
Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3 No. 2, OCT, 2012

284 | P a g e w w w . c i r w o r l d . c o m

Exploring Problems and Solutions in estimating Testing
Effort for Non Functional Requirement.

Pratima Singh
Deptt. Of Computer Engineering,

I.I.T.(BHU).
Varanasi, U.P.

Anil Kumar Tripathi.
Deptt. Of Computer Engineering,

I.I.T.(BHU).
Varanasi, U.P.

ABSTRACT

Importance of testing has been realized in literature now,
although late, but has been realized. Testing of Non
Functional Requirement still remains unattended by the
Software engineering Community. It is still being given

second hand treatment from its specification, design to
Testing. We try to analyze the contributory factors of
testability of NFR, so that some metrification for the purpose
of Effort Estimation due to NFR can be estimated. For the
purpose of same we have tried to identify certain, difficulty
related to NFR and indicators of its testability.

Keywords

Non Functional Requirement, Testing, Metrics, Testability,

1. INTRODUCTION

The increasing visibility of software as a system element and

the attendant "costs" associated with a software failure are
motivating forces for well-planned, thorough testing. It is not
unusual for a software development organization to expend
between 30 and 40 percent of total project effort on testing. In
the extreme, testing of human-rated software (e.g., flight
control, nuclear reactor monitoring) can cost three to five
times as much as all other software engineering steps
combined![18] Due to the enormous pressure towards

deploying software as fast as possible, functional
requirements have been the main focus of software
development process at the expense of implementing non-
functional requirements (NFRs) such as performance and
security. Thus, in practice, NFRs have been observed to be
frequently neglected or forgotten in the software development
process. However, NFRs is an important concept in
requirements engineering which plays an essential role in the

success or the failure of systems. NFRs introduce quality
characteristics, but they also represent constraints under which
the system must operate. Due to enormous [1]The importance
of NFR becomes more crucial for mission critical software.
NFR are handles informally, confusingly, intermingled with
Other Functional requirement in SRS. Identification &
Isolation of NFRs are a problem & it becomes multifold
important for a Business or mission critical system.[2]

 There are several Non Formal Methods

using Natural language & a variety of graphical notations.
Although careful application of analysis and design methods,
coupled with thorough review can and does lead to high-
quality software, sloppiness in the application of these
methods can create a variety of problems. A system
specification can contain contradictions, ambiguities,
vagueness, incomplete statements, and mixed levels of
abstraction. [18]

Testability can be broadly defined as: Some define testability
even very broadly: as anything that makes software easier to
test improves its testability, whether by making it easier to
design and test more efficiently. According to[3] testability is
composed of the following.

• Control. The better we can control it, the more the testing
can be automated and optimized.

• Visibility. What we see is what we test.

• Operability. The better it works, the more efficiently it can
be tested.

• Simplicity. The less there is to test, the more quickly we can
test it.

• Understandability. The more information we have, the

smarter we test.

• Suitability. The more we know about the intended use of the
software, the better we

can organize our testing to find important bugs.

• Stability. The fewer the changes, the fewer the disruptions to
testing.

This broader perspective is useful when you need to estimate
the effort required for testing or justify your estimates to

others.

According to ISO 9126 S/W quality attributes comprises of
six main attributes(called characteristics)[19]are
1)Functionality: The capability to provide functions which
meets stated & implied needs when the s/w is used.

2) Reliability: The capability to maintain a specified level of
performance.

3) Usability: The capability to be understood, learned & used

4) Efficiency: The capability to provide appropriate
performance relative to the amount of resources used.

5) Maintainability: The capability to be modified for the
purpose of making corrections, improvements or adaptations.

6) Portability: The capability to be adapted for different
specified environments without applying actions or means
other than those provided for this purpose in the product.

Usability: has the characteristic of understandability, learn

ability, operability.

Maintainability: implies changeability, testability, stability

Portability: adaptability, instability

 There are two important consequence of having multiple
dimensions to quality

First software quality cannot be reduced to a single no(single
parameter)

Second the concept of Quality is project specific [19]

Essentially a software system's utility is determined by both

its functionality and its non-functional characteristics, such as
usability, flexibility, performance, interoperability and
security. Nonetheless, there has been a lop-sided emphasis in
the functionality of the software, even though the
functionality is not useful or usable without the necessary
non-functional characteristics[4]

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3 No. 2, OCT, 2012

285 | P a g e w w w . c i r w o r l d . c o m

Non-Functional requirement - in software system engineering,
is a software requirement that describes not what the software
will do ,but how the software will do it, for example,
performance requirements, software design constraints,
software external interface requirements and software quality
attributes. Nonfunctional requirements are difficult to test;

therefore, they are usually evaluated subjectively. [4]Just with
almost everything else the concept of quality is also
fundamental to software engineering . Both functional & non
functional characteristics may be taken into consideration in
the development of quality software. NFR can be explained as
several “abilities” as extra-functional requirements, quality
factors,(not dysfunctional requirements)"-ilities":
accessibility, adaptability, adjustability, availability,

capability, compatibility, composability, comprehensibility,
configurability, controllability, customizability,
enhanceability,evolvability, expandability, extensibility,
flexibility, inter-operability, learnability,
maintanability,modifiability, portability, reconfigurability,
reliability, repeatability, replaceability, reusability, scalability,
standardizability, supportability, survivability, sustainability,
testability, traceability

trainability, transferability, usability, variability, versatility,
...-ities": additivity, distributivity, diversity, modularity,
plasticity, safety, security, similarity, simplicity, ...

Other: accuracy, completeness, performance, responsiveness,
user-friendliness, ...

[4]NFRs introduce quality characteristics, but they also

represent constraints under which the system must operate.
So, the chances of success for the software system are
maximized when NFRs are modeled since the initial phases of
the development process.

Several definitions of NFR exist in the literature.

IEEE defines Non-Functional Requirements as “a software
requirement that describes not what the software will do, but
how the software will do it, for example, software

performance requirements, software external interface
requirements, design constraints, and software quality
attributes”.[1]

The following Tree explains the various Quality Factors
for Product , Process & External considerations.[19]

[20]

2. Major challenges in handling NFR:

A survey from a small sample of organizations, of the state of
the practice in terms of nonfunctional requirements has shown
that[ref:paper8] nonfunctional are often overlooked,.
Questioning users is insufficient .Methods do not help the
elicitation of nonfunctional requirements, and there is a lack
of consensus about the meaning and utility of nonfunctional
requirements

1)Identification /Isolation & Incorporation of NFR in
Architect.

 2)Conflicting Identification & resolution among NFR is
major concern. Conflict Resolution of several intermingled
requirements is difficult. optimizing one at the cost of other is
multi optimization problem

Software Quality

Functionality Reliability Usability Efficiency Maintaina

bility

Portability

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3 No. 2, OCT, 2012

286 | P a g e w w w . c i r w o r l d . c o m

3)Great Diversity of NFR.(Types of NFR & various attributes
of various NFR

Great diversity of NFR makes it difficult to be identified and
dealt with.[1].All NFR can’t be treated a likely, for example
security & usability requirements can not be treated in the

same way. It is difficult to follow a single way or method of
dealing with different NFR at the same time.[6]

\4)Cross Cutting concerns penetrating across several modules.
Different viewpoints of the same software

 5).Informal treatment of NFR [1]. NFR has been treated as
second class requirement after FR.Explictty dealing with NFR
and specifying NFR in concert to FR is still a future research
area[ref50].Explicit dealing of NFR is missing[6].

6) Incorporating NFR’s into different phase of software life
cycle is difficult.

7) NFR are not mapped directly and explicitly from
requirements engineering to implementation . This Non
mapping of NFR from Req to implementation phase results in
NFR Omission there by Overrun in Cost & schedule.[1]

8)NFR are Subjective in Nature[6]

9) Conventional Testing Methodology do not handle NFR

Properly[7]

10) There is shortage of mature design methodology for any
form of NFR .[1,7]

11)First software quality cannot be reduced to a single
no(single parameter)[19] So NFR are difficult to identify
,handle and be paramatized. [1]

12) most of the work on NFR uses Product oriented approach
only. which is concerned with measuring how often a

software system is in harmony with set of NFR that it should
satisfy.[5,14] . Very few , process oriented approach for NR is
there in literature. POMSA(Process Oriented Metrics for
software Architecture Adaptability) achieves the needed
tracing by adopting the NFR Framework.[5]

13) Existing requirement specification are difficult to extend.
Solution are being searched in formal methods which are all
the more uncommon because of its dificcult understanding &
implementation. A survey of the literature found that most

people use informal or semi-formal approaches to specify
NFRs because the formal ones are still perceived as more
difficult and expensive. [7]

14) There are no metrics for ranking nonfunctional
requirements . For Example Describing software reliability
via hardware reliability metrics such as “mean time between
failure” is nonsensical. Ways of expressing the “importance”
or “criticality” of components are also lacking.[7]

15)Programming language constructs for directly expressing
non-functional requirements are weak (even when the new
Ada proposals are considered)[7]

16) A survey of the literature found that current programming
languages were not designed with NFRs.[1]

3.The principal challenges for testing and

debugging non-functional requirements are

as follows.[7]

1)It is difficult to test embedded systems under realistic
conditions. Simulation environments, particularly for

hardware components, are themselves error-prone. A related
problem

is the difficulty of constructing “harnesses” for testing
software components in isolation.

2) Debugging distributed systems is an unsolved problem in

itself, even before non-functional requirements are considered

3) Introducing debugging code into a program may alter its
non-functional characteristics, especially timing

4)The huge amount of data generated by fast embedded
systems is difficult to capture and present to the programmer
in a comprehensible format.

4.Approaches to Handle NFR related

problems are:

) Two extremes of Requirement specification are Natural
Language & Formal Methods. Extending and relaxing formal

methods in order to support the majority of NFRs is one of the
solution.[9]

2)Modeling and analyzing functional requirements and NFRs
that should be considered separately. Providing
methodologies guidance through the whole development
process.[1]

3) The most mature theoretical work on NFR is on “timed”
Petri nets. Abstract specification language (Formal

Methods)such as Z & VDM have been used for timing
specifications .[1]

4) Researches are proposing several models & approaches to
tightly integrate FR ,NFR to Architectural Decisions.[10,11]

5)NFR refers to orthogonal properties, conditions and
restrictions that are spread out over the entire system. pure

OO Approach do not handle these cross cutting concerns
successfully so new approach like Aspect Oriented
Programming is applied to fill this gap[12]

6)The NFR Framework is the most popular work in this
topic.It promotes goal orientation with major emphasis on
NFR.[1] It treats NFRs as soft goals (goals that are hard to
express) to be addressed during the development process.
NFRs, design decisions and their relations are captured in a

goal graph where the nodes are either NFRs or design
decisions. Goals in NFR Framework can be refined into
detailed concrete goals. NFR Framework makes the
relationships between NFRs and intended decisions explicit.
This helps better understand the impact of every design
decision; i.e. typically one design decision may impact
multiple NFRs positively or negatively. The main interest of
this framework is that it can be reused by other models to

handle NFRs. NFR .

The i* family,Tropos and GRL(Goal Requirement Language)
inherited the concept of softgoal from the NFR Framework
aiming at dealing with softgoals, or non-functionality related
attributes as a first class modeling concepts.[4] Goal oriented
methods such as the NFR,KAOS and i* family are the few
process that consider Non Functionality as a first class
concepts.

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3 No. 2, OCT, 2012

287 | P a g e w w w . c i r w o r l d . c o m

7) There has been an effort to link UML to NFR Framework
by extending UML for NFR .

Attempts have been made to integrate NFR into class,
sequence & collaboration diagram. Use case & scenario can
be adapted to deal with NFR[1,5].UML has been extended

towards Aspect J where by tools have been developed to semi
automatically or automatically generate AspectJ code from
UML[13,14]

8) In an attempt to formalize system requirement System
requirement are captured by aspect –oriented use case
diagrams & are formalizes as Aspect oriented state Chart. A
formal approach with aspect-oriented statecharts is used[15]

9) A survey of the literature found that current programming

languages were not designed with NFRs. new programming
style into the existing object-oriented language Java has been
introduced. This new method is called “Constraint and Object
Oriented” programming style. The last revision of Ada
language is another example of new

programming style which takes account different NFRs.
Exception Mechanism is also another new style programming
which is supported by many current programming languages

like C++ and Java. This mechanism separates the normal
control flow from the exceptional control flow under error
conditions. This separation of concerns and centralized
exception handling reduce the complexity of programming.
Thus, exception mechanism can be viewed as a special form
of policy because it provides a mechanism to specify the
policies about how to handle faults. They are also another
type of solution proposed by many works that combines rule

based techniques and object oriented programming. For
example, a new language, called R++ rules, which is an
extension to C++. R++ rules , which trigger automatically
upon relevant data change. One important contribution of R++
is that it introduced rule as member of class. R++ Rules are
introduced as a natural extension to object-oriented classes,
they support inheritance, overriding, and visibility rules.[14]

10) A strong traceability between NFRs and functional
requirements can address the problems of NFR [1]

11) Early NFR Identification, isolation i.e. at requirement
engineering phase. [7]

12) Handling the Aspects of different stake holder right from
the Requirement Engg. phase to analysis, design &
implementation phase so that the Testing Efforts can be
estimated or predicted early

5.Metrics of NFR [16]

Non-Functional Requirements - Checklist

Security

• Login requirements - access levels, CRUD levels

• Password requirements - length, special characters, expiry,
recycling policies

• Inactivity timeouts – durations, actions

Audit

• Audited elements – what business elements will be audited?

• Audited fields – which data fields will be audited?

• Audit file characteristics - before image, after image, user
and time stamp, etc

Performance

• Response times - application loading, screen open and
refresh times, etc

• Processing times – functions, calculations, imports, exports

• Query and Reporting times – initial loads and subsequent

loads

Capacity

• Throughput – how many transactions per hour does the
system need to be able to handle?

• Storage – how much data does the system need to be able to
store?

• Year-on-year growth requirements

Availability

• Hours of operation – when is it available? Consider
weekends, holidays, maintenance times, etc

• Locations of operation – where should it be available from,
what are the connection requirements?

Reliability

• Mean Time Between Failures – What is the acceptable
threshold for down-time? e.g. one a year, 4,000 hours

• Mean Time To Recovery – if broken, how much time is

available to get the system back up again?

Integrity

• Fault trapping (I/O) – how to handle electronic interface
failures, etc

• Bad data trapping - data imports, flag-and-continue or stop
the import policies, etc

• Data integrity – referential integrity in database tables and
interfaces

• Image compression and decompression standards

Recovery

• Recovery process – how do recoveries work, what is the
process?

• Recovery time scales – how quickly should a recovery take
to perform?

• Backup frequencies – how often is the transaction data, set-
up data, and system (code) backed-up?

• Backup generations - what are the requirements for restoring

to previous instance(s)?

Compatibility

• Compatibility with shared applications – What other systems
does it need to talk to?

• Compatibility with 3rd party applications – What other
systems does it have to live with amicably?

• Compatibility on different operating systems – What does it
have to be able to run on?

• Compatibility on different platforms – What are the
hardware platforms it needs to work on?

Maintainability

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3 No. 2, OCT, 2012

288 | P a g e w w w . c i r w o r l d . c o m

• Conformance to architecture standards – What are the
standards it needs to conform to or have exclusions from?

• Conformance to design standards – What design standards
must be adhered to or exclusions created?

• Conformance to coding standards – What coding standards

must be adhered to or exclusions created?

Usability

• Look and feel standards - screen element density, layout and
flow, colours, UI metaphors, keyboard shortcuts

• Internationalization / localization requirements – languages,
spellings, keyboards, paper sizes, etc

Documentation

• Required documentation items and audiences for each item

[9]

 Time

 Transactions / sec

 Response time

 Time to complete an operation

 Space

 Main memory

 Auxiliary memory

 (Cache)

 Usability

 Training time

 Number of choices

 Mouse clicks

 Reliability

 Mean time to failure

 Downtime probability

 Failure rate

 Availability

 Robustness

 Time to recovery

 % of incidents leading to catastrophic

failures

 Data corruption probability after a failure

 Portability

 % of non-portable code

 Number of systems where software can
run

Portability

1)the degree to which software running on one platform can
easily be converted to run on another. E.g., number of target
statements (e.g., from Unix to PC)

Lawrence

2) the degree to which software running on one platform

can easily be converted to run on another.

Reliability

1)the ability of the system to behave consistently the
environment for which the system was intended. in a user-
acceptable manner when operating within acceptable limit

2) theory and practice of hardware reliability are well
established; some try to adopt them for software one popular

metric for hardware reliability is mean-time-to-failure
(MTTF)

3)Sometimes reliability refers to the level at which a software
system uses scarce computational resources, such as CPU
cycles, memory, disk space, buffers andcommunication
channels can be characterized along a number of dimensions:

maximum number of users/terminals/transactions

Efficiency refers to the level at which a software system uses

scarce computational resources, such as CPU cycles, memory,
disk space, buffers and communication channels can be
characterized along a number of dimensions: maximum
number of users/terminals/transactions what happens when a
system with capacity

 e.g., "the system will generate a dial tone within 10 secs from
the time the phone is picked up"

e.g., "the system will record that the phone is in use no later

than 1 micro-second after it had generated a dial tone"

e.g., "the user will start dialing the phone number within 1
minute from getting the dial tone"

Usability broadly - quality - fit to use narrowly - good UI

Usability inspection: finding usability problems in UI design,
making recommendations for fixing them, and improving UI
design.

Metrics For product oriented Approaches are:

Product-oriented approaches

Quality Metric

Speed: transactions/sec, response time, screen refresh time

Size: KBytes, LOCs, Function Points, Complexity measures

Ease of use: transactions/sec, response time, screen refresh
time

Usual Metrification Process Of a Quality Factor is:

 1. determine a set of desirable attributes (i.e., ilities)

2. determine relative importance/weight of such attributes

3. evaluate the quality (rating) of each of the attributes

4. compute weighted rating for each

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3 No. 2, OCT, 2012

289 | P a g e w w w . c i r w o r l d . c o m

5. sum up all the weighted ratings

6. Heuristics of Software Testability [17]

The better we can control it, the more the testing can be

automatedand optimized.

• A scriptable interface or test harness is available.

• Software and hardware states and variables can be controlled
directly by the test engineer.

• Software modules, objects, or functional layers can be tested
independently.

Ob What you see is what can be tested.

• Past system states and variables are visible or queriable (e.g.,
transaction logs).

• Distinct output is generated for each input.

• System states and variables are visible or queriable during
execution.

• All factors affecting the output are visible.

• Incorrect output is easily identified.

• Internal errors are automatically detected and reported

through self-testing mechanisms.

Availability To test it, we have to get at it.

• The system has few bugs (bugs add analysis and reporting
overhead to the test process).

• No bugs block the execution of tests.

• Product evolves in functional stages (allows simultaneous
development and testing).

• Source code is accessible.

Simplicity The simpler it is, the less there is to test.

• The design is self-consistent.

• Functional simplicity (e.g., the feature set is the minimum
necessary to meet requirements)

• Structural simplicity (e.g., modules are cohesive and loosely
coupled)

• Code simplicity (e.g. the code is not so convoluded that an
outside inspector can’t effectively

review it)

Stability The fewer the changes, the fewer the disruptions to

testing.

• Changes to the software are infrequent.

• Changes to the software are controlled and communicated.

• Changes to the software do not invalidate automated tests.

Information The more information we have, the smarter we

will test.

• The design is similar to other products we already know.

• The technology on which the product is based is well
understood.

• Dependencies between internal, external and shared
components are well understood.

• The purpose of the software is well understood.

• The users of the software are well understood.

• The environment in which the software will be used is well
understood.

• Technical documentation is accessible, accurate, well
organized, specific and detailed.

• Software requirements are well understood.

7.Future Research Direction.

1) Requirement conflicts Identification & resolution among
NFR. by Traceability matrix or conflict resolution Matrix. Or
Formal Method Specification[14,15]

 2) Integration of NFR with FR at requirement elicitation
stage,(Extending Use case or Formal method description) or
at design stage(in architecture) [15]

3)Un ambiguous specification of NFR in SRS, one of them
can be by Formal Specification of NFR .

4) Aspect Oriented Programming approach to Isolate, Identify
& find testability metrics based on NFR.[12]

8.Conclusions: Trying to Estimate Testability of NFR

is as difficult as trying to Stream line the fall of a fast flowing
water fall from the Hill top. The informal treatment of NFR’s
move down from Requirement elicitation to Analysis, Design
& Coding Phase which makes it impossible to identify isolate
bugs the cause of software failure there by increases testing

efforts.[1] Mixed status of NFR with FR results in diluted
focus on NFR in a software which becomes all the more
dangerous for Critical System because of which the existence
of a critical system can be at stake. [2]

The Unambiguous ,clear-cut ,explicit NFR Specification may
mitigate the problem of effort estimation at the later level of
Testing .

Work has been done to find solution at each level.

At Specification Level: Two extremes of specification can be
English like Natural Language specification or Discrete
interpretation as in mathematics through Formal method
Representation.

At Design level : It can be Extension of UML or Use cases for
incorporating NFR in Use cases, class, Collaboration or
Sequence Diagram.[1,7] or directly fusing at Architecture
level[10,11,1,8]

At Implementation level instead of Using OO Programming

Constructs proposals are there to use AOP ie Aspect oriented
Programming approach which takes care of Crosscutting
Concerns of various Stakeholders scattered or Tangled across
the entire Functional Requirements. These cross cutting
Concerns Are Quality factors also called Non Functional
requirements.

 There are several Non Formal Methods
using Natural language & a variety of graphical notations.

Careful application of analysis and design methods, coupled
with thorough review lead to high-quality software,
sloppiness in the application of these methods can creates a
variety of problems. A system specification can contain
contradictions, ambiguities, vagueness, incomplete
statements, and mixed levels of abstraction. This becomes
more dangerous & crucial for Critical System Specification.

While handling Critical system Usage of Formal Methods for

System Specification seems to be the best approach to System

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3 No. 2, OCT, 2012

290 | P a g e w w w . c i r w o r l d . c o m

specification. Again application of Formal Methods is not
without its D-merits of difficult & heavy cost initial cost
incurring approach.

Goal Oriented Model is a midway balance Between the two
Extremes of Natural Language specification & Formal

Method Specification.[4]

Aspect Oriented Programming may be one of the solution
towards handling these cross cutting Concerns or aspects of
various Stakeholders but not without its inherent problem of
identifying the weaving of concerns after identifying various
Joint point or Point cuts in the Core Functionality(Or
Functional Requirements).

It will be a good Idea to be able to Estimate testability of a

S/w or estimating the testing effort of the software ,from the
Specification or the design it self. This will ensure the
Concentrated view on NFR right from the requirement
elicitation phase so that early predictions of testing cost
contributors can be identified.

Formalizing Functional Requirement is in itself an expensive
& difficult expectation to fulfill because of Effort to cross
over from Natural Human like language(full of ambiguity,

inconsistency &multiple inferences) to Formal Method
(Representing precise & unambiguous form due to
mathematical algebraic solution).Formalizing NFR is all the
more difficult & expensive .Informal & casual handling of
NFR right from the req elicitation phase to later stage has
made NFR difficult to handle.

This late (after thought) for NFR is the vary cause of its
difficulty in handling it in Software Engineering process.

References

1. A M. R. e. Laleau, "A Survey of Non-Functional
Requirements in Software Development Process,"
October 2008. TR-LACL-2008-7.

2. Kirsten M Hansen Anders PO Ravn” From Safety
Analysis to software Requirements”,July 1998.IEEE

3. Bret Pettichord “Design for Testability” Copyright ©
Bret Pettichord, 2002. All rights reserved.

4. B. A N. Lawrence Chung. Eric Yo, and John
Mylopoulos, "NonFunctional Requirements in Software
Engineering," Boston:

Kluwer Academic Publishers, 2000.

5. J. C. S. d. P. L. Luiz Marcio Cysneiros, "Non-Functional
Requirements: From Elicitation to Modeling Languages,"

Proceedings of the 24th International Co11ference on

Software Engineering Orlando, Florida IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING,
VOL. 30, NO. 5, MAY 2004

6. :Saeed Ullah1, Muzaffar Iq bal2, Aamir Mehmood
Khan3” A Survey on Issues in Non-Functional

Requirements Elicitation” 978-1-61284-941-6/11/$26.00
©2011 IEEE

7. C.J. Fidge and A.M. Lister” The Challenges of Non-
Functional Computing Requirements”

8. Lawrance chung,Nary Subramanian:”Process oriented
Metrics for s/w Architecture Adaptability” “

9. formal method:Chumin Yang,Beum Seuk lee” Formal
Specification of Non Formal Aspects in Two level

grammer”

10. Barbara Paech Allen H.Dutoit”
functionalrequirements,non functional requirements, and
architecture should not be separated”

11. Xavier Frech Pere Botella” Putting NFR into
Architecture””TIC97-1158 CICYT program

12. Marco A. Wehrmeister” An Aspect-Oriented Approach

for Dealing with NFR in Model Driven Development of
DistributedEmbeded Real time System”ISORC 2007
IEEE

13. Milen Guessi “Extension of uML to Model Aspect
Oriented Software System”

14. Dong Kwan Kim” An AOP based performance
Evaluation Framework for UML models”

15. Wen”Aformal Approach based on Aspect Oriented

Statechart”IEE2010

16. Heuristics of Software Testability by James Bach,
Satisfice, Inc.

17. Rogher Pressamb” a Practtsoners approach to software
engineering” 6th Edition

18. Pankaj Jalote” An integrated approach to software
Engineering” Third Edition.

19. Somerville: P. S. a. S. V. I. Sommerville, "Viewpoints
for requirements elicitation: a practical approach,"

Proceedings of Third International Co11ference on
Requirements Engineering 1998.

