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ABSTRACT 

In this paper we present an efficient design for self-checking fast adders data paths. We investigate the implementation of 
concurrent error detection fast adders: carry look-ahead, Carry skip, Carry-select and Conditional-Sum adders. To achieve 
a low overhead, low power design, we use hybrid-CMOS logic style and combine Conventional CMOS and CMOS Pass 
transistor Logic (CPL). The proposed schemes are Totally Self-Checking (TSC). They are fully differential and checked by 
dual-rail and parity codes. 
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I. INTRODUCTION  

Addition is one of the most fundamental operations for digital computations. It usually impacts widely the overall 

performance of digital systems and crucial arithmetic function.Thus much effort has been invested in research that has led 

to faster and more efficient ways to perform this operation. Carry look-ahead, carry select, and carry skip adders are 

largely used to reduce the carry propagation delay.  

On the other hand, interest in on-line error detection continues to grow as VLSI circuits increase in complexity. The main 

characteristic of the on-line error detection is its ability to detect transient faults that may occur in a circuit during normal 

operation. On-line error detection provides an opportunity for self-diagnosis and self-correction within a circuit design. 

This work deals with design of fast self-checking adders’ data paths. It presents a Self-Checking (SC) fast adder based on 

a CMOS pass transistor differential XOR [1]. Complementary pass-transistor logic (CPL) is known to be much more 

power-efficient than complementary CMOS. However, the pass transistor gates generate degraded signals, which slow 

down signal propagation. In such situation, we have to restore degraded signals generated by CPL gates [2, 1]. 

The proposed schema is a design using hybrid-CMOS logic style combining Complementary pass-transistor logic (CPL) 
and complementary CMOS. It presents a self checking fast adder based on the use of double-rail and parity encoding to 
achieve the totally self checking goal.  

II. BACKGROUND 

II.1. Self-checking (SC) circuits 

Self-checking circuits are increasingly becoming a suitable approach to the design of complex VLSI ICs, to cope with the 
growing difficulty of on-line and off-line testing [3]. Self-checking circuits are class of circuits in which occurrence of fault 
can be determined by observation of the outputs of the circuits. An important subclass of these self-checking circuits is 
known as totally self-checking (TSC) circuits. 

II.2. Totally self-checking (TSC) circuits 

TSC circuits are used to detect errors concurrently with normal operation. These circuits operate on encoded inputs to 
produce encoded outputs. TSC checkers are used to monitor the outputs to indicate error when a non-code word is 
detected [4]. The concept of TSC circuits was first proposed in [5], and then generalized in [6]. 

A totally self-checking (TSC) functional block satisfies the two following properties: 

 For any valid input code word and any single fault, the circuit, either produces an invalid code word on the output, or 
does not produce the error on the output (fault secure property). 

 Any single fault is detectable by some valid input code word (self-testing property). 
A circuit (functional block and checker) is TSC if the functional block and the checker are both TSC. Fig. 1 gives the basic 
structure of TSC circuits. 
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Fig 1: Basic structure of totally self-checking (TSC) circuit 

The checker determines whether the output of the circuit is a valid code word or not. It also detects a fault occurring within 
itself [7]. 

Double-rail checker is based on the dual duplication code as shown in Fig. 2(a). It compares two input words X and Y that 

should normally be complementary (Y X ) and delivers a pair of outputs coded in dual-rail. 
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Fig 2: (a): Principle of dual-rail checker; (b): Dual-rail checker cell 
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 The circuit of the Fig. 2(b) is a totally self-checking checker since it is self-testing and code-disjoint [8]. 

This dual rail checker cell can be implemented in static CMOS, with 16 transistors. 

II. PREVIOUS WORK 

In previous work [2, 1], we proposed a self-checking fully differential full adder based on 4-transistors differential XOR 
gate. This scheme combine two CMOS styles: pass transistor CMOS technology to perform the sum function and static 
CMOS technology for the carry gate to avoid propagation problems as shown in Fig. 3. This fully differential 
implementation requires only 28 transistors. We also, made the proof that the proposed design is TSC (fault secure and 
self-testing) for all stuck-at, stuck-on and stuck-open faults. 
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Fig 3: (a): Differential SUM Gate; (b) differential full adder 

Inverters are added to restore degraded signals generated by the differential SUM gate. 
Note that degraded outputs of the first gate (diff XOR1) are not used to drive the transistor gates of the second gate (diff 
XOR2) and thus, signals are not degraded once more. In fact, the output voltage does not depend on the number of switch 
transistors that the signal travels through. It only depends on the gate voltage of those switches 

The proposed differential full adder delivers propagation signals ,i i
P P by the SUM gate, and generation ,i i

G G signals 

by the differential carry gate. These signals are required for the implementation of fast adders (e.g. carry look-ahead, carry 
skip, etc.)  

IV. Fast carry propagation SC adders  

In [2] a self-checking ripple-carry adder data path was proposed and proved TSC. However, ripple carry adders introduce 
a great delay so that they can be used for implementing only small adders. In order to implement great adders with 
acceptable delay, the proposed XOR gate and self-checking full adder can be adopted to implement fast adders (e.g., 
carry look-ahead, carry select, carry skip, etc.) 

In order to make faster microprocessors, it is necessary to speed up the data path block, especially adders. Ripple carry 

adders exhibits the most compact design but the slowest in speed. Whereas carry look-ahead is the fastest one but 

consumes more area [9]. Carry select adders act as a compromise between the two adders [10]. 

Well developed schemes and proofs for SC carry look-ahead (full or group), carry-skip and conditional sum adders are 

presented in [11, 12]. 

In the following, we propose the use of the self-checking full adder and the differential XOR gate of figure 3 to build fast 

SC adders. 

IV.1. The general structure of the self-checking data paths 

The self-checking adder will be checked basically by the double-rail code. All the other blocks of the data path will be 
checked by the parity code. Using two different codes in the data path requires using one checker and one code translator 
for each adder block, and one checker and one code translator for each BUS. Using of translator circuits may involve an 
important hardware overhead. However, this does not occur in the present implementation. Indeed, a well known property 
of double-rail checkers is that they have a one-to-one correspondence with the parity trees. Therefore, the use of a 
translator to translate the double-rail code to the parity one is not necessary in the following implementations. 

IV.2 carry look-ahead SC adder 

Carry look-ahead (CLA) addition is one of the widely used methods in implementing fast adders [13], [14].  
The carry look-ahead adder can be a group or a full one. In a group carry look-ahead adder each group of slices is 
implemented as a ripple carry adder. The carry-in signals for the groups are generated in a separate fast carry look-ahead 
unit. In the self-checking implementation these groups can be implemented using the double-rail code as previously.  
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The FA and differential XOR presented in the previous section and in [2] can be adopted for this scheme as shown in Fig. 
4.   
Fig. 4 gives the scheme of each slice of a full carry look-ahead adder, and the last slice of each group in the case of a 
group carry look-ahead adder. 
All the carries generated by the carry look-ahead block (full or group), will be double-rail checked. The way this checking is 
given without duplicating the carry look-ahead block is presented in Fig. 4 and the proof is given in [11]. 

Each slice i receives two double-rail carry inputs Ci , iC  (generated by the previous slice i-1), and generates two double-rail 

carries Ci+1 1, iC . But the last slice of the group (e.g. the slice k) generates only the carry Ck+1. The carry look-ahead circuit 

generates also a second carry Ck+1. These two signals are compared by the carry double-rail checker as in Fig. 4. 

Then, both the carry inputs Ck+1 1, kC  of the slice (k+1) (first slice of the next group) comes from the output Ck+1 of the 

carry look-ahead circuit. 
In the case of a full carry look-ahead each group of slices is reduced to a single slice as shown in Fig. 4. 
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Fig 4: A full Carry look-ahead self-checking adder scheme and SPICE simulation 

The outputs Si, iS  are checked by a double-rail checker, this checker also generates the parity of the outputs. This 

checker is not shown in Fig. 4. 
Table 1 gives the transistors count saving of the proposed CLA adder compared to duplication based SC Adder and the 
design presented in [11]. 

Table 1: Overhead saving (Tran. #) 

Adder size (Bit #) 
Duplication based 

SC CLA Adder 
[6] 

 

8 176 96 

16 352 192 

32 804 384 

64 1608 768 

 
IV. 2 Self-checking Carry skip SC adder 

Another technique allowing fast carry propagation is the skip carry. In a carry-skip adder the carry signal skips a block if all 

the corresponding propagate signals of this block are equal to 1. 

Since they compute the propagation signals, the proposed FA and differential XOR can easily, be adopted to implement 

SC carry skip adders. 

A SC implementation carry skip adder based on Carry Checking/Parity Prediction technique is presented and analyzed in 

[11, 12]. 

The Fig. 5 illustrates how such an adder is implemented using the proposed differential XOR gate. We note that in this 

scheme, only a simple XOR (not differential) is needed to compute the FA outputs. Therefore, the differential FA of the 

Fig. 3 is modified and simplified as shown in Fig. 5. 
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Fig 5: A Carry skip self-checking adder scheme and SPICE simulation (two bit Carry skip SC Adder) 

The skip carry adders are implemented as the ripple-carry ones. However, in order to avoid delays due to long carry 
propagations, the output carry of some slices are merged with some signals SP ij which propagate the carry from Cj to Ci 
(i.e. SPij = Cj . Pj+1. Pj+2 ... Pi). The carry input C

’
i+1 of the slice (i+1) is generated from the carry output Ci of the slice (i) as 

following: 

C
’
i+1 = 1 1SP Cij i ij iSP C . 

The signals Ci+1 and C
’
i+1 compute the same function but C

’
i+1 is faster. 

In the case of 16 bits SC carry skip adder, the implementation of the Fig. 5 saves 192 transistors, compared to the scheme 

of [11]. 

IV. 3 Self-checking Carry-select adder 

The addition time of a ripple carry adder can be improved with a modified structure called the carry-select adder. The 

principle of a carry-select adder is to use one ripple carry adder to execute an addition assuming that the carry-in is “1”. 

Another ripple carry adder is used to execute the same addition assuming that the carry-in is “0”. Since the input carry 

signal of these blocks is always constant the hardware of theses blocks can be simplified. 

The real carry-in computed in a previous stage is used to select one of the two sums with a multiplexor.  

A SC carry-select adder is proposed in [15]. This schema is based on the ripple carry adder. It can be, therefore, easily 

implemented with the differential FA of the Fig. 3. 

IV.4 Self-checking Conditional-Sum Adder 

A conditional sum adder is an extension of carry select using one-bit blocks. It consists of conditional cells (Fig. 11(a)) and 

selection cells. The conditional cell is a modified full adder that computes the outputs 
0 1,i iS S  and the carries out 

0 1

1 1, .i iC C  
0

iS and 
0

1iC  denote that the carry bit of the adder is 0, while 
1

iS  and 
1

1iC  mean that the carry bit of the adder is 1. We 

have: 
0

i i i iS a b P  
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1 1 01 ii i i i iS a b P S S  

0

1 i ii i iC a b a b  

1

1 . .i ii i i i i i iC a b a b a b a b
 

Fig. 11(b) gives a two bits SC conditional sum adder implementation. This adder is fully controlled with double-rails 

checker as shown in Fig. 11(b). Fig. 11(c) gives SPICE simulation of a two bit SC conditional sum adder. 

We could find 
0

iS  and 
1

iS  are complementary
1 0

i iS S , thus 
0 1 0

0 0 1, ,S S S  and 
1

1S  could be connected to a first double-rail 

checker. We could also find that 

1 0 0 1 0 0

1 1 1 1( ) .i i i i i i i i i iC a b a b C S C C S . As shown in Fig. 11(b), 
1 0 0

1 1 0,C C S  and 
1 0 0

2 2 0,C C S  

should be connected to a second double-rail checker.  
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Fig 11(a): Conditional-sum cell 
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Figure 11(b): 2-bit self-checking conditional-sum adder module 

 
 

Figure 11(c): Two-bit self-checking conditional-sum adder SPICE simulation 
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Let’s examine the behaviour of the circuit of Fig. 11(b) under any single stuck-at fault to make the proof that it is TSC for 
this class of faults. 

In the conditional-sum adder scheme of the Fig. 11(b), faults can be classified into four categories:  

 The fault happening to the differential XOR inputs or inside it 
 The fault happening to the sum bit and carry bit of the adder 
 The fault happening to the input or output of the NOR gate 
 The fault happening inside the multiplexer 

First category of faults: 

In [1], we made the proof that the differential XOR gate is totally self-checking for all stuck-at, stuck-on and stuck-
open single faults. Therefore, any non-code input word produce a non-code word, and will be transmitted to next stages. 

Second category of faults: 

When a stuck-at 0 (s@0) fault happens to the sum bit S
1

0, the wrong value 0 will be transmitted to y0, and will not be 
complementary to the value transmitted to x0. The fault inside the adder could then be affirmed accordingly by the double-
rail checker. When a stuck-at 1(s@1) fault happens to the carry bit C

0
1, the wrong value 1 will be transmitted to x1 and will 

not be complementary to the value transmitted to y1. The fault inside the adder could then also be detected accordingly. If 
faults happen to S

1
0 and C

0
1 at the same time, the faults inside the adder could be identified from the output signals of the 

two-rail checker. 

third category of faults: 

When a fault happens to the input or output of the NOR gate and a wrong value as the input is transmitted to the two-
rail checker, the outputs f0 and f1 of the two-rail checker will indicate non-complementary signals (non-code word). The 
fault inside the adder could then be detected accordingly. The SC propriety proof for the fault falling into this category is 
the same as that of the stuck-at-fault at C

0
1 in the second category. 

Fourth category of faults: 

We have two cases: fault happening inside the first multiplexer which generate the output Si. This will be checked by 
the parity code for the whole data path scheme as it the case for SC ripple carry adder data path [2]. the fault happening 
inside second multiplexer which generate the carry signal Ci, will be propagated to next stage, and therefore detected by 
the same technique (parity checking). 

From the above discussion, the proposed schemes for self-checking fast adders data paths can be said optimal [8] 
since it had reached the following goals: 

 They are self-checking for all the single faults, 
 They requires a low hardware overhead,  
 They are checked by a compact checker, 
 They can be combined with a parity checked data path without using code translators. 

VI. CONCLUSION 

In this paper, we proposed novel schemes of dual-rail based self-checking fast adder’s data paths. We combined 
Conventional CMOS and CPL CMOS styles to achieve low overhead and low power design. We presented an efficient 
Self-checking schemes for carry look-ahead, carry skip, Carry-select and Conditional-Sum adder data paths. These 
implementations are based on a TSC differential full adder and a CPL TSC differential XOR gate. SPICE simulations of 
the proposed schemes, including parasitic, are performed to demonstrate that these design had an acceptable electrical 
behaviour. 
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