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ABSTRACT 

Recently, digital content has become a significant and inevitable asset of or any enterprise and the need for visual content 
management is on the rise as well. Content-based image retrieval has attracted voluminous research in the last decade 
paving way for development of numerous techniques and systems besides creating interest on fields that support these 
systems. CBIR indexes the images based on the features obtained from visual content so as to facilitate speedy retrieval. 
In this thesis work, we present a steerable pyramid based image retrieval system that uses color, contours and texture as 
visual features to describe the content of an image region. We have initially used steera ble pyramid to extract texture 
features from query image and database images and store them in feature vectors. Second, to speed up retrieval and 
similarity computation, the database images are classified and the extracted regions are clustered according t o their 
feature vectors using median vector algorithm. This process is performed before query matching takes place. Therefore to 
answer a query our system does not need to search the entire database images; instead just a number of candidate 
images are required to be searched for image similarity.  Our proposed system has the advantage of increasing the 
retrieval accuracy and decreasing the retrieval time. The experimental evaluation of the system is based on a satellite and 
medical image database. From the experimental results, it is evident that our system performs significantly better and 
faster compared with other existing systems. In our analysis, we provide a comparison between retrieval results based on 
features extracted from the whole image using steerable pyramid with median vector and features extracted from same 
image without median vector. The results demonstrate that each type of feature is effective for a particular type of images 
according to its semantic contents, and using a combination of them giving better retrieval results for almost all different 
classes of images in the dataset.   
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INTRODUCTION  

With the advancement in internet and multimedia technologies, a huge amount of multimedia data in the form of audio, 
video and images has been used in many fields like medical treatment, satellite data, video and still images repositories, 
digital forensics and surveillance system. This has created an ongoing demand of systems that can store and retrieve 
multimedia data in an effective way. Many multimedia information storage and retrieval systems have been developed till 
now for catering these demands. The most common retrieval systems are Text Based Image.  

Retrieval (TBIR) systems, where the search is based on automatic or manual annotation of images. A conventional TBIR 
searches the database for the similar text surrounding the image as given in the query string. The commonly used  TBIR 
system is Google Images. The text based systems are fast as the string matching is computationally less time consuming 
process. However, it is sometimes difficult to express the whole visual content of images in words and TBIR may end up in 
producing irrelevant results. In addition, annotation of images is not always correct and consumes a lot of time. For finding 
the alternative way of searching and overcoming the limitations imposed by TBIR systems more intuitive and user friendly 
content based image retrieval systems (CBIR) were developed. A  CBIR system uses visual contents of the images 
described in the form of low level features like color, texture, shape and spatial locations to represent the images in the 
databases. The system retrieves similar images when an example image or sketch is presented as input to the system. 
Querying in this way eliminates the need of describing the visual content of images in words and is close to human 
perception of visual data.   

Content-based image retrieval research has produced a number of search engines. The commercial image providers, for 
the most part, are not using these techniques. The main reason is that most CBIR systems require an example image and 
then retrieve similar images from their databases. Real users do not have example images; they start with an idea, not an 
image. Some CBIR systems allows users to draw the sketch of the images wanted. Such systems require the users to 
have their objectives in mind first and therefore can only be applied in some s pecific domains, like trademark matching, 
and painting purchasing.  Most earlier CBIR systems rely on global image features, such as color histogram and texture 
statistics. Global features cannot capture object properties, so local features are favored for object class recognition. For 
the same reason, higher-level image features are preferred to lower-level ones. Similar image elements, like pixels, 
patches, and lines can be grouped together to form higher-level units, which are more likely to correspond to objects or 
object parts. Different types of features can be combined to improve the feature discriminability. For example, using color 
and texture to identify trees is more reliable than using color or texture alone. The context information is also helpful  for 
detecting objects. A boat candidate region more likely corresponds to a boat if it is inside a blue region. While improving 
the ability of our system by designing higher-level image features and combining individual ones, we should be prepared 
to apply more and more features since a limited number of features cannot satisfying the requirement of recognizing many 
different objects in ordinary photographic images. To open our system to new features and to smooth the procedure of 
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combining different features, we propose a new concept called an abstract region; each feature type that can be extracted 
from an image is represented by a region in the image plus a feature vector acting as a representative for that region. The 
idea is that all features will be regions, each with its own set of a ttributes, but with a common representation. This uniform 
representation enables our system to handle multiple different feature types and to be extendable to new features at any 
time. 

RELATED WORK 

Swapnalini Pattanaik et al. (2012) gives an overview idea of retrieving images from a large database. CBIR is used for 
automatic indexing and retrieval of images depending upon contents of images known as features. The features may be 
low level or High level. The low-level features include color, texture and shape. The high-level feature describes the 
concept of human brain. The difference between low level features extracted from images and the high -level information 
need of the user known as semantic gap.  

Yanzhi Chen et al. (2012) proposed a discriminative criterion for improving result quality. This criterion lends itself to the 
addition of extra query data, and they showed that multiple query images can be comb index to produce enhanced results. 
Experiments compare the performance of the method to state-of-the-art in object retrieval, and show how performance is 
lifted by the inclusion of further query images. 

P Manipoonchelvi et al. (2013) proposed a model that does not need prior knowledge or full semantic understanding of 
image content. It identifies significant regions in an image based on feature -based attention model which mimic viewer’s 
attention. The Curvelet Transform in combination with color descriptors are used to represent each significant region in an 
image. Experimental results are analyses and compared with the state -of-the-art Region Based Image Retrieval 
Technique. 

Sreedevi S et al. (2013) proposed a fast image retrieval algorithm called feature levels. Feature levels a lgorithm works 
with the classification of image features to different categories or levels, feature extraction in terms of levels and featur e 
similarity comparison of the query image with database images. The system retrieves images from the associated 
database. The database is rewritten after each level according to Database Revision (DR) algorithm. 

Bhavneet Kaur et al. (2014) used the OPEN CV platform since it provides a C interface to implement various image 
processing algorithms. The work merges the feature extraction technique with this most suitable platform available for 
image algorithms. They have also computed the performance of the technique used in terms of various parameters like 
execution time, rotation, detect ability, accuracy, etc.  

Anuradha Shitole et al. (2014) uses visual features of image to search user required image from large image database 
and user’s requests in the form of a query image. Important features of images are color, texture and shape which give 
detailed information about the image. CBIR techniques using different feature extraction techniques are discussed in this 
research work.  

Guoqing Xu et al. (2015) incorporates semantic annotations into CBIR via query expansion scheme to improve retrieval 
accuracy. In the proposed method, semantic annotations of test images are obtained using a visual nearest-neighbor-
based annotation model. And both visual features and annotation keywords are used to represent images. The similarity 
between wo images is determined by their visual sim ilarity and semantic similarity. The method is evaluated on the well -
known Pascal VOC 2007 dataset using standard performance evaluation metric. The experimental results indicate that the 
performance of CBIR can be improved by incorporating semantic annota tion via query expansion. 

Jitendra Singh et al. (2016) proposes the content based image retrieval as one of most technique of data and multimedia 
technology. As image collections are growing at a rapid rate, and demand for efficient and effective tools fo r retrieval of 
query images from database is increased significantly. Between, content-based image retrieval systems have become 
very popular for browsing, in searching and retrieving images from a large database of digital images as it requires 
relatively less human intervention.  

Ru-Ze Liang et al. (2016) studies the problem of content-based image retrieval. In this problem, the most popular 
performance measure is the top precision measure, and the most important component of a retrieval system is the 
similarity function used to compare a query image against a database image. However, up to now, there is no existing 
similarity learning method proposed to optimize the top precision measure.  

PROBLEM FORMULATION  

The motivation of our research is to improve several aspects of content-based image retrieval by finding the latent 
correlation between low-level visual features and high-level semantics and integrating them into a unified vector space 
model. To be more specific, the significance of this approach is to design and implement an effective and efficient 
framework of image retrieval techniques, using a variety of visual features such as color, texture, shape and spatial 
relationships. Steerable Pyramid, an information retrieval technique, is incorporated with content-based image retrieval. By 
using this technique, we aim to extract the underlying semantic structure of image content and hence to bridge the gap 
between low-level features and high-level concepts. Improved retrieval performance and more efficient indexing structure 
can also be achieved. 

• The semantic gap between the user's needs and the capability of CBIR algorithms remains significant. Significant effort 
has been put into using low-level image properties such as color.  
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• There is an existence of a semantic gap between the pixel values and the interpretation of the image. Part of the problem 
is that representing an image by simple color feature will usually results in loss of information so that different pictures may 
map onto the same set of features. 

•  If an image has area A and each pixel has L possible levels, then there are LA such images possible. By taking only 
color feature vector, there will be significant reduction in the precision of the retrieved results as steerable pyramids wil l 
keep on losing the information at the higher level. 

OBJECTIVES  

• To study the existing CBIR mechanisms and their limitations.  

• To identify the semantic gaps in the existing mechanisms  

• To analyze the number of positive images in the result set. 

• To optimize the processing time of the algorithm, thereby improving the overall efficiency of the system. 

• To implement the proposed algorithm in OpenCV environment and evaluate the performance with the existing algorithm . 

STEERABLE PYRAMID 

The Steerable Pyramid is a linear multi-scale, multi-orientation image decomposition that provides a useful front-end for 
image-processing and computer vision applications. We developed this representation in 1990, in order to overcome the 
limitations of orthogonal separable wavelet decompositions that were then becoming popular for image processing 
(specifically, those representations are heavily aliased, and do not represent oblique orientations well). Once the 
orthogonality constraint is dropped, it makes sense to com pletely reconsider the filter design problem (as opposed to just 
re-using orthogonal wavelet filters in a redundant representation, as is done in cycle -spinning or undecimated wavelet 
transforms!).  

The basic functions of the steerable pyramid are Kth-order directional derivative operators (for any choice of K), that come 
in different sizes and K+1 orientations. As directional derivatives, they span a rotation -invariant subspace, and they are 
designed and sampled such that the whole transform forms a tight frame. An example decomposition of an image of a 
white disk on a black background is shown to the right. This particular steerable pyramid contains 4 orientation sub bands, 
at 2 scales. The smallest sub band is the residual low pass information. The residu al high pass sub band is not shown. 
The block diagram for the decomposition (both analysis and synthesis) is shown to the right. Initially, the image is 
separated into low and high pass sub bands, using filters L0 and H0. 

 

 Figure 1. Decomposition using Steerable Pyramids 

The low pass sub band is then divided into a set of oriented bandpass sub bands and a lower -pass sub band. This lower 
pass sub band is subsampled by a factor of 2 in the X and Y directions. The recursive (pyramid) construction of a pyram id 
is achieved by inserting a copy of the shaded portion of the diagram at the location of the solid circle (i.e., the low pass 
branch). The right side of the diagram is the synthesis part. The synthesized image is reconstructed by up sampling the 
lower low-pass sub band by the factor of 2 and adding up with the set of band-pass sub bands and the high-pass sub 
band. 

RESEARCH METHODOLOGY 

 D represents the number of images in the database and Q represents the query image. 

 Steerable pyramid mechanism is used to extract the various features like color, texture and contour from the query 
image and every image in the database.  

 Multiple scales and rotation invariance is used by steerable pyramid to extract the features.  

 Extracted features are entered into the median vector algorithm. 

 The median is computed for each image to the entire color, texture and contour feature vector. 

 The median vector is used to compute the similarity of the images.  
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ALGORITHM OF THE PROPOSED WORK 

  Input: 

               1. The D Database images; D= {D1, D2, D3……Dn}. 

               2. Q represents query images 

  Begin                

                  For j=1 to n 

                          For i=1 to 4  

                                   Compute 4 level feature vector for D j 

                          end 

                  End 

                  For j=1 to n 

                             Compute the median vector M1 for all the feature vectors of Dj                              

                  end 

  Compute 4 level feature vector for Q  

  Find the median vector M2 for query image 

  Match the median vector m1 and m2 

  dis i = Euclidean distance (m1, m2). 

  If dis i < threshold 

            Display the matching image 

  end  

   

Figure 2. Flowchart of Proposed Work 

EXPERIMENTAL RESULTS AND DISCUSSIONS 

The evaluation of the performance of the proposed descriptors is done by using the LULC (Land use Land cover) dataset. 
It is a manually constructed data set consisting of 21 image classes containing each 100 images of size 256 × 256. It 
contains the following classes: agricultural, airplane, baseball diamond, beach, buildings, chaparral, dense residential, 
forest, freeway, golf course, harbor, intersection, medium residential, mobile home park, overpass, parking lot, river, 
runway, sparse residential, storage tanks, and tennis court. We have also conducted multiple number of experiments on 
medical images like arms, brain, nose, legs etc.  
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Figure 3. LULC Dataset with different image classes 

(a) Parking Lot (b) Rivers  

The first step is to extract the color, texture and contour feature vector using steerable pyramid mechanism. This 
mechanism can find out the low level feature vectors by going into the detail of each pixel. 4 level mechanism is used for 
the steerable pyramid.  

 

(c)Tennis Court (d) Storage Tanks  

 

Figure 4. Medical Dataset with different categories 

The figure 4 shows the different categories of images for the medical dataset. It includes the images like brain, hands, 
legs, knees, brain, oral etc. In the figure 5, we have tried to represent the different levels of detail using steerable pyramid. 
In the level 1, the original image is grown up to 2x and it keeps on increasing till level 4. The features vectors of color, 
texture and contour are extracted for the query image and for the database images.  

 

Figure 5. 4-Level Steerable Pyramid  
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We have shown the contours for different categories of images like airplane, rooftops, medical dataset etc  in figure 6. 

 
Figure 6. Contours for different categories of LULC dataset 

The next step of the query process in this approach is to compute the distance between the transformed feature vector of 
the query image, q, and that of each of the images in the database, d. This distance is defined as dist (q, d) = Euclidean 
distance where ||q|| and ||d|| are the norms of those vectors. With respect to the query image and each of the database 
images, we now have the distances between each pair of sub images by the previous step. These distance values dist (qi, 
di) are then combined into one distance value between these two images in an approach s imilar to the computation of 
Euclidean distance using median vector algorithm. Given a query image q and a candidate database image d, with 
corresponding sub images d1, …, d5 and the below figure 7 represents the matching of the query image with different 
categories of images. 

 

Figure 7. Similarity Matching 

PERFORMANCE MEASURES 

Many methods are available for measuring the performance of image retrieval systems. The most common evaluation 
measures used in image retrieval system are precision and recall. These are usually presented as a precision vs. recall 
graph. The standard definitions of these two measures are given by following equations. Precision (P) is defined as the 
ratio of the number of relevant mages retrieved to the number of total retrieved imag es. Recall (R) is defined as the 
number of retrieved relevant mages over the total number of relevant images available in the database. High precision 
means that less relevant images are returned or more relevant images are retrieved, while high recall mea ns we relevant 
images are missed. 
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Table 1. Present Work Results for LULC dataset 

S.No 
Color 

Descriptors 
Contours Texture 

Total 
Descriptors 

Total 
Retrieved 
Images 

1 16945 43 2800 19788 35 

2 18718 6 3760 22484 44 

3 13294 13 3600 16907 44 

4 16694 67 3120 19881 39 

5 18531 54 3360 21945 40 

6 14645 86 2480 17211 31 

7 10086 30 1680 11796 21 

8 12890 6 4760 17656 25 

9 19393 38 4000 23431 48 

10 7901 26 1600 9527 19 

11 14276 18 2480 16774 31 

12 15390 42 3120 18552 37 

13 23572 32 4240 27844 53 

 

In table 1 we have evaluated the results of the LULC dataset for the present work using steerable pyramid and median 
vector algorithm. In table 2. we have mentioned the positive images in the final result set. We have computed the total 
processing time of the proposed work and is available in the second last column of the table 2. No double the results have 
been improved but it has increasing the total processing time as we have used multiple fe ature vectors. To optimize the 
performance, we have applied median vector algorithm which has reduced the total processing time of the complete 
proposed work and is mentioned in the last column of the table 2.  

      Table 2. Present Work Implementation Results 

Positive 
In Final 
Result 

Negative 
In Final 
Result 

Precisio
n 

Recall 
Computation 

Time 
Matching 

Time 

Before 
Median 
Vector 
(Time) 

Total 
Time 

28 7 0.80 0.93 1066.71 2826.10 4282.09 3892.81 

31 13 0.70 0.91 1103.04 2628.52 4104.72 3731.56 

38 6 0.86 0.97 858.89 2032.62 3180.66 2891.51 

34 5 0.87 1.00 639.51 1623.69 2489.52 2263.20 

27 13 0.68 0.96 689.43 1632.67 2554.30 2322.10 

23 8 0.74 1.00 546.10 1624.91 2388.11 2171.01 

13 8 0.62 1.00 383.10 1411.99 1974.60 1795.09 

21 4 0.84 0.72 1007.85 2173.86 3499.88 3181.71 

38 10 0.79 1.00 767.33 1307.69 2282.52 2075.02 

12 7 0.63 1.00 295.66 1129.41 1567.58 1425.07 

24 7 0.77 1.00 558.49 1931.13 2738.59 2489.62 

26 11 0.70 1.00 914.17 2887.05 4181.34 3801.22 

37 16 0.70 1.00 857.65 2253.75 3422.54 3111.40 
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Figure 8 shows the precision-recall graph of the existing work and the proposed work. From the graph it is clear that the 
value of precision and recall has been improved in the proposed work than in the existing work. The precision reduces to 
0.62 only for one single experiment. The recall value has also been improved and is ranging from 0.72 to 1.0  

 

Figure 8. Precision-Recall Curve of Exiting and Work on Satellite Images  

In Figure 9, the bar chart comparison for the existing work and proposed work has been demonstrated for multiple number 
of experiments. The time is mentioned in milliseconds. The time is reduced from 5-30% for different categories of images. 

 

Figure 9. Bar Chart Showing Execution Time Comparison of Exiting Work and Proposed Work 

Table 3. Proposed Work results for the medical dataset 

S.No. 
Total Color 
Descriptors 

Contours Texture 
Total 

Descriptors 

1 428 3 2000 2431 

2 1742 0 2800 4542 

3 1699 2 3600 5301 

4 1478 1 4000 5479 

5 860 3 2000 2863 

6 794 11 2800 3605 

7 1225 0 3600 4825 

8 1729 3 3920 5652 

9 875 19 2000 2894 

10 1190 0 2800 3990 
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Table 4. Proposed Work results for the medical dataset. 

Total 
Retrieved 
Images 

Positive 
In Final 
Result 

Negative 
In Final 
Result 

Precision Recall 
Computation 

Time 
Matching 

Time 
Total 
Time 

21 16 5 0.76 0.80 16.01 22.74 38.75 

32 28 4 0.88 0.93 63.46 76.61 140.07 

42 30 12 0.71 1.00 71.62 114.75 186.37 

45 28 17 0.62 0.93 58.89 83.61 142.50 

24 20 4 0.83 1.00 38.65 72.51 111.17 

32 27 5 0.84 0.90 39.09 79.24 118.33 

36 21 15 0.58 0.70 44.17 64.35 108.51 

45 24 21 0.53 0.96 72.45 124.04 196.49 

22 17 5 0.77 0.85 38.22 65.69 103.90 

30 26 4 0.87 0.87 40.49 84.37 124.86 

 

 

Figure 10. Precision -Recall curve of Existing and Proposed Work on Medical Images 

The figure 10 shows the precision-recall curve of the existing work and the proposed work for the medical dataset. There 
is lot of improvement in the precision and recall in the present work. Improvement in precision means CBIR system is 
retrieving more number of relevant images. 

 

Figure 11.  Bar Chart Showing Execution Time Comparison of Exiting Work and Proposed Work 
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Figure 12. Descriptors Count Comparison for Medical Images 

Figure 12 shows the descriptor count comparison for existing work and proposed work. In the existing work, only color 
feature vector has been used where as in the proposed work, we have used the color, texture and contour feature vectors. 
In the above figure, we have shown the total number of descriptors for different number of experiments.  

CONCLUSION AND FUTURE SCOPE 

Visual feature such as color, texture and contour using steerable pyramid and median vector mechanism.  Features are 
extracted on both whole image level and database image level to better capture salient object descriptions. To negotiate 
the gap between low-level visual features and high-level concepts, median vector mechanism is applied and integrated 
with these content-based retrieval techniques in a vector space model. Our research provides the following contributions. 
First, the steerable pyramid using different level structure is applied to image retrieval and used to uncover the underlying 
semantic structure of visual contents. The proposed technique is a unified yet open -ended framework that is able to 
accommodate virtually any vector feature model. Preliminary experiments confirmed that this approach does improve the 
retrieval performance by linking low-level features and high-level semantics, and better reflects human perception of visual 
contents. Secondly, the median vector method, together with steerable pyramid provides a robust and efficient CBIR 
scheme for both capturing the spatial relationship of salient image regions and describing object -level concepts. 
Experiments show that combining the color, texture and feature vector achieves the best performan ce in the comparison 
of various approaches. Finally, since it is obvious that neither single color feature nor textual features are sufficient to 
capture the overall contents of visual data, we propose a seamless integration of all the feature vectors such  as color, 
texture and contour, taking advantage of using our vector space model and median vectors. The combined feature vector, 
on which latent semantic indexing will be performed afterwards, is normalized and weighted. Preliminary results reveal 
that it is a very promising approach to further bridging the semantic gap and achieving better retrieval performance. The 
results presented in the previous section are quite interesting and are certainly worthy of further study. Our hope is that 
latent semantic analysis will find that different image features co-occur with similar query images and consequently lead to 
improved techniques of semantic image retrieval. We are have currently conducted multiple number of experiments on 
different categories of images like forest, airplane etc of LULC dataset and arms, legs, brain etc of medical dataset. After 
evaluating the results, we have reached up to the solution that we have been able to improve the CBIR mechanism using 
the proposed mechanism in this work. We will further test and benchmark this integrated image retrieval framework over 
various large image databases, along with tuning the relevance feedback to achieve optimal performance with highly 
reduced dimensionality.  Relevance feedback will also be helpful when incorporated into our proposed scheme. Making 
use of relevance feedback to infer user preference should also be incorporated to elevate the retrieval performance.  
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