they 
normalize each signature with respect to rotation. The signature’s scanned portions are cut and stored as JPEG format in 
100x100 pixels. The signature is then converted into matrix form and represented into viewer as collection of pixels. Then 
signatures are processed with skeletonization, rotation, translation, peak detection and comparison and curve matching. 
They took several portions of curve with respect to peak and compare the same portion with others. The outcomes of 
different phases are stored in database. Curve matching can significantly improve verification rate. Accuracy of our system 
is calculated by False Acceptance Rate (FAR) and False Rejection Rate (FRR) are 1.38 % and 13.75% respectively. 

3.0 PROPOSED ALGORITHM 

For any biometric method, image acquisition is the first step. Images can be obtained from databases online and from 
digital tablet or scanning. In this research, signature images were obtained from online source (SVC database) and also 
manually from a genius tablet. For offline signature, the image is converted to grey and resized using bicubic interpolation. 
After resizing, the image is converted to binary using Otsu threshold. The image is also thinned using Stentiford thinning 
algorithm. The image is then cropped. Principal Component Analysis (PCA) is then used to extract features of the 
signature. The distance between signatures is then computed for matching using Manhattan distance.  
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3.1Image Acquisition 

For both online and offline signature identification, a primary requirement is the signature itself. Offline signatures were 
obtained by either scanning the signature image or snapping it with a camera. How clear and sharp the scanned image 
appears depend on the quality of the scanner as well as the document being scanned. Likewise, if the signature is 
snapped, the resolution of the camera affects the quality of the image obtained. There are several scanners and cameras 
available in the market. However, in both cases, no matter how good the devices are, noises are introduced.  

Online signature is obtained from a digital tablet that records the movement of the pen on the tablet. Features obtained 
from tablet includes the coordinate position (in terms of x and y), pen pressure, time and so on. Some features depend on 
the hardware manufacturer and the type acquired. Several digital tablets are available in the market. For this research, a 
Genius Easypen i450x tablet was used. It has a 1024 pressure level and a 4 x 5.5 inches size. The features extracted 
from the tablet for this research work include the coordinate location of each pixel (x and y) and the pressure at each pixel. 

3.2 Grey Scale conversion and Resizing 

Preprocessing is the stage that follows after the acquisition of the signature image. This is to get rid of unwanted parts of 
the image.  

For a black-and-white image, a light with      can be represented by one number   given by 

   ∫     

 

   

         

where      is the spectral characteristic of the sensor used and   is some scaling constant. The value   is often referred 

to as the luminance, intensity, or gray level of a black-and-white image represents power per unit area, it is always non-
negative and finite, that is, 

         

where     is the maximum   possible. In image processing,   is typically scaled such that it lies in some convenient 

arbitrary range, for example,        . In these cases   corresponds to the darkest possible level and 1 or 255 

corresponds to the brightest possible level. Because of this scaling, the specific radiometric or photometric units 
associated with   become unimportant. A black-and-white image has, in a sense, only one color. Thus, it is sometimes 

called a monochrome image. 

A color image can be viewed as three monochrome images. For a color image, a light with      is represented by three 
numbers which are called tristimulusvalues. One three-number set that is frequently used in practice is R, G, and B, 

representing the intensity of the red, green, and blue components. The tristimulus values R, G, and B are obtained by 

   ∫     

 

   

                     ∫     

 

   

                             ∫     

 

   

        

where      ,      , and       are spectral characteristics of the red, green, and blue sensors (filters) respectively. Like the 

gray level   in a monochrome image, R, G, and B are non-negative and finite.  

Resizing could either reduce or increase the size of the image. It all depends on the image size. The new image size is 
128 by 128 pixels. It often may be necessary to re-sample a bitmap pixel image. Perhaps because it is to be re-sized, 
rotated, or have its perspective corrected, or get intentionally distorted, or have its image shape rectified. Bicubic 
interpolation was used to resize the image. Bicubic interpolation solves for the value at a new point by analyzing the 16 
data points surrounding the interpolation region (Shuai, 2006). 

 

Figure 1: Figure Showing Samples Pixels of an Image 
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The conventional bicubic interpolation needs an up-sampling distance S to estimate the unknown pixels for the 
interpolation processing. At the position (     ), shown in Figure 1, the bicubic interpolation calculates the interpolated pixel 

as 

[                 ]                                                                              
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]                                                                 

Where                  and      means the pixel value at the position     . The weights                          in 

conventional bicubic interpolation are given as 
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3.3 Gaussian Filter 

According to the Gaussian kernel is named after Carl Friedrich Gauss (1777-1855), a German mathematician. The 
Gaussian kernel is defined in 2D as: 

           
 

√       
     

    
                                                                                    8 

where x is the distance from the origin in the horizontal axis, y the vertical distance from origin and   the standard 

deviation. The determined the width of the Gaussian kernel. In statistics, when the Gaussian probability density function is 

considered, it is called the standard deviation, and the square of it,  ,is the variance.  

3.4 Binary Image (Otsu Thresholding) 

Otsu Thresholding was used for binarilization. According to Otsu (1979), a way of accomplishing results is to set the 
threshold so as to try to make each cluster as tight as possible, thus minimizing their overlap.  

Let the pixels of a given picture be represented in   gray levels           . The number of pixels at level   is denoted by 
  and the total number of pixels by                  . In order to simplify the discussion, the gray-level histogram is 

normalized and regarded as a probability distribution given by: 

   
  

 
,       ∑                                                                                      

   9 

Now suppose that the pixels is dichotomized into two classes    and    (background and objects, or vice versa) by a 

threshold at level  ;    denotes pixels with levels         , and    denote pixels with levels           . Then the 
probabilities of class occurrence and the class mean levels, respectively, are given by 

          ∑     
                                                                                             10 

          ∑       
                                                                                    11 

and    ∑      |    ∑
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where        ∑   
 
                                                                                           

and        ∑    
 
                                                                                               

are the zero and the first-order cumulative moments of the histogram up to the     level, respectively, and 

        ∑   

 

   

                                                                                            

is the total mean level of the original picture. The class variances are given by 
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These require second-order cumulative moments (statistics).In order to evaluate the "goodness" of the threshold (at 
level ), the following discriminant criterion measures (or measures of class separability) used in the discriminant analysis 

is introduced: 

    
    

      
    

         
    

                                                                    20 

where       
      

      
                                                                   21 

  
                                                                                         22 

            
                                                                   23 

(due to 17) and       
  ∑          

 
                                                                                            

are the within-class variance, the between-class variance, and the total variance of levels, respectively. Then our problem 
is reduced to an optimization problem to search of a threshold   that maximizes one of the object functions (the criterion 

measures) in 19. 

This standpoint is motivated by a conjecture that well thresholded classes would be separated in gray levels, and 
conversely, a threshold giving the best separation of classes in gray levels would be the best threshold. 

The discriminant criteria maximizing λ, K, and η, respectively, for k are, however, equivalent to one another; e.g.,      λ 
  and                 in terms of  , because the following basic relation always holds: 

  
    

    
                                                                                 25 

It is noticed that   
  and   

  are functions of threshold level  , but   
  is independent of  . It is also noted that   

  is based 

on the second-order statistics (class variances), while   
  is based on the first-order statistics (class means). Therefore,   

is the simplest measure with respect to  . Thus   is adopted as the criterion measure to evaluate the "goodness" (or 

separability) of the threshold at level  . The optimal threshold    that maximizes η, or equivalently maximizes   
  is 

selected in the following sequential search by using the simple cumulative quantities 14 and 15, or explicitly using 10-13: 

       
       

                                                                          

  
     

              

            
                                                                    

and the optimal threshold    is 

  
                

                                                         28 

From the problem, the range of   over which the maximum is sought can be restricted to 

                                                                                           29 

 

3.5 Thinning (Stentiford Thinning Algorithm) 

Thinning is particularly useful when the intensity (thickness) of signature stroke is high. This usually is dependent on the 
pen tip. A basic method for skeletonization is thinning. It is a technique which extracts the skeleton of an object as a result. 
According to Alberto (2000), Stentiford algorithm makes use of a set of four 3 x 3 templates to scan the image. The 
templates are shown in the Figure 2: 

 

Figure 2: Stentiford Thinning Algorithm Templates 

The stentiford algorithm is as follows: 

a. Find a pixel location       where the pixels in the image match those in template T1. With this template all pixels 

along the top of the image are removed moving from left to right and from top to bottom. 
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b. If the central pixel is not an endpoint, and has connectivity number = 1, then mark this pixel for deletion. 

Endpoint pixel: A pixel is considered an endpoint if it is connected to just one other pixel. That is, if a black 

pixel has only one black neighbor out of the eight possible neighbors. 

Connectivity number: It is a measure of how many objects are connected with a particular pixel. 

   ∑                 

   

                                                               

where: S ={1,3,5,7},   is the color of the eight neighbors of the pixel analyzed.   is the center pixel.   is the 

color value of the pixel to the right of the central pixel and the rest are numbered in counter clockwise order 
around the center. 

 Repeat steps 1 and 2 for all pixel locations matching  . 

a. Repeat steps 1-3 for the rest of the templates:   ,   , and   .   will match pixels on the left side of the object, 

moving from bottom to top and from left to right.  will select pixels along the bottom of the image and move from 

right to left and from bottom to top.   locates pixels on the right side of the object, moving from top to bottom and 

right to left. 

c. Set to white the pixels marked for deletion. 

3.6 Cropping 

After the signature image has been thinned, then the signature image is cropped. Cropping is performed in order to 
remove unwanted pixels around the signature image. The algorithm used in cropping is stated below: 

a. Scan the pixels from left to right, starting from the top. 

b. Record the first pixel that is black and end the loop in (a). 

c. Repeat (a) from left to right, starting from the bottom. 

d. Repeat step (b) and end loop (c). 

e. Repeat (a) from top to bottom, starting from the left. 

f. Repeat (b) and end the loop at (e). 

g. Repeat (e) from top to bottom, starting from the right. 

h. Repeat (b) and end loop (g). 

i. Copy the pixels in the range gotten from (b), (d), (f) and (h) above into a new matrix. 

3.7 Feature Extraction 

This involves gathering information that is peculiar to a particular signature. For the extraction of features, Principal 
Component Analysis (PCA) was used. PCA was first introduced by Pearson (1901), and developed independently by 
Hotelling (1933).The steps to the calculation of PCA according to (Linsay, 2002) are as follows: 

a. Normalization of dataset. Here the mean of the dataset is subtracted from the dataset. 

 ̅   
∑   

 
   

 
                                                                                                                           

where ̅ is used to indicate the mean of the dataset . 

Hence, the normalized dataset    will be 

       ̅                                                                                                                         32 

Where   is the normalized dataset   and    is the initial dataset   (not normalized). 

b. The next step is to calculate the covariance matrix. The covariance of two dataset   and    is obtained with the 

formula 

          
∑      ̅      ̅  

   

     
                                                                                                       

Where ̅is the mean of ,  ̅ is the mean of  and n is the number of element. 

The covariance matrix is obtained by calculating the covariance in matrix   below. 

  (
                

                
)                                                                                                        

c. According to Lay (2012), the eigenvalue and eigenvector of the covariance matrix is computed using: 
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          |      |                                                                                                          

where  is the covariance matrix,   is the eigenvalue and   is the identity matrix.And finally for each   ,       is 

solved for eigenvector .After getting the eigenvector for each eigenvalue, the eigenvector with the highest 

eigenvalue is our Principal Component. In this research work, all the eigenvector were considered. PCA is a good 
dimension reduction method for a large number of interrelated variables. PCA is a good technique for pattern 
analysis, dimension reduction, etc. (Jolliffe, 2002; Smith, 2002). The dataset include the following features: 

i. The x-coordinate values 

ii. The y-coordinate values 

iii. The pressure at each point (online) 

iv. The time at each point (online) 

Both the pressure and time are only applicable in online case. An additional property that is considered (extracted) for 
online are the number of pendown(s)/penups(s), average time it takes to complete the signature. 

3.8 Matching (Verification) 

The Manhattan distance computes the sum of difference in each dimension of two vectors in n dimensional vector space. 
According to Ismail (2010), it is the sum of the absolute differences of their corresponding components. Manhattan 

distance is also called the    distance. If   (          )and                are two vectors in   dimensional hyper 

plane, then the Manhattan Distance         between two vectors    is given by the equation 35: 

                                                                                        36 

        ∑     

 

   

                                                                                   

3.9 Template Design 

The template of an individual signature contains information about the signature owner and the information extracted from 
the signature. The templates are saved in a folder. The folder could either be online or offline and it is checked (and is 
created if it does not exist) when the application is launched. Information in the template include: Name (surname, name, 
other name), Registration number, PCA result (Two for online), Pen up/pen down (online) and Average time (online). 

The templates are saved as the user enrolls his/her signature. When a user wants to verify his/her signature, if the user 
selects his/her name then the distance is computed with the selected name. If no specific user was selected, the system 
scans through all the available users for the best match that falls below the threshold. 

3.10System Prototyping 

Matlab which is a simple and useful high-level language for matrix manipulation was used for prototyping of the system. 
The homepage is made up of a menu bar, type selection popup menu and some buttons. The menu includes the file 
menu, edit menu and the help menu. The File Menu has the registration submenu for registering users, verification 
submenu for verifying signature and the exit submenu for exiting the application. The Edit Menu has settings submenu for 
displaying the basic settings interface (window). The new department and new admission year submenus create new 
department and admission year where applicable. The delete department, delete admission year and delete name 
(template) submenus delete department, admission year and signature registration respectively. 

The offline interface is for enrolling offline signatures (Arif et.al., 2010). The necessary details are entered into the personal 
information panel. The load button changes to load more once an image has been loaded. The ok and cancel button 
closes the interface with and without saving of information respectively. 

The preprocessing stages on a typical images scanned into the system is displayed in the Figure 3. 

 
   

Figure 3: Signature Image Scanned into the System 
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3.11 Grey Image and Resizing  

The image is converted to grey after it has been loaded into the system. This is to ensure that the colour of the pen used 
in signing is irrelevant. After this, the image is resized to a 128 by 128 pixel to ensure that the signature images are of the 
same size prior to other preprocessing steps (Martin 2000; Nib, 1986). This is depicted in Figure 4. 

  
  

Figure 4: Image Turned to Grey and Resized 

3.12 Binary Image 

The grey image is further converted to black and white (binary image) as shown in Figure 5. This turns the value of each 
pixel into 1 or 0. It also helps us identify the path that the pen followed, and hence the pixels that should be extracted. 

 

 

 

 

 

 

 

Figure 5: Image Turned to Black and White 

3.13 Thinning 

In Figure 6, the signature image was thinned. This is to reduce the image into a more compact representation (i.e. reduce 
the strokes to a pixel). 

 

 

 

 

 

 

Figure 6: Image Thinned with Stentiford Thinning Algorithm 

3.14 Cropping 

In Figure 7, the images are cropped to fit the preprocessed signature. This helps us to get rid of the white spaces around 
the signature that are not in any way connected to the actual signature itself. 

 

 

 

 

 

Figure 7: Cropped Signature Image 
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Figure 8:A typical signature written on the pen tablet. 

The offline interface is for enrolling offline signatures. The necessary details are entered into the personal information 
panel, and the user signs on a pen tablet. The ok and cancel button closes the interface with and without saving of 
information respectively.  

3.15 Feature Extraction 

For the extraction of features from the signature (both online and offline), PCA was used. PCA is a good statistical tool for 
pattern analysis in data. The Figure 8 was the data gathered as a user signed on the tablet. 

Table  1: Feature extracted from signature image as the user signed on the tablet. 

X-Coord Y-Coord Pressure Time 

0.60643 0.821429 244 0.00196406 

0.590909 0.833851 247 0.12117 

0.577605 0.849379 247 0.142749 

0.555432 0.868012 245 0.162132 

0.550998 0.874224 287 0.185699 

0.54878 0.877329 344 0.191632 

0.462306 0.557453 589 1.14217 

0.473392 0.529503 592 1.14774 

0.47561 0.498447 594 1.203 

. . . . 

. . . . 

. . . . 

0.604213 0.274845 548 5.80588 

0.604213 0.190994 512 5.81195 

 

3.16RESULT 

For testing this system, offline signature images obtained from SVC2004 database was used. Signatures were also 
scanned into the system. Offline images are required to be of RGB type. 50 users were enrolled in offline and 200 skilled 
test signatures were used to test the system. Shohelet.al., (2007) recorded a FAR of 3.1% and an FRR of 7.5% for online 
signature. Rosario et al. (2010) also recorded a FAR of 2.4314 and an FRR of 23.9147% for offline signature. Abu et al 
(2010) got for offline signatures a FAR of 5.20% and an FRR of 13.7%. For this system, 50 users were enrolled (with 10 
samples for each) and 600 test signatures were used for testing. 300 out of the 600 signatures were skilled forgery and 
the remaining 300 signatures were genuine. The threshold was kept at 1. 13 forged signatures were accepted and 16 
genuine signatures were rejected. Hence the offline test produced a FAR of 4.33% and an FRR of 5.33%.  

Online test signatures were obtained from the SVC2004 database. Signatures were also gotten from a Genius i459X 
graphics tablet. A total of 50 users were enrolled and 600 test signatures were used for testing. 300 signatures out of the 
600 test signatures were skilled forgery and the remaining 300 signatures were genuine. A forged signature was accepted 
and 6 genuine signatures were rejected. This gives a FRR of 2% and an FRR of 3.3%. The threshold was kept at 
0.5.Applying Peak and Curve Comparism to the test signature applied to the proposed method, an FRR of 9.67% and a 
FAR of 9.33% was obtained (for offline). For online signature, applying Extreme Points Warping Technique gives a FAR of 
4.67% and an FRR of 7.33% was recorded.  
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4.0CONCLUSION 

This research work was based on signature identification (both online and offline). The signatures were acquired manually 
from a digital table (online) and also scanned into the system (offline). Signatures were also obtained from online database 
of signatures (SVC2004). Offline signatures undergo preprocessing before features are extracted from them. The 
preprocessing steps involve converting the signature image to grey and resizing it using bicubic interpolation. 
Furthermore, the signature image is converted into binary using Otsu threshold. The image is then thinned using Stentiford 
Thinning Algorithm for a compact representation. It is then cropped to rid the image of unwanted (white pixels) spaces 
surrounding it. After preprocessing, features were extracted from the signature image (coordinate of each pixel, pressure 
and time).For both online and offline signatures, Principal Component Analysis was used to extract features. The distance 
between the features extracted from two signatures is used as a basis for authenticity. Manhattan distance (also known as 
City Block or L1) was used to compute the distance between two signatures. Proper preprocessing helped in getting a 
good result for offline signatures. A good result was also obtained from the online signatures. 

For future work, more dynamic properties such as pen (stroke) angle can be considered to improve the system’s 
performance. Also, use of this method in combination with other biometric methods (multimodal biometric) can be 
examined in the future. 
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