
ISSN: 2277–3061 (online) International Journal of Computers & Technology

 Volume 2 No.1 February 2012

9

Code Comprehending Measure (CCM)

Gurdev Singh
Professor and Head

Department of Computer Science
& Engineering, Adesh Institute of

Engineering & Technology,
Faridkot, India.

Satinderjit Singh
Associate Professor and Head

Department. of Computer
Application GGNIMT, Civil Lines,

Ludhiana, India

Monika Monga
Assistant Professor:

Department of Computer Science
& Engineering, Adesh Institute of

Engineering & Technology,
Faridkot, India.

Abstract
software complexity, accurately, plays a vital role in life cycle of the

software. Many metrics have been proposed in the past like LOC,

McCabes‟ cyclomatic measure, Halstead‟s measures and cognitive

measures. This paper proposes a new method to measure the

software complexity, by not only taking into account the internal

structure of the algorithm in terms of the total cognitive weights of

the basic control structures but also by quantifying the flow of data

between the various basic control structures and data volume factor

(variables and operators) used within basic control structure. The

preliminary tests show that this metrics is independent of the

existing measures. Comparison with some existing measures has

been done to prove the robustness of this new metrics.

Keyword

 Software Complexity, Complexity Metrics, Cognitive Weights,

Data Flow Factor, Data Volume Factor.

I. INTRODUCTION

It is nothing new to state that the software systems are extremely

complex entities. From the last few decades it has been the

endeavour of the software industry to find a good measure of the

software complexity. Any measure that will predict the complexity

of a software taking into account all the important factors

influencing the complexity and also the human effort in

understanding of the structures that make up the software, will be of

great use and value to the software industry and the study of

software engineering as a whole.

Earlier measures of software‟s complexity typically depended on

program size like counting the number of lines of codes [8], then

some improvement was made by taking into consideration data flow

and module interfaces such as the Halstead‟s software metrics [6]

and measure of cyclomatic complexity developed by McCabe [7]

became very popular. Halstead‟s metrics calculates the number of

operators and operands, but gives no consideration to the structural

complexity of basic components, while McCabe‟s cyclomatic
complexity does not consider data flow between components of a

system.

In 2003 Yingxu Wang and Jingqiu Shao proposed a new measure of

software complexity based on the cognitive weights [1]. This was a

revolution of sorts as for the first time a metrics was proposed based

on the human effort to understand the complexity hidden in the

basic control structures that makeup the component of any software.

This method had some drawbacks as shown by [2].

The brief organization of this paper is as follow. The section 2

discusses some of the popular metrics to measure the software

complexity and their drawbacks. In section 3 we will discuss the

Code Comprehending Measure (CCM) and section 4 compares

CCM with other metrics.

SOME POPULAR SOFTWARE COMPLEXITY MEASURES

Lines of Code

„Lines of Code‟ is a metrics that measures the physical size of the

code. This is a popular metrics to measure the software complexity

as it gives a fair idea of the number of developers required to do the

work.

In this measure we count the relevant lines of code and may chose

to ignore the comments and blank lines. The measurement of LOC

is very simple, but has some major drawbacks like it is dependent

on programming languages, application areas, and programmer‟s

skills. So this measure encourages the inefficient programming

practices. Also, LOC‟s measure of complexity is heavily influenced

by factors like difficulty of algorithms, and other functional

requirements.

McCabe‟s Cyclomatic Complexity

Thomas McCabe in 1976 introduced the concept of cyclomatic

complexity [7]. This concept was based on graph theory. If we can

draw a connected graph G of the function then this metrics

calculates the cyclomatic number V(G) of a graph G with n vertices,

e edges, and p connected components as

V(G) = e -n + p.

This metrics counts the number of enclosed areas in the graph G.

This measure gives a good idea about the structural complexity of a

function. But a major limitation of this measure is that it ignores the

size of a component, it also ignores the data flowing from one

component to another. These two together can contribute massively

to the complexity of the software and should not be ignored.

A. Halstead‟s Complexity Metrics

In the year 1977 Maurice Halstead proposed a set of six

computational metrics. This concept counted distinct number of

operators (n1) and operands (n2) and total number of operators

(N1) and operands (N2). Based on these values Basic, Derived &

Estimated measures were calculated.

In this complexity metrics a major drawback is that, this does not

take into account structural complexity of any component. It also

does not consider the flow of data from one component to another.

It is also said that some of these measures are not relevant and can

be argued upon.

B. Wang‟s Cognitive Complexity Measure

In the year 2003 Yingxu Wang and Jingqiu Shao introduced the

concept of cognitive functional complexity of soft wares. In this

ISSN: 2277–3061 (online) International Journal of Computers & Technology

 Volume 2 No.1 February 2012

10

metrics the different Basic Control Structures (BCS) are assigned

different cognitive weights. BCS are the set of fundamental and

essential flow control mechanisms that are used for building logical

architecture of software [1]. In this metrics the total cognitive

weight of a component is measured by either adding the weights of

two or more BCS if they are in sequence or the cognitive weight of

a BCS is multiplied with the weight of another BCS if it is

embedded in the other BCS. Then the Cognitive Functional Size

(CFS) is calculated by the following formula [1].

Where Ni is the number of inputs and No is the number of outputs.

In this metrics the different BCS are assigned the weights as shown

in table 1. These weights are based on the human effort in

comprehending these BCS. In Code Comprehending Measure

(CCM), as we discuss later, these weights are also used as they have

been proposed by Wang and Shao in [1].

TABLE 1

COGNITIVE WEIGHTS OF DIFFERENT BCS.

BCS Cognitive Weight

Sequence 1

Branch If–Then-Else 2

Case 3

Iterations 3

Function Call 2

Recursion 3

Parallel 4

Interrupt 4

This was a revolutionary new concept in software metrics. But there

are some shortcomings. First of all this metrics does not fulfill all

the properties as proposed by E J Weyuker in [5].

Wang‟s measure does not take into consideration the data flow

complexity of a component which is not embedded in one another

[2]. Also this metrics does not take into consideration the internal

data volume complexity of any BCS. This is explained with the

following two examples.

TABLE II

 EXAMPLE 1

for(j=2; j<i; j++)

{

 if(i%j= =0)

 break;

}

if(i = = j)

 printf("\t%d",i);

In table 2 example 1 Wang‟s measure considers the „for‟ and the „if

‟ structures independently. But the two structures cannot be

considered independently, as data flows from one structure to the

other, and in doing so it carries with it some complexity. This is true

because we cannot understand the „if‟ structure independently

without considering the preceding „for‟ structure.

Another shortcoming in Wang‟s CFS method is that it considers all

the similar BCS as same regardless of any data complexity where as

in reality two similar BCS may not be exactly same. This is because

of the fact that the number of variables and operators which makeup

the internal complexity of a BCS may be different in different BCS.

Consider the following example.

TABLE III

 EXAMPLE 2

for(a,b,c ;a>=b+c; a--,b++,c++)

{

 printf(“\n%d”,a);

}

for(a ; a<10 ; a++)

{

 printf(“\n%d”,a);

}

 2(a) 2(b)

There are two loops (2a & 2b) in the above example, it is clear that

the first for loop is more difficult to comprehend in comparison to

the second for loop. This can be attributed to the number of

variables and operators in any BCS which makeup its internal data

volume. Wang‟s measure fails to consider the internal data volume

complexity of a BCS. As invariably it considers all iterations as

having the same cognitive complexity and so is true for other BCS.

CODE COMPREHENDING MEASURE (CCM)

The Code Comprehending Measure derives the complexity of a

function from the following three factors:

 Data Volume Factor (DVF)

 Structural Complexity Factor

 Data Flow Factor (DFF)

Data Volume Factor (DVF) primarily calculates the total number of

distinct variables and operators used in any BCS and it calculates

the total number of occurrences of the variables and operators used

in that BCS. It is quite reasonable to state that more the number of

variables and operators in any BCS, more is the complexity of the

BCS.

Structural Complexity Factor takes into consideration the cognitive

weights (Wc) of any BCS. These are the same as those given by

Wang in [1], with the same calculating method.

Data Flow Factor (DFF) considers the complexity arising due to

flow of data from one BCS to another BCS. If two BCS are linearly

arranged then we cannot always consider them in independence as

data may flow from one such structure to another. When data flows

from one BCS to another it also takes along with it some inherent

complexity. This fact is tackled by the DFF

Definition 1: Code Comprehending unit (CCU) is the unit of the

CCM. One CCU is defined as the complexity of the software

component having only one sequence BCS and no data variable and

operators and no data flowing from other BCS.

In CCM complexity of a function is calculated by finding out the

DVF, DFF and Wc for each of the BCS trees which are linearly
arranged to form the function. Therefore for i BCS trees each BCS

ISSN: 2277–3061 (online) International Journal of Computers & Technology

 Volume 2 No.1 February 2012

11

tree having j nested BCS and each nested BCS having k number of

linearly arranged BCS [1], the CCM can be calculated as

This gives us the CCM for i BCS trees which are linearly arranged

to form the function.

Data Volume Factor

The DVF is calculated by finding out the total number of distinct

variables and operators used in a BCS and their total number of

occurrences, only arithmetic, logical, comparison operators are

considered for this purpose. By using the following equation DVF is

calculated

[1+ {N*log10(1+n)} ½]

N is the total number of variables and operators used in a BCS tree.

n is the number of distinct operators and variables occurring in that

BCS tree.

 Data Volume Factor

The Data Volume Factor is the amount of complexity inbuilt in a

BCS as result of number of variables and operators in it.

It is worth noting that we do not consider the operators like comma,

parenthesis, array‟s indexes etc which do not add to the complexity.

Structural Complexity Factor

The Structural Complexity Factor of CCM calculates that part of the

total complexity of any function which is due to the architecture of

the function. This is done by calculating the cognitive weights of the

linearly arranged BCS trees that form the function. Wang and others

calculate the cognitive weight of the function in [1] and [9].

Data Flow Factor

When the data flows from one BCS into another BCS it invariably

takes along with it the cognitive complexity of the block in which it

was last modified. This is because of the fact that the BCS into

which the data has flown into cannot be completely understood

without understanding the BCS from which the data is coming. To

understand the complexity of any code this important factor cannot

be ignored. This factor of flow of data is calculated in CCM as

follows

If there are m numbers of variables which are not initialized or

declared in this BCS or its direct parent lineage, then it is carrying

along with it some complexity. This is DFF which is calculated by

the above equation. Here we take the fourth root of Wc of the BCS

in which this variable was last modified. The product of all such

fourth roots makes up the DFF for this BCS tree.

Issues to be considered for DFF

We calculate data flow factor for a BCS by identifying the variables

coming from outside the BCS and taking the fourth root of the

cognitive weight of BCS in which that variable has been last

modified. However there are some issues related to the calculation

of data flow factor which need to be kept in mind.

Fig. 1 Block diagram with various BCS

Those variables initialized or modified in the parent BCS do not

carry any DFF complexity to the child BCS. This is because data

flow factor for these variables is already taken into account while

calculating the cognitive weight of that BCS tree. It is only in the

case of data flow between BCS which are not in the same branch of

the tree that the variables carry data flow complexity and we need to

take fourth root of cognitive weight of BCS from where data is

flowing. For example in the diagram shown in table 4 we need not

take data flow factor for any variable flowing between A3 and A32,

or A & A31. However we have to consider DFF in case of variable

flowing from A1 to A32.

In case of variable flowing from a BCS embedded inside a BCS tree

to a BCS which is outside this tree, cognitive weight of not only the

inner BCS is taken into account but cognitive weight of the whole

branch of that BCS is considered for DFF. The branch continues till

we reach a level where either there is no parent or the receiving

BCS has the same ancestor as that of the branch considered so far.

For example if the data is following from A31 to A2 we need to take

the weight of A31 and A3 only and takes the fourth root of

(A31*A3) to calculate data flow factor. We need to stop at A3

because recipient A2 is sibling of A3.

In case of data flowing from A32 to C1, we need to take the

cognitive weights of A32, A3 and A. We need to end at A because

A is sibling of C which in turn is the parent of C1.

Data flow factor is not commutative in nature i.e. data flowing from

X to Y is not the same as that flowing from Y to X. In above table 4

data flowing from A31 to A2 through one variable is calculated by

taking the fourth root of cognitive weight of A31 and A3. On the

other hand consider the case of data flowing from A2 to A31

through one variable. Here data flow factor is calculated by taking

the fourth root of cognitive weights of A2 only. This is done so

because A2 is already sibling of A3- parent of A31 (sender).

In case where the particular variable seems to be coming from more

than one BCS , in that case data flow factor is calculated by adding

the cognitive values from all the BCS concerned and then taking the

fourth root of the combined value. The essence for this is that

whenever the variables can come from more than one BCS then the

data flow complexity is enhanced. For example if a variable in C1 is

possible coming out of A1, B12 and D, Then the data flow factor of

ISSN: 2277–3061 (online) International Journal of Computers & Technology

 Volume 2 No.1 February 2012

12

the variable is calculated by taking the fourth root of (A1*A +

B12*B1*B + D)

A variable already considered for DFF calculation will not

henceforth be considered in its subsequent use within the same BCS

tree.

Total CCM of the Function

The total Code Comprehending of a function is calculated as the

sum of CCM of each of the BCS trees which are linearly arranged

to form the function. This is shown in the following equation.

For m such BCS trees which are linearly arranged to form a

function. The above equation gives the CCM of the function.

F. CCM with Example

The program given in table 5 below is a simple program of

LINEAR SEARCH. There are 4 BCS trees present. First

there is a sequence, then there is a for loop, followed by

another for loop, and this is followed by an if BCS. We need

to calculate the DVF, WC, and the DFF for these 4 BCS.

TABLE IV

 LINEAR SEARCH

void main()

{

 int a[100],sz, num, i ;

 clrscr();

 printf("Enter the size of array : ");

 scanf("%d",&sz);

 for(i=0;i<sz;i++) {

 printf("\n\nEnter element no %d :",i+1);

 scanf("%d",&a[i]);

 }

 printf("\n\nEnter the no to search :");

 scanf("%d",&num);

 for(i=0;i<sz;i++){

 if(a[i]==num){

 printf("The number is at position %d",i+1);

 break;

 }

 }

 if(i==sz){

 printf("Number is not present"); }

}

The total CCW of the program is 58.453. This has been calculated

based on the values shown in the figure 1 which shows the block

diagram of the code in table 5.

Fig. 2 Block Diagram of Linear Search

COMPARISON WITH OTHER METRICS

Complexity Values for different Programs

In order to prove the effectiveness of CCM measure we calculated

its value for a set of 15 programs and compared its value with some

existing metrics. The code of these 15 programs can be seen at the

following URL, created by the authors

http://ComprehensiveComplexityMeasure.blogspot.com

Some intresting observation are made when comparing CCM with

other measures.

Sequence

n=5, N=4, CW=1

For

n=8, N=12, CW=3

w1=1

For

n=9, N=13, CW=3

w1=1

w2=3

If

CW=2

If

n=3, N=3, CW=2

w1=3, w2=1

http://comprehensivecomplexitymeasure.blogspot.com/

ISSN: 2277–3061 (online) International Journal of Computers & Technology

 Volume 2 No.1 February 2012

13

Using LOC we could not distinguish between program (4 & 5) and

also between program (10 & 11) and programs (12 & 13) in term of

the complexity. But CCM not only breaks the tie but also gave fair

idea of how much one program is more complex. For example

program 13 is more compex than program 12 by 1.28 times.

The issue is more grim in case of McCabe‟s Values, where 4

programs(P.No 1,5,6,15) are tied with value 2 and 4 programs(P.No

3,8,9,10) tied with value 5 and 2 program (P.No 12,14) tied with

value 6. The CCM not only breaks the tie with exact values but also

for example tells that progran 12(with MV of 6) is less complex to

comprehend than program 9 (with MV of 5).

The result of the comparison is tabulated in Table below:

TABLE V

 COMPLEXITY VALUES OF DIFFERENT MEASURES

No. Description LOC M.V CFS CCM

1 Rev. triangle pattern 13 2 26 56.91

2 Palindrome 14 1 3 7.38

3 Prime No‟s in Range 15 5 25 174

4 LCM OF 3 No‟s 17 4 40 57.99

5 Fibonacci series 17 2 8 55.42

6 Under root of 3i 18 2 10 59.51

7 Tower of Hanoi 19 1 51 77.06

8 Linear search 27 5 48 58.45

9 Insertion sort 29 5 38 187.7

10 Bubble sort 31 5 100 266.6

11 Mtrx multiplication 31 8 111 319

12 Binary search 34 6 63 154.6

13 Fighter-Bomber 34 3 32 197.5

14 Selection sort 38 6 102 570.9

15 value of Pi 39 2 30 75.14

With CFS although there is no tied values but because of the fact

that it does not consider data volume and data flow factor into

consideration the CFS values for programs may appear too close

than they actually are in term of complexity. For example programs

13 and 15 has CFS values of 32 and 30. However their CCM values

are 197.5 and 75.14 respectively, reflecting the fact that data volume

factor is relativly much higher in program 13 than program 15. This

factor is totally ignored by CFS.

Corelation of CCM with other Metrics

The following table VI shows the correlation coefficient of CCM

with 3 other measures. It clearly shows that this metrics is not

closely related to any of these.

TABLE VI

CORRELATION COEFFICENT OF CCM WITH OTHER

METRICES

LOC 0.6139708

MV 0.6809707

CFS 0.7910151

Ranking of 15 Programs for Different Measures

The table VIIshows the ranking of these set of 15 programs for

different metrics. In this table Higher the value more complex is the

program.

TABLE VII

 RANKING OF 15 PROGRAMS FOR DIFFERENT MEASURES

No Description LOC MV CFS CCM

1 Rev. triangle pattern 1 3 5 3

2 Palindrome 2 1 1 1

3 Prime Nos 3 9 4 10

4 LCM OF 3 No‟s 4 8 9 4

5 Fibonacci series 4 3 2 2

6 Under root of 3 6 3 3 6

7 Tower of Hanoi. 7 1 11 8

8 Linear search 8 9 10 5

9 Insertion sort. 9 9 7 11

10 Bubble sort 10 9 13 13

11 Mtrx multiplication 10 15 15 14

12 Binary search 12 13 12 9

13 Fighter-Bomber 12 7 6 12

14 Selection sort 14 13 14 15

15 value of Pi 15 3 8 7

II. CONCLUSION

In this paper we have tried to propose a new software complexity

metric. This metrics “Code Comprehending Measure” tries to

measure three aspects of the complexity of a function, which are

Data Volume, Structural Complexity and Data Flow complexity.

We believe that software are analogous to human beings which have

a bone structure, muscular weight and blood flowing in the veins.

The bone structure in case of software component is the cognitive

weight of the component, muscle part is the data volume factor and

blood flow part is the data flow factor. CCM combines the

effect of these three factors influencing the software

complexity into one metric. This paper tries to show how the

CCM of a function is calculated. Lastly this paper compares

Code Comprehending with three other popular software

measures, and the results are also shown.

ISSN: 2277–3061 (online) International Journal of Computers & Technology

 Volume 2 No.1 February 2012

14

III. REFERENCES

[1] Yingxu Wang and Jingqiu Shao, "Measurement of the

Cognitive Functional Complexity of Software", proceedings of

the 2nd IEEE International Conference on Cognitive

Informatics, .67, August 18-20, 2003

[2] Underlying Cognitive Complexity Measure Computation with

Combinatorial Rules By Benjapol Auprasert, and Yachai

Limpiyakorn World Academy of Science, Engineering and

Technology Vol 35 November 2008

[3] Misra, S. and Misra, A.K "Evaluating cognitive complexity

measure with Weyuker properties", cognitive Informatics,

2004. Proceedings of the Third IEEE International Conference

on, 16-17 Aug. 2004

[4] Cognitive Complexity Metrics and its Impact on Software

Reliability Based on Cognitive Software Development Model

By Dharmender Singh Kushwaha and A.K.Misra

[5] E. J. Weyuker, “Evaluating Software Complexity Measures,

IEEE Transactions on software Engineering”, v.14 n.9,

p.1357-1365, September 1988

[6] M.H. Halstead, Elements of Software Science, North Holland,

N.Y.: Elsevier, 1977.

[7] T.H. McCabe, “A complexity measure,” IEEE Trans. Software

Eng., vol. 2, no. 4, Dec. 1976, pp 308–320

[8] Albrecht, A.J. and J.E. Gaffney (1983), Software Function,

Source Lines of Code, and Development Effort Prediction: A

Software Science Validation, IEEE Transactions on Software

Engineering, Vol.9.

[9] Jitender Kumar Chhabra , Code Cognitive Complexity: A

New Measure, Proceedings of the World Congress on

Engineering 2011 Vol II London, U.K..

[10] A.Aloysius, L. Arockiam , A Survey on Metric of Software

Cognitive Complexity for OO design, World Academy of

Science, Engineering and Technology 58 2011.

[11] Sanjay Misra and Ibrahim Akman, A New Complexity Metric

Based on Cognitive Informatics, Proceedings of 3rd

International Conference on Rough Sets and Knowledge

Technology, 2008, pp.620–627.

[12] Deepti Mishra and Alok Mishra, Object-Oriented Inheritance

Metrics: Cognitive Complexity Perspective, Proceedings of the

4th International Conference on Rough Sets and Knowledge

Technology, 2009, pp. 452–460.

[13] Ghazal Keshavarz, Nasser Modiri , Mirmohsen Pedram ,

Metric for Early Measurement of Software Complexity ,

International Journal on Computer Science and Engineering ,

Vol. 3 No. 6 ,June 2011.

[14] Ashish Sharma, D.S. Kushwaha, , A Complexity measure

based on Requirement Engineering Document, journal of

computer science and engineering, volume 1, issue 1, may

2010.

[15] Manik Sharma , Gurdev Singh , Analysis of Static and

Dynamic Metrics for Productivity and Time Complexity,

International Journal of Computer Applications, Vol.30 No.

1,7-13, September 2011.

[16] Gurdev Singh, Dilbag Singh et. al “A Study of Software

Metrics” International Journal of Computational Engineering

and Management. vol. 11. 2230-7893

