
I S S N  2 2 7 7 - 3 0 6 1  
V o l u m e  1 6  N u m b e r  1  

I N T E R N A T I O N A L  J O U R N A L  O F  C O M P U T E R S  &  T E C H N O L O G Y  

7573 | P a g e                                        

M a r c h ,  2 0 1 7                                               w w w . c i r w o r l d . c o m  

Analyzing patients' EEG energy for brain death determination based on 
Dynamic 2T-EMD 

Yao Miao, Dongsheng Wang, Gaochao Cui, Li Zhu, Jianting Cao 
Saitama Institute of Technology, Fusaiji 1690, Fukaya, Saitama, Japan 

e6006gxp@sit.ac.jp 
Saitama Institute of Technology, Fusaiji 1690, Fukaya, Saitama, Japan 

d5001emw@sit.ac.jp 
Saitama Institute of Technology, Fusaiji 1690, Fukaya, Saitama, Japan 

 e4001hbx@sit.ac.jp 
School of Information Science and Engineering, Xiamen University, Xiamen, Fujian, China 

 zhulibrain@gmail.com 
Saitama Institute of Technology, Fusaiji 1690, Fukaya, Saitama, Japan 

 cao@sit.ac.jp 

ABSTRACT 

EEG (electroencephalography) energy is an important evaluation indicator in brain death determination based on EEG 
analysis. In related works, the static EEG energy value can be discovered using EMD (empirical mode decomposition), 
MEMD (multivariate empirical mode decomposition) and 2T-EMD (turning tangent empirical mode decomposition) for 
EEG-based coma and quasi-brain-death analysis. However such methods are not time-varying and feasible. In this paper, 
we firstly propose the Dynamic 2T-EMD algorithm to evaluate the dynamic patients' EEG energy variation by the means of 
time window and time step method. With the time window sliding along the time axis in a time step, EEG energy of 
corresponding time step is computed and stored. The proposed algorithm is applied to analyze 19 cases of coma patients' 
EEG and 17 cases of quasi-brain-death patients' EEG. Two typical patients in coma and quasi-brain-death state and one 
special case who was from coma to quasi-brain-death have been taken as examples to give the algorithm performance. 
Results show that EEG energy in coma state are obviously higher than that in quasi-brain-death state, and even present 
the EEG energy change trend of every case, which can prevent loss of information and wrong analysis results caused by 
noise interference and provide scientific basis for doctors to evaluate patients' consciousness levels in brain death 
determination. The proposed algorithm will be very helpful to develop the real time brain death diagnostic system. 
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INTRODUCTION 

Brain death is strictly defined that the complete, irreversible and permanent loss of brain and brain-stem function (Becheer 
et al., 1968; Wijdicks EFM et al., 2002). Based on the definition, more than 80 countries in the world have established 
brain death determination standards respectively. Previous researches on brain death determination were mainly 
concentrated in the field of clinic medicine. It is on the rise that objective scientific basis and indicators from the 
perspective of neuro dynamics are provided for the brain death determination. More specifically, researches of brain death 
determination based on EEG analysis are progressing rapidly. 
 
Several EEG analysis algorithms such as ICA (independent component analysis) (A. Hyvarinen et al., 1997; L. Li et al., 
2008; Gennady G. Knyazev et al., 2011), EMD (N. Huang et al., 1998), MEMD (N. Rehman et al., 2010), and 2T-EMD 
(Julien Fleureau et al., 2011) are applied to analyze coma and quasi-brain-death patients' EEG. ICA was applied in 
patients' EEG analysis because of its strong ability of denoising and component extraction (J. Cao et al., 2003; Z. Chen et 
al., 2008), but it's lack of rigorous basis for the determination of the patient whose brain activity components were not 
extracted. EMD based algorithms, as fully data driven algorithms, could analyze nonlinear and nonstationary signals and 
compute energy of signal at any time to avoid the loss of signal information. So EEG energy indicator was introduced to 
analyze quantitatively patients' EEG (E. Niedermeyer et al., 1991), and EMD based static algorithms such as EMD, MEMD, 
and 2T-EMD were all applied to process EEG and also compute EEG energy (M. Tomasz et al., 2010; Q. Shi et al., 2011). 
But a static EEG value was only obtained, which can't reflect dynamically patients' status. 
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In this paper, we firstly propose the Dynamic 2T-EMD to analyze dynamically coma and quasi-brain-death patients' EEG. 
The algorithm is developed by modification of the existing 2T-EMD on the time axis, using the time window and time step. 
With the time window sliding along the time axis, the EEG energy in corresponding to time window is computed and stored. 
We applied the Dynamic 2T-EMD to analyze 36 cases of patients' EEG energy, and focused on analyzing the three cases, 
respectively one coma patient' s EEG, one quasi-brain-death patient's EEG and one patient's EEG from coma to quasi-
brain-death. And then 36 cases of average EEG energy value of 6 channels for entire recording time are computed. The 
results show that the EEG energy in coma state is obviously higher than the EEG energy in quasi-brain-death state. More 
importantly, because of the non-stationarity feature of EEG, the results obtained can reflect dynamically patients' status of 
the whole period of measurement time and avoid the loss of information and wrong results caused by noise interference, 
which can provide doctors with the objective and scientific criterian for the clinical diagnosis of brain death determination. 
Furthermore, the developed algorithm is extremely important to the real time brain death diagnostic system.  

1. THE DYNAMIC 2T-EMD ALGORITHM 

1.1  2T-EMD algorithm 

2T-EMD, belonging to EMD based static algorithms, is a fully data-driven algorithm for mono- and multivariate signals 
processing. Specifically, 2T-EMD could decompose a given signal 𝑠 into a set of IMFs (intrinsic mode functions) ∑ 𝐼𝑀𝐹𝑖

𝑛
𝑖=1  

and a monotonic residual signal 𝑟(𝑛), shown in formula (1). 

                       𝑠 = ∑ 𝐼𝑀𝐹𝑖
𝑛
𝑖=1 + 𝑟(𝑛)                                                                                (1)   

As 2T-EMD can decompose both mono- and multivariate signals directly, the key of 2T-EMD is the computation of signal 
mean trend, which is obtained by averaging two envelopes: a first envelope interpolates the even indexed barycenters 
which include signal borders, and a second envelope interpolates the odd indexed barycenters which also include signal 

borders (Julien Fleureau et al., 2011). Let 𝑠 be a class 𝐶1 function in 𝑅𝐷 domain and differentiable with a continuous first 
derivative. The sifting procesure of computating the signal mean trend is briefly illustrated as below. 
 

(1) Defined a time series �⃗� (𝑠) as the tangent vector to 𝑠 and express as �⃗� (𝑠) → [1,
𝑑𝑠

𝑑𝑡
(𝑡)]. 

(2) Defined 𝛼(𝑠) as the Euclidean inner products of 𝑅𝐷+1 and express as  𝛼(𝑠)  → lim
ℎ→0

〈�⃗� 𝑠(𝑡 − ℎ), �⃗� 𝑠(𝑡 + ℎ)〉. And due to the 

continuity of Euclidean inner product, so 𝛼(𝑠) can be expressed as ∀𝑡 ∈ 𝑅, 𝛼𝑠(𝑡) = lim
ℎ→0

〈�⃗� 𝑠(𝑡 − ℎ), �⃗� 𝑠(𝑡 + ℎ)〉. 

(3) Since 𝑠 is a class 𝐶1 function,we can get 𝛼(𝑠) = ‖�⃗� 𝑠‖
2
= 1 + ‖

𝑑𝑠

𝑑𝑡
(𝑡)‖

2
. Where ‖∙‖ refers to the Euclidean norm of both 

𝑅𝐷 and 𝑅𝐷+1. 

(4) Oscillation extremum of function 𝑠(𝑡) is defined as the local minimum of function  𝛽𝑠(𝑡): 𝛽𝑠(𝑡) = ‖
𝑑𝑠

𝑑𝑡
(𝑡)‖

2
. 

(5) Take two consecutive oscillation extrema, respectively 𝑃1 = [𝑡1, 𝑠(𝑡1)] 
𝑇  and 𝑃2 = [𝑡2, 𝑠(𝑡2)] 

𝑇 , thereby 𝑀𝑃1−𝑃2
, the 

barycenter of the associated elementary oscillation is defined as 𝑀𝑃1−𝑃2
= [

𝑡1+𝑡2

2
,

1

𝑡1−𝑡2
∫ 𝑠(𝑡)𝑑𝑡

𝑡1
𝑡2

]
𝑇
. 

(6) Then the signal mean vector 𝑒 (𝑡) can be obtained according to the definition above. 

1.2  Dynamic 2T-EMD algorithm 

 
Fig. 1 Schematic diagram of Dynamic 2T-EMD 
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Dynamic 2T-EMD is developed by extending 2T-EMD based on 2T-EMD that is with excellent static EEG energy 
computational performance. As is shown in Figure 1, In the Dynamic 2T-EMD algorithm, a time window that the width is ∆𝑡 
and a time step with the width ∆𝜆 are introduced, where  ∆𝑡 and  ∆𝜆 are controllable parameters. With the time window 

sliding along the time axis in a time step, a time step of EEG is processed and value is stored, then repeat the steps 
above. And finally we obtain a collection of ordered data. More specifically, for a multivariate signal with 𝑛 components 
{𝑠 (𝑘 ∙ ∆𝑡)}𝑘=0

𝐾 = {𝑠 (0 ∙ ∆𝑡), 𝑠 (1 ∙ ∆𝑡),⋯ , 𝑠 (𝐾 ∙ ∆𝑡)}  from 𝑇1  to 𝑇2 , where  𝑇2 = 𝑇1 + 𝐾 ∙ ∆𝑡 . The decomposition process of 

Dynamic 2T-EMD and the flow chart of decomposition process for Dynamic 2T-EMD are respectively as shown in Figure 1 
and Figure 2. 
(1) Initialize the number of iteration 𝑗 = 1, the number of IMF 𝑖 = 1,, and the number of time step 𝑘 = 0; and set 𝑟 𝑖(𝑘 ∙

∆𝑡) = {𝑠 (𝑘 ∙ ∆𝑡)}𝑘=0
𝐾 , ℎ⃗ 𝑖,𝑗−1(𝑘 ∙ ∆𝑡) =  𝑟 𝑖(𝑘 ∙ ∆𝑡).  

(2) Compute the barycenter 𝑀(𝑖,𝑗−1)𝑃𝑘𝑥
−𝑃𝑘𝑥+1

(𝑘 ∙ ∆𝑡) of random consecutive oscillation extrema 𝑃𝑘𝑥
 and 𝑃𝑘𝑥+1

 in the period 

of k ∙ ∆t, that is 𝑀(𝑖,𝑗−1)𝑃𝑘𝑥
−𝑃𝑘𝑥+1

(𝑘 ∙ ∆𝑡) = [
𝑘𝑥∙∆𝑡+𝑘𝑥+1∙∆𝑡

2
,

1

𝑘𝑥∙∆𝑡−𝑘𝑥+1∙∆𝑡
∫ ℎ⃗ 𝑖,𝑗−1(𝑡)𝑑𝑡

𝑘𝑥∙∆𝑡

𝑘𝑥+1∙∆𝑡
]
𝑇
. 

(3) Obtain the signal mean trend 𝑒 𝑖,𝑗−1(𝑘 ∙ ∆𝑡) by interpolating between oscillation barycenters of ℎ⃗ 𝑖,𝑗−1(𝑘 ∙ ∆𝑡). 

(4) Substracting 𝑒 𝑖,𝑗−1(𝑘 ∙ ∆𝑡) from the given signals ℎ⃗ 𝑖,𝑗−1(𝑘 ∙ ∆𝑡), we define ℎ⃗ 𝑖,𝑗(𝑘 ∙ ∆𝑡) = ℎ⃗ 𝑖,𝑗−1(𝑘 ∙ ∆𝑡) − 𝑒 𝑖,𝑗−1(𝑘 ∙ ∆𝑡) . If 

ℎ⃗ 𝑖,𝑗(𝑘 ∙ ∆𝑡) obey the sifting stop criteria, defining 𝐼𝑀𝐹⃗⃗⃗⃗ ⃗⃗ ⃗⃗ 
𝑖(𝑘 ∙ ∆𝑡) = ℎ⃗ 𝑖,𝑗(𝑘 ∙ ∆𝑡), otherwise repeat the iteration steps from 

(2) to (4). It is worth noting that the stop criteria is using the Cauchy-like criteria, more precisely, let 𝑑𝑖,𝑗 be the 𝑖 − 𝑡ℎ 

IMF computed at the 𝑗 − 𝑡ℎ iteration of the sifting process, then the sifting criteria is for instance 90% of values 

‖
𝑑𝑖,𝑗+1(𝑡)−𝑑𝑖,𝑗(𝑡)

𝑑𝑖,𝑗(𝑡)
‖ are lower than 10-2. 

(5) Define 𝑟 𝑖(𝑘 ∙ ∆𝑡) = 𝑟 𝑖(𝑘 ∙ ∆𝑡) − 𝐼𝑀𝐹⃗⃗⃗⃗ ⃗⃗ ⃗⃗ 
𝑖(𝑘 ∙ ∆𝑡), if the result signal is monotonous, we can get the decomposition result of 

signal during 𝑘 ∙ ∆𝑡, that is 𝑠 (𝑘 ∙ ∆𝑡) = ∑ 𝐼𝑀𝐹⃗⃗⃗⃗ ⃗⃗ ⃗⃗ 
𝑖(𝑘 ∙ ∆𝑡) + 𝑟 𝑁(𝑘 ∙ ∆𝑡)𝑁

𝑖=1 , otherwise repeat steps from (2) to (5). 

(6) Determine whether the elapsed time 𝑘 ∙ ∆𝑡 exceeds the end time 𝑇2, if it does, the process goes to end and the final 

decomposition result {𝑠 (𝑘 ∙ ∆𝑡)}𝑘=0
𝐾 = {∑ 𝐼𝑀𝐹⃗⃗⃗⃗ ⃗⃗ ⃗⃗ 

𝑖(𝑘 ∙ ∆𝑡) + 𝑟 𝑁(𝑘 ∙ ∆𝑡)𝑁
𝑖=1 }

𝑘=0

𝐾
; If it doesn't, moving the time window and 

repeat steps from (2) to (6). 

 
Fig. 2 Flow chart of Dynamic 2T-EMD 
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2. EXPERIMENTS AND RESULTS 

2.1  Experiments 

In this paper, we apply Dynamic 2T-EMD to process 36 cases of coma and quasi-brain-death patients' EEG (19 coma, 17 
quasi-brain-death). The 36 cases of patients' EEG was recorded from 35 patients (male:20, female:15), with age ranging 
from 17 to 85 years old. It is noted that 36 cases of patients' EEG were recorded in EEG preliminary examination in a 
Chinese hospital in Shanghai from June 2004 to March 2006, with the permission of patients' families. Considering the 
specificity of patients' symptoms, the measure of placing the high-purity electrodes on the forehead to record EEG was 
used in the EEG preliminary examination (J. Cao et al., 2006). The portable electroencephalograph with NEUROSCAN 
ESI-64 system was applied, where 7 electrodes were placed on the forehead of patients, respectively 6 exploring 
electrodes (Fp1, Fp2, F3, F4, F7, F8) and 1 ground electrode (GND), and 2 electrodes (A1, A2) as reference electrodes 
were placed on earlobes. The sampling rate of EEG was 1000Hz and the electrode resistance was lower than 8kΩ, shown 
in Figure 3. Moreover, EEG energy is defined as that the power spectrum within the frequency band multiplied by recorded 
EEG time. When there are obvious periodic rhythms in the EEG signal, that is to say, there exists brain activity, the 
corresponding EEG energy is higher. 

 
Fig. 3 The placement of electrodes 

In the following section, we firstly analyze two typical patients' EEG that are from different patients, respectively one coma 
patient and one quasi-brain-death patient, by Dynamic 2T-EMD. Secondly, we consentrate on the special patient who was 
from coma to quasi-brain-death. Finally, we summary the average EEG energy of 6 channels in the whole recording time 
period for 36 cases of patients' EEG by Dynamic 2T-EMD. 

2.2  Results 

2.2.1 Result analysis of one coma patient's EEG and one quasi-brain-death patient's EEG 

We analyze one coma patient's EEG with a record duration of 909s and one quasi-brain-death patient's EEG with a record 
duration of 1088s. As is shown in Figure 4 and Figure 5. We select EEG energy curve for the first 50s to observe. The 
results illstrate that the dynamic EEG energy of each channel for coma patient's EEG is higher than 1 × 104, and the 

variation range is 1.71 × 104~1.98 × 105, while the dynamic EEG energy for quasi-brain-death patient's EEG is far lower 

than 1 × 104 with changing range from 1.23 × 103~6.06 × 103. Then we compute the average dynamic EEG energy of 6 
channels for the two cases, as is shown in Figure 6 and Figure 7, and the average dynamic EEG energy of coma patient's 
EEG is obviously higher than that of quasi-brain-death at any time. 

According to the definition of EEG energy, the higher energy indicates that there are obvious periodic rhythms in patient's 
EEG, that is to say, the patient has brain activity in the coma state. While quasi-brain-death patient has almost no brain 
activity, and as there exists random noise in EEG, there is lower EEG energy in quasi-brain-death patient. 
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Fig. 4 EEG energy distribution of each channel in coma state 

 

Fig. 5 EEG energy distribution of each channel in quasi-brain-death state 

 

Fig. 6 Average EEG energy distribution in coma state 

 

Fig. 7 Average EEG energy distribution in quasi-brain-death state 
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2.2.2 Result analysis of the patient's EEG from coma to quasi-brain-death state 

Then we process the patient's EEG from coma to quasi-brain-death state. The patient lost cognitive and motor functions, 
the pupil dilated to 4mm that only had a weak visual response, and a respiratory machine was used. And the patient lost 
consciousness unexpectedly some time in October 2005. The first EEG examination was taken with a record duration of 
900s, and the EEG recorded was in coma state. After about 10h on the same day, the patient’s condition appeared worse 
and was found to have completely lost reaction to external visual, auditory and tactile simulation. Then the diagnosis was 
made as a quasi-brain-death case by two physicians. The EEG examination was taken for the second time, and the 
recorded time is 1153s (Q. Shi et al., 2011). We select the last 50s of EEG in coma state and the beginning 50s of EEG in 
quasi-brain-death to analyze. 

As is shown in Figure 8 and Figure 9, the analysis results illustrate intuitively that EEG energy trend from coma to quasi-

brian-death state. In the state of coma, the average EEG energy varies within the range of 2.02 × 104~5.59 × 104, while in 

the state of quasi-brain-death the EEG energy is varies in the range of 2.26 × 103~4.82 × 103, lower than 1 × 104. EEG 
energy in coma state is obviously higher than that in quasi-brain-death state in the whole dynamic EEG energy distribution 
curve. 

 

Fig. 8 EEG energy distribution of each channel from coma to quasi-brain-death state 

 

Fig. 9 Average EEG energy distribution in quasi-brain-death state 

2.2.3 Summary of average EEG energy of patients' EEG 

 

Fig. 10 Average EEG energy of 6 channels for 36 cases of patients’ EEG 
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We apply Dynamic 2T-EMD to obtain the average EEG energy of 6 channels in the entire recording time for all 36 cases 
of patients' EEG, which can prevent the information loss and wrong static results caused by some artificial factors or 
interference noises of equipment in EEG examination. As is shown in Figure 10, it is obviously shown that the average 

EEG energy of coma patients' EEG is higher than 1 × 104, and it indicates that there exists brain activity. While the 

average EEG energy of quasi-brian-death patients' EEG is lower than 1 × 104, which explain there almost no brain activity 

apart from some kinds of noises. 

3. CONCLUSION 

In this paper, we have proposed the Dynamic 2T-EMD by extending 2T-EMD to analyze dynamically EEG energy. It's the 
algorithm by introducing two parameters of the time window ∆𝑡 and the time step ∆𝜆. With the time window sliding along 

the time axis, the EEG in the corresponding time step is analyzed and the EEG energy is computed. Then we apply 
Dynamic 2T-EMD to analyze 36 cases of coma and quasi-brain-death patients' EEG. We showed two examples for two 
typical patients' EEG including one coma patient's EEG and one quasi-brain-death patient's EEG, and a special paitent's 
EEG that the patient was from coma state to quasi-brain-death state to analyze by Dynamic 2T-EMD, and finally we 
summary average EEG energy of 36 cases of patients' EEG for corresponding recording time. The results present 
dynamic EEG energy distribution in coma and quasi-brain-death state, and also illustrate that EEG energy in coma state is 
higer than that in quasi-brain-death state from perspective of dynamic EEG energy. And the results can prevent 
information loss and wrong static EEG energy resulted by noise interference and provide doctors scientific basis to 
evaluate patients' conciousness level. More importantly, The proposed algorithm is extremely important to the real time 
brain death diagnostic system. 
 
In the future work, we will focus on developing the real time brain death diagnostic system by connecting the EEG 
measurement system to the EEG analysis system to realize real time analysis of EEG. 
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