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ABSTRACT 

This paper deals with goal programming approach to chance 

constrained multi-objective linear fractional programming 

problem based on Taylor’s series approximation. We consider 

the constraints with right hand parameters as the random 

variables of known mean and variance. The random variables 

are transformed into standard normal variables with zero mean 

and unit variance. We convert the chance constraints with 

known confidence level into equivalent deterministic 

constraints. The goals of linear fractional objective functions are 

determined by optimizing it subject to the equivalent 

deterministic system constraints. Then the fractional objective 

functions are transformed into equivalent linear functions at the 

optimal solution point by using first order Taylor polynomial 

series. In the solution process, we use three minsum goal 

programming models and identify the most compromise optimal 

solution by using Euclidean distance function. 

General Terms: Multi-objective linear fractional 

programming, Goal programming. 

Keywords: Goal programming, fractional programming, 

linear fractional programming, multi-objective linear fractional 
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1. INTRODUCTION 
In many real world decision making situation, decision makers 
(DMs) have to optimize the objective functions which are ratio of 
two functions of decision variables. This type of optimization 

problem is called fractional programming problem (FPP) [1]. The 
objective function of FPP may be represented by the ratio of 
purchasing cost and selling cost, ratio of the productions of two 
major crops, ratio of death and birth of people of a certain region, 
ratio of the full time workers and part time workers, ratio of salary 
and bonus etc. When both the numerator and denominator are 
linear functions, then it is called linear FPP and if any one of the 
numerator or denominator is nonlinear, it is then called nonlinear 
FPP.  

Multi-objective linear fractional programming problem 
(MOLFPP) consists of multiple linear fractional objectives. 
MOLFPP is solved by using the variable transformation method 

due to Charnes and Cooper [2] or by adopting the updating 
objective function method by Bitran and Noveas [3]. Kornbluth 

and Steuer [4] developed goal programming algorithm for 
solving MOLFPP. To overcome the computational difficulties 

for solving MOLFPP, Luhandjula [5] proposed fuzzy approach 
to MOLFPP.  Dutta et al. [6] extended Luhandjula‟s approach 
and solved MOLFPPs by fuzzy programming technique. Sakawa 
and Kato [7] studied interactive approach for solving MOLFPPs 
with block angular structure involving fuzzy numbers. 
Chakraborty and Gupta [8] developed fuzzy set theoretic 
approach to MOLFPP by transformation of variables. Pal et al. 
[9] proposed fuzzy goal programming (FGP) procedure for 
solving MOLFPP. Guzel and Sivri [10] presented Taylor series 

based solution procedure for MOLFPP. Toksarı [11] studied 
Taylor series based approach for dealing with MOFLPP in fuzzy 
environment. Pramanik and Roy [12] studied FGP models for 
solving MOLFPP. They [13] also developed priority based FGP 
models for MOLFFP. Recently, Dey and Pramanik [14] studied 
goal programming (GP) approach for solving linear fractional 
bi-level programming problem based on Taylor series 
approximation.  

 

 In the decision making situation uncertainties may occur. 
Usually, uncertainties are characterized by fuzzily and 
stochastically described events in the decision making context. 
Dantzig [15] studied stochastic programming (SP) based on 
Probability theory. There are two main approaches of SP such as 
chance constrained programming (CCP) due to Charnes and 
Cooper [16] and two- stage programming due to Dantzig and 

Mandansky [17]. In CCP, the constraints are transformed into 
equivalent deterministic constraints by using the known 
distribution function. 
 

In this paper chance constrained multi-objective linear fractional 

programming problem (CCMOLFPP) is considered. The 

objective functions are ratio of two linear functions. The system 

constraints are characterized by the random variables of known 

mean and variance. The random variables are transformed into 

standard normal variables with zero mean and unit variance. We 

transform the chance constraints with known confidence level 

into equivalent deterministic one. Then the fractional objective 

functions are transformed into equivalent linear functions at the 

optimal solution point by using first order Taylor polynomial 

series. In the solution process, we use three GP models and 

identify the most compromise optimal solution by using 

Euclidean distance function. 
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Rest of the paper is organized in the following way. Section 2 

presents formulation of CCMOLFPP. Section 3 provides 

construction of deterministic constraints. Section 4 describes the 

use of first order Taylor series approximation for linearization. 

Section 5 is devoted to provide GP formulation for 

CCMOLFPP. Section 6 explains the use of distance function to 

identify compromise optimal solution. In Section7, illustrative 

numerical example is solved in order to show the efficiency of 

the proposed GP approach. Section 8 presents concluding 

remarks. Finally, Section 9 presents references used in the paper. 

2. FORMULATION OF CCMOLFPP 
 The objective functions are described as the ratio of two linear 

functions of decision variables. The objective functions can be 
represented as:  
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3. CONSTRUCTION OF 

DETERMINISTIC CONSTRAINTS 
First, consider the chance constraints of the type:   Pr 
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where  (.) and  -1(.) represent respectively the distribution 

function and inverse of distribution function of standard normal 
variable. 

Now consider the case when Pr( k
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Let us denote the deterministic constraints (3), (4) and (5) as S` 
 

 

4. USE OF FIRST ORDER TAYLOR’S 

SERIES APPROXIMATION FOR 

LINEARIZATION 
 

First, we find out the ideal solution point for the each objective 
function individually subject to the deterministic constraints. 

Suppose, *
kx  =  *

kn
*

2k
*

1k x...,,x,x   be the ideal solution for the k-

th objective function. For the linearization, we use Taylor’s 
series of first order and the series is expanded about the ideal 
solution points of each objective function. The series can be 
expressed as:                                                                                                                       
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Where )x(Z *
kk = 

S`
max )x(Zk  = gk 

5. GP MODEL FORMULATION FOR 

CCMOLFPP 
 

After linearization of )x(Zk , we set the aspiration level gk as 

individual best solution or ideal solution for each the objective 
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goal. Introducing negative and positive deviational variables the 
achievement function can be written as:  

)x(Ẑk  + 
kd  - 

kd  = gk k = 1, 2, …, K                                     (7)  

where gk is the aspiration level of the k-th objective goal and  

kd   

kd = 0. 

Since we consider the individual best solution of the objective 
function, positive deviation is not possible. Therefore, we use 
only negative deviational variables. Then (7) can be replaced by  

)x(Ẑk  + 
kd  = gk         k = 1, 2, …, K                                        (8)  

Now, the minsum GP model for CCMOFPP can be formulated 
as: 
Model-I: 

Min  = 


 k

K

1k
kdw                                                                       (9) 

subject to  
 kd0

                                                                              (10) 

and the constraints (3),(4),(5), and (8).  Here, wk is the 
associated weight for the k- th objective and   the decision 
makers can fit the weight according to the importance of goals 
in the decision making context.   
 

Model-II                                                                                  (11) 

Min  = 



K

1k
kd                                                                         (12) 

subject to the constraints (3),(4),(5),(8),(10).                          (13) 
Model-III 
 

Min                                                                                       (14) 

subject to the constraints   ≥ 
kd                                           (15) 

  (3), (4), (5), (8), (10)                                                              (16) 

 

6. COMPROMISE SOLUTION BY USING 

DISTANCE FUNCTION 
To compare the solutions obtained from proposed different GP 

models, Euclidean function [18] can be defined as: 

L2 (  , k) =    2/12
k

2
k )1(      (17) 

 = ( k ...,,, 21 ) denotes vector of attribute attention levels.  

We assume that 1...,21  k . If all the attributes are 

equal, then k = 1/K (k = 1, 2, …, K). For maximization 

problem, k  is denoted by k  = (the preferred compromise 

solution)/ (the individual best solution). For minimization 

problem, k  is denoted by k  = (the individual best solution)/ 

(the preferred compromise solution). The solution for which  

L2(  , k) is minimal, would be considered as the most 

compromising optimal solution.  

7. NUMERICAL EXAMPLE 

The following numerical example is considered to illustrate the 
proposed approach. 

Find   x (x1, x2, x3) so as to                                                     (18) 

maximize Z1( x ) =
5x7x104x

6x2x3x
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maximize Z2( x )=
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maximize Z3( x )=
2xx12x3

6x2x5x

321

321





                           

     (21) 

subject to    

 Pr(3x1 –x2 +x3 ≤b1) ≥ 1- 1                                                     (22) 

Pr (-2x1 +x2 +7x3 ≤b2) ≥ 1- 2                                                 (23)                                            

Pr (x1 +3x2 +x3 ≥b3) ≥ 1- 3                                                    (24) 

The mean, variance and the confidence levels are given below: 

E(b1) = 10, var(b1) = 4, 1 = 0.01                   (25) 

E(b2) = 15, var(b2) = 9, 2 = 0.02                                           (26) 

E(b3) = 25, var(b3) = 16, 3 = 0.03                                         (27)        

Using (4), (5) the chance constraints (22), (23) and (24) can be 

converted into equivalent deterministic constraints as: 

3x1 –x2 +x3 ≤ 14.65     (28) 

-2x1 +x2 +7x3 ≤ 21.165    (29) 

x1 +3x2 +x3 ≥ 17.46                                                                 (30) 

The individual best solutions for each objective function subject 

to (3), (28), (29), and (30) are obtained as:  

Z1(
*
1x ) = 0.2967, *

1x = 6.141, *
2x

 = 3.773, *
3x = 0;             (31) 

Z2(
*
2x ) = 1, *

1x = 0, *
2x

 = 5.82, *
3x = 0;                 (32) 

Z3(
*
3x ) = 0.6004, *

1x = 4.5792, *
2x = 2.9921, *

3x
* = 3.9045 (33)                                                                        

Using Taylor’s series approximation (6), the objective functions 

(20), (21) and (22) can be  transformed into new linear objective 

functions. 

)x(Ẑ1  = 0.0269x1 -0.0144x2 -0.016x3 +0.1858,  (34) 

)x(Ẑ2 = -0.1718x1 -0.1718x3 +1,   (35) 

)x(Ẑ3  = -0.0144x1 -0.0397x2 +0.0252x3 +0.6867                  (36) 

Considering the individual best solution i.e. maximum value as 

aspiration level, we can write achievement functions as: 

0.0269x1 -0.0144x2 -0.016x3 +0.1858 + 
1d = 0.2967,            (37) 

-0.1718x1 -0.1718x3 +1 + 
2d = 1,                   (38) 

-0.0144x1 -0.0397x2 + 0.0252x3 + 0.6867 +

3d  =0.6004        (39)                                                             

Now using the GP models (9), (12, and (14) the obtained 

solutions compared in the Table 1. 

Table1: Comparison of optimal solution obtained from 

proposed GP Models. 
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GP 

Model 
k   Euclidean 

Distance 

L2 

GP 

Model I 
1 = .2569, 2 = .6046, 3 =  

.9062 

0.8470 

GP 

Model II 
1 = .3438, 2 = 1, 3 = .7589 0.6991 

GP 

Model III 
1 = .4460, 2 = .8356, 3 = .7570 0.6269 

Comparing the distance functions, it is clear that GP Model III 

offers the most compromise optimal solution.  

8. CONCLUSION 
In this article, GP based chance constrained multi-objective 

fractional programming problem with random variables is 

presented. First order Taylor’s series approximation is used to 

convert the fractional objective functions into linear forms. 

Three models of minsum GP are presented.. Here only negative 

deviational variables are required to minimize in order to obtain 

compromise optimal solution. Therefore computational load is 

less than conventional goal programming model.   

For the further research, priority based GP models may be 

considered. If the objective functions are fuzzily described, then 

FGP models [19, 20, 21] may be used.  The proposed approach 

can be extended for multi-objective inventory problems with 

chance constrained constraints. The proposed concept can be 

extended for chance constrained multi-objective linear plus 

linear fraction programming problem. 
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