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ABSTRACT 

The standard Backpropagation Neural Network (BPNN) Algorithm is widely used in solving many real   problems in world. 
But the backpropagation suffers from different difficulties such as the slow convergence and convergence to local minima. 
Many modifications have been proposed to improve the performance of the algorithm such as careful selection of initial 
weights and biases, learning rate, momentum, network topology and activation function. This paper will illustrate a new 
additional version of the Backpropagation algorithm. In fact, the new modification has been done on the error signal 
function by using deep neural networks with more than one hidden layers. Experiments have been made to compare and 
evaluate the convergence behavior of these training algorithms with two training problems: XOR, and the Iris plant 
classification. The results showed that the proposed algorithm has improved the classical Bp in terms of its efficiency. 
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1.INTRODUCTION 

An artificial neural network, ANN, is a software system that loosely models biological neurons. It consists of small 
processing units known as Artificial Neurons, which can be trained to perform complex calculations. Neural networks have 
greatest potential in many complex real problems such as speech and image recognition. A typical multilayer feed-forward 
neural network consists of an input layer, hidden layer and an output layer. Every node in a layer is fully connected to every 
node in the next layer. Multi-layer neural networks use a variety of learning techniques; the most popular one is 
the backpropagation which proposed by Rumelhart, Hinton and Williams [8, 9].  

Since the standard BackPropagation uses gradient descent learning rule, an improper choice of parameters such as the 
Learning Rate value, activation function, and initial weights and biases values may lead to slow network convergence, 
network error or failure.   

A variety of researches have been applied to accelerate the learning process and improve the training efficiency [3, 4, 5, 
and 6].  An OBP algorithm is designed to overcome some of the problems associated with standard BP training using non-
linear function, which applied on the output units to escape from local minima with high speed of convergence during the 
training period. [7] 

This paper presents an extended version of an Optical Backpropagation (OBP) algorithm. The proposed algorithm improve 
the performance of the Optical Backpropagation algorithm (OBP) on deep neural network, the experimental results show 
that the proposed algorithm converges to a reasonable range of error after a few number of training epochs. 

2. STANDARD BACKPROPAGATION (BP) 

The Backpropagation BP is designed to minimize the mean square error between the actual output and the desired output . 
For a given set of input patterns applied to the first layer in the neural network, it propagated through each upper layer until 
an output is generated. This output is then compared to the known and desired output and the error value is calculated. 
Based on the error, the connection weights are adjusted backward from the output layer to each unit in the network. 

Algorithm for a 3-layer network with m input units, n hidden units, and p output units can be described as follows [2, 7]: 

1. Initialize network weights (often small random values) 

2. Apply the input vector to the input units  

                

3. Compute the net- input values to the hidden layer units:   

                                                                                                                     (2.1) 

4. Calculate the outputs from the hidden layer: 

                                                                                                                       (2.2)  

5. Calculate the net-input values to each output unit: 

                                                                                                                       (2.3) 

6. Calculate the outputs: 

                                                                                                                       (2.4) 

7. Calculate the error terms for the output units: 

                                                                                                     (2.5) 

Where 

                                                                                                   (2.6) 

8. Calculate the error terms for the hidden units: 

                                                                                                         (2.7) 

http://en.wikipedia.org/wiki/Back-propagation
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9. Update weights on the output layer: 

                                                                                                     (2.8)           

10. Update weights on the Hidden layer: 

                                                                                                   (2.9)  

3. PROPOSED ALGORITHM 

3.1 Extended Optical Bp (EOBP) 

The difficulty encountered in the standard Backpropagation algorithm is when the actual value  approaches 

either extreme value, the factor   in equation (2.6) makes the  error  signal  very  
small. This implies  that  an  output  unit  can  be  maximally  wrong  without  producing  a strong error signal with which 
the coupling strengths could be significantly adjusted.[7] The Optical Backpropagation algorithm (an enhanced 
Backpropagation) focused on this delay of the convergence that is caused by the derivative of the activation function. 

The convergence speed of the training process was improved significantly by OBP through maximizing the error signal, 
which was transmitted backward from the output layer to each unit in the intermediate layer. 

The error at a single output unit in adjusted OBP is defined as [6], [7]: 

                                                                                                       (3.1) 

                                                                                                       (3.2) 

                                                                                                             (3.3) 

Where the subscript “P“ refers to the pth training vector, and “K “refers to the kth output unit. In this case, Ypk is the desired 
output value, and Opk is the actual output from kth unit, then δpk will propagate backward to update the output-layer 
weights and the hidden-layer weights. 

The error signal will minimize the errors of each output unit more quickly than the Backpropagation error signal and so the 
weights on certain units change very large from their starting values. [7] 

The error function defined in Optical Backpropagation  is proportional to the square of the distance between the desired 
output and the actual output of the network for a particular input pattern. 

As an alternative, any other error functions whose derivatives exist and can be calculated at the output layer can replace 
the traditional square error criterion [4]. In this paper, a new error function had been adopted to replace the error function 
used in Optical Backpropagation. The equations of the new function are given as: 

                                                                                             (3.4) 

                                                                                                 (3.5) 

                                                                                                             (3.6) 
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Note the equations in step 7,8,9 and 10 are changed, but all other equations and steps will be as outlined in the standard 
BP algorithm. 

3.2 The EOBP Steps 

The EOBP steps are described as follows: 

1. Apply the input example to the input units. 
xp   = (xp1, xp2,... xpn) 

2. Calculate the net-input values to the hidden layer units. 
3. Calculate the outputs from the hidden layer. 
4. Calculate the net-input values to the output layer units. 

5. Calculate the outputs from the output units. 
6. Calculate the error term for the output units, using the Newδ˚pk described in equations (3.4),(3.5) and (3.6) 

7. Calculate  the  error  term  for  the  hidden  units,  through  applying Newδ˚pk. 
8. Update weights on the output layer. 
9. Update weights on the hidden layer. 

10. Repeat  steps  from  step  1  to  step  9  until  the  error  (Ypk  –  Opk)  is acceptably small for each training vector 
pairs. 

The proposed algorithm stops as the standard Bp when the squares of the differences between the actual and target 

values summed over the output units at all patterns are relatively small. 

The new error function gives a rapid reaction to changes in the weights value by  increasing the speed  with less number 
of iterations and without loss of learn-ability. 

The new algorithm was tested on different neural network architecture, with one or more hidden layers. 

A deep neural network (DNN) is a feed-forward, artificial neural network that has more than one layer of hidden units 
between its inputs and its outputs. Each hidden unit typically uses the logistic function which was the hypertan function to 
map its total input from the layer below, then to sends them to the layer above. The output unit then converts its total input 
to produce the output, by using the “softmax” non-linearity. 

In DNNs with full connectivity between adjacent layers, the initial weights are given small random values to prevent all of 
the hidden units in a layer from getting exactly the same gradient [10]. 

The normalization is important because of the multiplicative effect through layers, to maintain the activation variances and 
back-propagated gradients variance as one move up or down the network [10]. 

DNNs with many hidden layers and many units per layer are very flexible model. This makes them capable of modeling 
very complex and highly non-linear relationships between inputs and outputs, such as the acoustic modeling. 

DNN’s can be discriminatively trained by the EOBP to measures the difference between the target outputs and the actual 
outputs produced for each training case. 

At the beginning of the training, the back-propagated gradients gets smaller as it is propagated downwards using the New 
error signal which minimize  the errors of each output unit faster than the old one, and the weights on certain units change 
relatively large from their starting values. Weights  are either  increased  or  decreased  according  to  the  sign  of  the 
term (Y – O). 

4. EXPERIMENTAL EVALUATION 

4.1 XOR Problem (XOR 2-2-1) 

The XOR problem will be solved using neural network which consists of two input units, two hidden units, and single 
output unit, with biases for hidden unit and the output unit, without direct connection from input to the output layers. The 
architecture of this network is shown in figure 4.1. 

 

Figure 4.1: XOR neural network architecture 2x2x1 
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Table 4.1 shows the parameters to solve the XOR (2-2-1) problem using the BP and EOBP algorithms. 

Table 4.1: The parameters to solve the XOR (2-2-1) problem 

 EOBP BP 

Initial weights 0.001 - 
0.0001 

0.001 - 
0.0001 

Learning Rate 0.1 - 1.0 0.1 - 1.0 

Momentum 0.2 0.2 

Epoch limits 1000 10000 

MSE 0.0001 0.0001 

The results of the training processes using the EOBP and BP algorithms will be explained in table 4.2 and figure 4.2. 

Table 4.2: Solve XOR (2x2x1) problem Using EOBP and BP 

Learning Rate EOBP BP 

0.1 804 17140 

0.2 368 7867 

0.3 227 4844 

0.4 158 3376 

0.5 118 2523 

0.6 92 1974 

0.7 74 1594 

0.8 62 1319 

0.9 52 1112 

1.0 44 953 

 

 

Figure 4.2: Solve XOR (2x2x1) problem Using EOBP and BP 

Table4.2 and figure4.2 show that the EOBP algorithm is more efficient than the BP algorithm because; it can speed up the 
convergence rate. Also, as the learning rate become near to the 1.0 value, the performance of the EOBP become better. 

From the table4.2, the number of epochs needed to train the network is equal to 953 through a learning rate of 1.0, and it 
is equal to 804 if we used the EOBP with the learning rate equal to 0.1. 

So the EOBP speeds up the training process when use a very small learning rate, while using a small value of the learning 
rate in the BP will leads to slow down the training process. 
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4.2 Iris Plant Classification 

The iris plant classification problem is a well-known benchmark problem concerning classification of flowers. Three iris 

flowers classes are known: Iris setosa, Iris versicolor and Iris virginica. The classification is based on four leaf 

attributes namely, sepal length and width, and petal length and width. These attributes denoted by x1, x2, x3, and x4 were 
measured in millimeters and collected in the Iris database which consists of 150 items as shown below. 

5.1, 3.5, 1.4, 0.2, Iris setosa 

7.0, 3.2, 4.7, 1.4, Iris versicolor 

6.3, 3.3, 6.0, 2.5, Iris virginica 

4.9, 3.0, 1.4, 0.2, Iris setosa 

There are 50 data points for each species. Because neural networks work with numeric data, the categorical species 
information must be converted to numeric data. When performing neural network classification, the classes to be 
predicted is stored directly in 1-of-N encoded dependent-variable data located in the last three columns: 

5.1, 3.5, 1.4, 0.2, 0, 0, 1 

7.0, 3.2, 4.7, 1.4, 0, 1, 0 

6.3, 3.3, 6.0, 2.5, 1, 0, 0 

4.9, 3.0, 1.4, 0.2, 0, 0, 1 

... 

The experiments starts by splitting the data set, which consists of 150 items, into a training set of 120 items (80 percent) 
and a test set of 30 items (20 percent). Next, the experiments create a neural network with four input nodes (one for each 
numeric input), seven hidden nodes and three output nodes (one for each possible output class). The neural network's 
weights and bias values are initialized to small (between 0.001 and 0.0001) random values. As the weights and biases 
determine the output values for a given set of input values, the two algorithms (EOBP and BP) are used to search for 
weights and bias values that generate neural network outputs that most closely match the output values in the training 
data then the two results are compared to check the performance of each algorithm. Table 4.3 shows the parameters to 
solve the Iris plant classification problem using the BP and EOBP algorithms. 

Table 4.3: The parameters to solve the Iris plant classification problem 

 EOBP BP 

Initial weights 0.001 - 
0.0001 

0.001 - 
0.0001 

Learning Rate 0.05 0.05 

Momentum 0.1 0.1 

Epoch limits 2000 2000 

MSE 0.001 0.001 

The 4-7-3 neural network will have 4*7 + 7*3 = 49 weights and 7+3 = 10 biases. The initial weights selected randomly, and 
the same initial weights have been used for the two algorithms. After the neural network has been trained, result displays 
the final weights that were determined by the training process. Table 4.4 shows a sample of twenty values for the final 
weights. 

Figure 4.3 shows that the differences between the final weights from input layer to the output layer using an EOPB and BP 
are very small. 
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Figure 4.3: Final weights using the BP and an EOBP. 

After a neural network has been trained, the prediction accuracy on the training data set and the prediction accuracy on 
the test data are computed and shown in table 4.5. 

Table 4.4: initial and final weights using BP and EOBP 

Initial weights BP EOBP 

0.0008 0.989 0.405 

0.0008 -0.373 -0.246 

0.0008 0.033 0.14 

0.0006 0.425 0.511 

0.0003 -0.379 -0.283 

0.0006 -0.335 -0.321 

0.0009 -0.329 -0.201 

0.0005 -0.7 -0.278 

0.001 -0.054 -0.143 

0.0003 -1.31 -1.484 

0.0004 -0.184 -0.257 

0.0005 -0.004 -0.093 

0.0007 0.003 -0.065 

0.0005 -0.123 -0.185 

0.001 0.488 0.441 

0.0001 2.403 2.646 

0.0009 0.549 0.346 

0.001 0.436 0.487 

0.0007 2.066 2.298 

0.0004 1.928 2.171 
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Table 4.5: accuracy on the training data and test data 

 BP EOBP 

Training 
data 

0.9833, 118 
correct out of 

120 

0.9917,119 
correct out of 

120 

Test data 0.9667, 29 out 
of 30 

0.9667, 29 out 
of 30 

The result shows that the prediction accuracy on the training data set and the prediction accuracy on the test data for the 
EOBP are larger than the prediction accuracy on the training data set and the prediction accuracy on the test data for the 
BP. 

4.3 Iris Plant Classification (Deep Learning) 

The next problem to be described is the Iris plant classification problem with different neural network architecture.  The 
network consists of 4 units in the input layer, and 3 units in the output layer, and two hidden layers with 4 units for the first 
hidden layer and 8 units for the second hidden layer. And use the softmax logistic function for the output layer and the 
hypertan function for the hidden layers.   

Table 4.6 shows the parameters to solve the Iris plant classification problem (Deep Learning) using the BP and EOBP 
algorithms. 

In this experiment, the EOBP was tested to solve it. The results show that EOBP needed 1000 epochs to train the 
network, which is less that number of epochs needed to train the network using the standard BP which equals to 2120. 

 

Table 4.6: The parameters to solve the Iris plant classification problem (Deep Learning) 

 EOBP BP 

Initial weights 0.001 - 0.0001 0.001 - 0.0001 

Learning Rate 0.01 0.01 

Epoch limits 10000 10000 

MSE 0.001 0.001 

4.4 Compare Two Results Using Different Neural Network Architecture  

For a neural network with 3 units for input layer, 3 hidden layers with 3, 4 and 7 nodes for each respectively, and 2 units 
for output layer, the final weights from input to the first hidden layer and from the first hidden layer to the second hidden  
after using the EOBP and the BP are summarized in table 4.7. 

Training is discontinued when the MSE falls below 0.00001.  The initial weights selected randomly, and the same initial 
weights have been used for the two algorithms, the Learning rate was set to 0.5 and the momentum value was equal to 
0.1. 

Figure 4.4 shows that the differences between the final weights from input layer to the first hidden layer and from the first 
hidden layer to the second hidden layer using an EOPB and BP are very small.  

Table 4.7: Initial and final weights from input to the first hidden layer and from the first hidden layer to the second 
hidden 

Weights Initial weights BP EOBP 

W1 0.0324 0.04501 0.04497 

W2 0.0199 0.04298 0.04298 

W3 0.0520 0.07850 0.07852 

W4 0.0794 0.05418 0.05426 

W5 0.0691 0.02314 0.02314 

W6 0.0489 -0.00398 -0.00403 

W7 0.0418 0.07977 0.07965 

W8 0.0949 0.16400 0.16400 

W9 0.0191 0.09851 0.09858 



ISSN 2277-3061                                                           

5282 | P a g e                                                      O c t o b e r  3 1 ,  2 0 1 4  

 

W10 0.0678 0.07501 0.07477 

W11 0.0125 0.02369 0.02344 

W12 0.0323 0.04334 0.04303 

W13 0.0388 0.04889 0.04861 

W14 0.0990 0.11938 0.11906 

W15 0.0713 0.10325 0.10295 

W16 0.0689 0.10027 0.09976 

W17 0.0354 0.06416 0.06378 

W18 0.0653 0.07989 0.07944 

W19 0.0733 0.09583 0.09536 

W20 0.0731 0.09541 0.09481 

W21 0.0954 0.11582 0.11530 

 

 

Figure 4.4:  Final weights using the BP and an EOBP. 

The adapting process of weights from input layer to the first hidden layer and from the first hidden layer to the second 
hidden layer using the standard BP and EOBP is shown in figures 4.5 and 4.6. 

-0.05
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0.05

0.1

0.15

0.2

1 4 7 10 13 16 19

Initial weights
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Figure 4.5: Adapting process of weights from input layer to the first hidden layer and from the first hidden layer to 
the second hidden layer using BP. 
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Figure 4.6: Adapting process of weights from input layer to the first hidden layer and from the first hidden layer to 
the second hidden layer using EOBP. 

Table 4.8 shows the initial and final weights from the last hidden layer to the output layer, figure 4.7 and figure 4.8 show 
the adapting process of weights from hidden to output layer using BP and EOBP respectively. 

Table 4.8: Initial and final weights from the last hidden layer to the output layer. 

Weights Initial 
weights 

BP EOBP 

W1 0.0380 0.03286 0.03270 

W2 0.0593 -0.32729 -0.34368 

W3 0.0375 0.37077 0.35736 

W4 0.0998 -0.18947 -0.20195 

W5 0.0888 0.22326 0.21397 

W6 0.0816 0.01536 0.00022 

W7 0.0298 0.09392 0.10220 

W8 0.0190 -0.27993 -0.29982 

W9 0.0261 0.35315 0.34141 

W10 0.0486 0.01765 0.01765 

W11 0.0960 0.09763 0.09763 

W12 0.0462 0.05392 0.05392 

W13 0.0796 0.06751 0.06751 

W14 0.0952 0.01422 0.01422 

 

 

Figure 4.7: Adapting process of weights from hidden to output layer using BP. 
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Figure 4.8: Adapting process of weights from hidden to output layer using EOBP. 

Figure 4.9 shows the differences between the final weights from input layer to the first hidden layer and from the first 
hidden layer to the second hidden layer using BP and EOBP. 

 
Figure 4.9: Final weights using the BP with 286 Epochs and an EOBP with 32 Epochs. 

The  remarkable  result  obtained  from  previous  figure  is  the  number  of epochs using the two algorithms, which proves 
that the  EOBP gives a better result compared with the standard BP with a fewer number of iterations. 

In addition, this network was tested using the two algorithms with different learning rate, Table 4.9, shows the results: 

The  results  of  EOBP  are much  faster  than  the  BP  for  all  training  processes  with  different  learning rate. 

Table 4.9: Training processes using different learning rate. 

Learning 
Rate 

 

BP EOBP 

0.1 1418 155 

0.2 710 78 

0.3 474 53 

0.4 356 41 

0.5 286 32 

 

5. CONCLUSION 

The Back-propagation  Neural  Network  (BPNN) is a supervised learning neural network model highly  applied  in different 
applications around the globe. Although it is widely implemented in the most practical ANN applications and performs  
relatively  well,  it  is  suffering  from  a  problem  of  slow  convergence  and  convergence  to  local  minima and there still 
exist areas where improvements can be made.  This makes Artificial Neural Network’s application very challenging when 
dealing with large problems. This paper introduced an extended version of the Optical Backpropagation algorithm, EOBP, 
for training the Deep Neural Network in order to improve the learning speed. 

The EOBP is an enhanced version of the Optical Backpropagation algorithm. The study shows that EOBP is beneficial in 
speeding up the learning process by using a modified error function which enhances the whole training process in terms of 
requiring less number of epochs to converge.  

The characteristics of the EOBP are: 

 Able to reach a very small MSE 
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 Work with deep neural network with more than one hidden layers 

 Work with multilayer neural networks with one hidden layer 

 Work with a small value for the learning rate  

 Work with biases 

 Work with small range for the initial weights 

 can perform well for small training samples 

The effectiveness of the EOBP algorithm has been compared with the standard BP algorithm and verified by means of 
simulation on two real problems. The experimental results show that the EOBP algorithm converges to a reasonable range 
of error after a few number of training epochs and this enforce the usage of it as alternative training algorithm of standard 
BP for Deep Neural Network. 
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