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ABSTRACT 

It was proposed the design of an artificial neural network (ANN) to estimate the yield strength in the welding zone of HSLA 
experimental steels. The input parameters of the ANN were the chemical composition and hardness. The information 
needed to training and testing the ANN was obtained by searching the literature of the yield strength as a function of the 
input parameters. The design was of the type perceptron multilayer with a rule learning of backpropagation type and 
sigmoidal transfer function, varying the number of nodes in the hidden layer. It was determined that the design of the ANN 
with 11 nodes is able to estimate the yield strength of high strength low alloy steels and ultra-high strength steels 
according to their chemical composition and hardness. 
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INTRODUCTION  

In the oil industry, the hydrocarbon exploitation in extreme and/or aggressive environments and the increased production, 
as well as the exploitation of increasingly heavy oils has led to components (such as pipelines) made of high strength low 
alloy steels (HSLA) being subjected to a level of stress increasingly close to their mechanical limits with subsequent 
consequences. In order to prevent this, it is necessary to increase the thickness of the components, but this would involve: 
1) technological challenges for the production of heavy gauge steel with the microstructural features required; 2) increase 
in the cost of manufacture; 3) increase in the cost of transport of manufactured components; 4) reduction of the weldability 
of components (distortion, residual stresses, microstructures of low temperature, softening or hardening of the heat 
affected zone (HAZ)); and 5) increased risk of hydrogen induced cracking (HIC) in the base material (BM) and welding 
zone

[1-6]
. 

To meet the requirements of hydrocarbon exploitation, it has been developed new HSLA steels (or microalloyed steels) 
which have higher mechanical strength and toughness, but due to the increase of them, these steels are also more 
susceptible to HIC, both in the BM and the welding zone. In view of this, it becomes important to characterize the 
mechanical properties of the new HSLA steels for the transport of hydrocarbons in the presence of hydrogen, and in 
particular the behavior of the welding zone, being this zone is more susceptible to HIC. Due to the microstructural changes 
that are experienced in the welding zone, the welded components are an example where the mechanical properties are 
strongly influenced by the microstructure. It is important to point out, that in the welding of thin sections, determining the 
mechanical properties is not an easy task, because the thickness of the welding zone (fusion zone (FZ) and HAZ) is 
usually narrow.  Generally, the mechanical properties of the welding are not determined, instead tensile tests are perform 
on samples that have welding zone and BM; if failure does not occur in the welding zone, it is said that the welding has 
higher mechanical properties than the BM, what is known as overmatching. To determine the actual mechanical properties 
of the HAZ and/or FZ, it would require that these zones have a thickness large enough to obtain samples for the tension 
tests. Most often this is not possible, so it has been an inclination to physical simulation in specimens with dimensions 
such that can be performed conventional mechanical tests. These simulations have been performed with conventional 
isothermal heat treatments 

[7, 8]
 or by using thermomechanical simulator 

[9-12]
. However, the behavior is relatively different 

between the actual HAZ and the simulated HAZ, mainly due to the microstructure surrounding the zone, specifically in a 
narrow HAZ thickness surrounded by other microstructures with different mechanical properties, compared with a 
simulated HAZ which do not have microstructural boundaries. 

In the oil industry, it has been used the instrumented indentation technique to determine, based on the analysis of load-
displacement curves, stress-strain curve in pipeline welds 

[13-15]
. The nanoindentation technique, which was originally 

developed to determine the hardness and reduced elastic modulus 
[16]

, also has been used to determine the mechanical 
properties 

[17-19]
. 

Because the artificial neural networks (ANNs) have proven to be a powerful tool in predicting parameters, simulation and 
troubleshooting engineering applications 

[20-28]
, we decided to design an ANN to estimate the yield strength of the welding 

zone of two HSLA experimental steels. An ANN is a network of interconnected nodes or neurons organized in layers. The 
basic architecture of an ANN consists of three types of layers: input layer, output layer and none or one or more hidden 
layers. Each node in each layer is connected to other nodes in other layers by assigning a weight factor through a learning 
rule 

[29]
.  

To build an ANN, firstly, a database is required which is divided in two parts, one for the training step and the other for the 
testing step. The training step consists of feeding the ANN with information of both, independent and dependent variables 
(input and output parameters respectively), and by applying a transfer function, the ANN estimate the output parameters. 
Through a learning algorithm, the weight factors are adjusted to minimize the square error between the actual outputs and 
estimate outputs. The testing step involves feeding the trained ANN only with information of the input parameters, and 
then the output parameters are estimated. If these last are similar to the actual ones, it is said that the ANN has been 
tested. 

The yield strength is a function of the chemical composition and microstructure, due this, the ANN design should be a 
function of them. Because of this, the design becomes very complex, due to the large amount of information of the 
microstructural characteristics (i.e. grain size, distribution and size of precipitates, number of phases, microconstituents, 
etc.), that need to be considered. In order to simplify the problem, instead of feeding the ANN with the microstructural 
characteristics, it was decided that the hardness would be one of the input parameters since it also depends on these 
features. In the present work we construct a database of yield strength as a function of the chemical composition and 
hardness of HSLA steels and ultra-high strength steels (USS). This information was used to design an ANN, and then 
estimate the yield strength of the welding zone of two HSLA experimental steels. 

METHODOLOGY 

Experimental Procedure 

Two HSLA experimental steels were used in this study. These are in the form of plates and have the same chemical 
composition in weight percent (0.03%C, 0.24%Si, 1.00%Mn, 0.42%Cr, 0.18%Mo, 1.35%Ni, 0.02%Nb and 0.02%Ti), but 
with different thermomechanical treatment, so one steel is designated as M-B steel and the other F steel. On Table 1, it 
can be seen their corresponding hardness and yield strength.  



ISSN 2277-3061                                                           

6051 | P a g e                                                           J u n e  1 9 ,  2 0 1 5  

Plates were sliced to obtain two samples with the following dimensions: large 110 mm and width 110 mm with the original 
thickness of the plate of 11 mm. 

Autogenously welding of one pass was simulated with the process of gas tungsten arc welding (GTAW), and there was 
neither preheating nor post-heating. The welding parameters used are shown in Table 2. To assure a high quality of the 
welding, the GTAW torch was adapted to a plasma cutting device. Fig 1 shows the arrangement of the welding process.  

Table 1. Hardness and yield strength of the base materials 

Steel Hardness/ 

HV 0.1 

Yield stress/ 
 MPa 

M-B Steel 311 985 

F Steel 200 788 

 

Table 2. Parameters for welding process 

Current/ A 200, DCEN 

Welding velocity/ m s
-

1 
0.003 

Electrode TungstenThoriated 
2% 

Electrode tip shape pointed 

Electrode diameter/m 0.00318 

DCEN: direct current, electrode negative 

Welding torch

Plate

Electrode

plasma cutting device

 

Fig 1: Adaptation of the welding torch to the plasma cutting device 

After welding, cuts were made in the transverse direction of each welding to obtain samples for metallographic preparation 
and hardness measurement. The metallographic preparation was carried out to reveal the macrostructure, which 
consisted in grinding, and macro-etching with nital 6 for a period of 4 seconds. Vickers hardness measurements were 
made with a Shimadzu Microhardness tester model HMV-2 from the FZ to BM. The measurements were made with a 
force of 980.5 mN for 15s. 

ANN Design 

The yield strength is a function of the chemical composition and the microstructure, and this last in turn is a function of the 
chemical composition and thermomechanical process, so for prediction of this mechanical property, it requires a database 
of yield strength as a function of these two variables. Determine or find enough numerical values with these requirements, 
is not an easy task.  To avoid this problem, the microstructural characteristics were replaced for hardness, which is a 
variable that depends on microstructure. Therefore, the independent variables of the ANN were the chemical composition 
and hardness, and the dependent variable was the yield strength. Through a literature search, a database of yield strength 
as a function of the chemical composition and hardness of steels was created. Information was obtained from a total of 
228 HSLA and USS steels.  Table 3 presents the summary of the database. In this table, it can be observed that the yield 
strength depends on 15 independent variables, 14 of them corresponding to the chemical composition and 1 
corresponding to hardness. The database was divided in two parts; the first with 80% of the information, called training 
database and the second with 20% of the information called testing database. The input and output variable values of the 
databases were normalized using the following equation:  

min

max min

ix x
N

x x





             (1) 
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where N is the normalized value of the xi variable value, and xmin and xmax are the minimum and maximum values of the 
variable respectively. The ANN design was of the perceptron multilayer type with a back propagation learning rule and 
sigmoidal transfer function. A single hidden layer was used in the design of the ANN, varying the number of hidden nodes 
from 8 to 20, since the amount of these nodes can influence the training step, as well as in the testing step and therefor in 
the estimated values 

[30, 31]
. Fig 2  shows the architecture of the ANN. 

C  Mn Ni Mo V   Cr Cu  Al Nb  Si  W  Ti    P   S   H

YS

Hidden layer

Input layer

Output layer  

Fig 2:  Architecture of the ANN. H is for hardness and YS is for yield strength 

Table 3. Input and output parameters to the ANN 

Parameter Min Max Mean STD 

C 0 0.880 0.240 0.191 

Mn 0 2.240 1.126 0.459 

Ni 0 3.800 0.782 1.189 

Mo 0 3.460 0.245 0.497 

V 0 1.780 0.069 0.143 

Cr 0 4.100 0.436 0.665 

Cu 0 1.880 0.286 0.555 

Al 0 0.490 0.021 0.039 

Nb 0 0.860 0.044 0.147 

Si 0 1.240 0.311 0.156 

W 0 0.990 0.008 0.072 

Ti 0 0.200 0.013 0.029 

P 0 0.050 0.015 0.011 

S 0 0.077 0.014 0.017 

Hardness/ 
HV 

75.80 713.0 317.6 138.1 

Yield 
Strength/ 

MPa 
103.0 2300.0 834.8 434.4 

 

Once the ANN was trained and tested, it was used to estimate the yield strength in the welding zone of the M-B steel and 
F steel. The chemical composition of the steels and hardness of every welding zone were fed in the ANN to obtain the 
yield strength.  

RESULTS AND ANALYSIS 

The initial microstructures of M-B steel M-B and F steel, which were revealed with LePera reactive, are shown in Fig 3. It 
can be seen that with this reagent, we can distinguish between the different microconstituents. In the M-B steel is 
observed two microconstituents: martensite in white color and bainite in brown color; meanwhile, in F steel is also 
observed two microconstituents: ferrite in brown color and the martensite-austenite microconstituent (M-A) in white color 
[32]

. Bainite and ferrite have similar color; this is because at lower concentrations than 1% of silicon, the colors of these 
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microconstituents are similar 
[33]

. With quantitative metallography, it was determined that M-B steel presents a 
microstructure of 30% martensite and 70% bainite, and F steel presents a microstructure of 99.2% ferrite and 0.8% M-A. 

a)

M

B

b)

M-A

 

Fig 3: Microstructures of the base materials a) M-B steel, b) F steel. The withe particles in F steel are referred as 
M-A microconstituent 

Fig 4 shows the welding produced with the GTAW process for the M-B steel, which is free of imperfections such as cracks, 
voids, lack of continuity, etc. Fig 5 shows the macrostructure that was developed by the effect of the heat input. It can be 
distinguishing the zones: FZ, HAZ and BM; and in the HAZ is distinguish the subzones: coarse grain heat affected zone 
(CGHAZ), which is a subzone where can be distinguished large grains; recrystallization heat affected zone (RCHAZ), 
where the grains are smaller and cannot be distinguish; and the intercritical heat affected zone (ICHAZ) that is between 
the RCHAZ and the BM. In the FZ can be seen columnar grains, which are characteristic of solidification. 

 

Fig 4: Welding of the M-B steel 

 

Fig 5: Macrostructure of the welding zone of the F steel 

The hardness profile of the welding zone of both steels, are shown in Fig 6. It can see that the M-B steel shows a HAZ 
softening, but not F steel. This is due to the initial microstructure and the microstructural changes that were developed in 
the subzones of the HAZ, since the M-B steel has martensite in its original microstructure and for that is more susceptible 
to this softening 

[34]
. In particular, in the ICHAZ, the softening is due to the tempering of martensite, because this subzone 

experimented a thermal cycle similar to tempering 
[35, 36]

. This effect is not observed in the welding of the F steel, since the 
original microstructure is ferrite and M-A, and for that, there is not enough martensite that could be tempered. 

Welding zone

FZ

CGHAZ

RCHAZ
IC

HAZ

SCHAZ BM

H
ar

dn
es

s/
H

V
 0

.1

160

200

240

280

320

360
 M-B steel

F steel 

 

Fig 6: Hardness profiles in the welding zone 
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All the estimated results with the ANN in the training step were compared to actual values to determine the effect of the 
number of nodes in the hidden layer (Fig 7). This effect is determined by obtaining the correlation coefficient from the 
linear regression of the data (Table 4). A correlation coefficient close to one indicates a better estimation of yield strength. 

The best correlation coefficient was obtained for an ANN design with 11 nodes in the hidden layer, but regardless of the 
number of nodes in this layer, the ANN underestimates the yield strength for values greater than 2000 MPa. 

By the difference of the estimates and actual data, the absolute error for each data pair (estimated and actual) was 
determined by Eq. (2) 

*100e a

a

YS YS
Error

YS

 
  
 

          (2) 

where 
eYS  and 

aYS  are the estimated and actual yield strength respectively. 

In Fig 8 is showed the effect of the number of nodes in the distribution of the absolute error of the estimated values in the 
training step.  It is observed that for all de cases (8, 11, 16 and 20 nodes); the 70% of the estimated yield strengths have 
an absolute error of 5%. If the results with a maximum absolute error of 10% are considered, the amount of the estimated 
results increases up to 90% for the case of the ANN with 11 nodes. From these results, it is observed little effect on the 
number of nodes on the correlation coefficient and the absolute error, in which almost 100% of the estimated results have 
a maximum relative error of 20%. With these results, it is said that the ANN has been trained. 

In Fig 9 is showed the effect of the number of nodes on the estimated yield strength in the testing step. As in the case of 
the training step, the effect of the number of nodes in the estimation of yield strength is determined by obtaining the 
correlation coefficient from the linear regression of the data (Table 4). Chemical composition and hardness, as well as the 
yield strength of M-B steel and F steel were included in the 20% of the database that was used in the testing step. For 
these steels, the lowest absolute error is obtained with 8 nodes, but the correlation coefficient is not the best as can be 
seen in Table 4. With 11 nodes, the absolute error between estimated and actual yield strength for M-B steel is of 7% and 
for F steel is of 4%, and in general, all the estimated results are the best, because is obtained the best correlation 
coefficient. From Fig 7, 8, 9 and Table 4 it can be seen that the best estimation of yield strengths are obtained with 11 
nodes in the hidden layer of the ANN. With this, it is said that the ANN has been trained and tested. 
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Fig 7: Effect of the number of nodes in the hidden layer on the estimation of the yield strength in the training step. 
a) 8 nodes, b) 11 nodes, c) 16 nodes, d) 20 nodes 
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Fig 8: Distribution of the absolute error of the estimated values in the training step. a) 8 nodes, b) 11 nodes, c) 16 
nodes, d) 20 nodes 
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Fig 9: Effect of the number of nodes in the hidden layer on the estimation of the yield strength in the testing step. 
a) 8 nodes, b) 11 nodes, c) 16 nodes, d) 20 nodes. 
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Table 4. Correlation coefficients obtained by linear regression of the ANN results in the training step and testing 
step 

Number of 
nodes 

R
2
, training 
step 

R
2
, testing 
step 

8 0.9849 0.9277 

10 0.9835 0.9297 

11 0.9852 0.9555 

12 0.9852 0.9368 

14 0.9847 0.9546 

16 0.9849 0.9037 

18 0.9837 0.9429 

20 0.9851 0.9340 

 

Welding zone
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Fig 10: Estimated yield strength in the welding zone 

Finally, to determine the yield strength in the welding zone of the two HSLA experimental steels, the chemical compositions 
and hardness profiles were fed in the trained and tested ANN. Fig 10 shows the yield strength profiles in the welding zone 
for both steels, which have a similar behavior to the hardness profile. M-B steel shows a higher yield strength in the 
CGHAZ and FZ compared with the BM; and as in the case of hardness, softening is seen in the subzones: RCHAZ, ICHAZ 
and subcritical heat affected zone (SCHAZ). The softening in the RCHAZ is classified as transformation softening, because 
the peak temperatures reached here exceeded the critical temperature Ac1 and for that, all the original microstructure 
transformed to austenite in the heating cycle. In the other hand, the softening in the SCHAZ is classified as tempering 
softening, because the peak temperatures reached here did not exceeded the critical temperature Ac1, so the thermal cycle 
experimented in this subzone was similar to a tempering 

[37]
. For the case of ICHAZ, transformation softening and 

tempering softening is presented. In F steel, the highest yield strength is presented in the FZ and CGHAZ, and softening is 
not observed. 

CONCLUSIONS 

It was trained and tested an artificial neural network to estimate the yield strength as a function of the chemical 
composition and hardness of HSLA and USS steels. The correlation coefficients obtained from the comparison between 
estimated and actual results are 0.9852 and 0.9555 for the training and testing steps respectively. 

From the testing step, it was observed that the ANN is capable of predicting the yield strength of any steel that is within the 
limits of chemical composition and hardness of the database built. 

Once trained and tested the ANN, it was used to estimate the yield strength in the welding zone of two HSLA experimental 
steels. 

In the martensitic-bainitic steel a softening zone was observed in the RCHAZ, ICHAZ and SCHAZ which is due to phase 
transformation in the recrystallization subzone and tempering of martensite in the intercritical subzone, and transformation 
and tempering of martensite for subcritical subzone.  

In the ferritic steel, a softening zone was not observed because there was not martensite in the initial microstructure that 
could be tempering. 
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