
 ISSN 22773061

242 |P a g e M a y 1 5 , 2 0 1 3

Implementation and Analysis of a Refactoring Tool for
Detecting Code Smells

Amandeep Kaur*, Himanshi Raperia**
amandeep@pcte.edu.in

*CS, Punjab College Of Technical education and
*CSE, Lovely Professional University Phagwara

**CSE, Lovely Professional University Phagwara

Abstract: Software development is a field which is in action for decades. Preparing code for Software is not a difficult

task, but preparing an efficient code is complicated one. To change the code is to make internal structure of the code
easier to understand and economic to modify, without changing the behavior and desired response. More changes will
make software patchy. No Software is free from smells especially the patchy one. Lots of work has been done for
detecting and removing a few of the smells (Refactoring) from code. In this paper our main focus will be on tool SCSD
(Software Code Smell Detector) developed, uses a bit classification, clustering approach with K-mean Clustering
Algorithm to detect the code smells, which can implement completely different architecture if it discovers smell.

Keywords: Software, Code, Refactoring, K-mean, Clustering, Classifications, .Net, Java, Object Oriented languages,

C#, syntax, Semantics.

Council for Innovative Research

Peer Review Research Publishing System

Journal: INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY

Vol 6, No 1

editor@cirworld.com
www.cirworld.com, member.cirworld.com

http://member.cirworld.com/
http://www.cirworld.com/
http://www.cirworld.com/

 ISSN 22773061

243 |P a g e M a y 1 5 , 2 0 1 3

Introduction: Software development is at boon

from last decade or two. All software suffers from code
smells. A code smell can be said as drawback of the
code. Code smells get introduced in software due to
recursive implementation and design problems which
calls for maintenance and evolution of the software.
There are numerous code smells, but our tool is capable
of detecting four smells only and they are:

a. Large Class: Large classes, like long

methods, are difficult to read, understand, and
troubleshoot. Does the class contain too many
responsibilities? Can the large class be restructured or
broken into smaller classes? If possible, it should be
done.

b. Dead Code: Ruthlessly delete code that

isn't being used. That's why we have source
control systems!

c. Long Method: Long methods, are difficult

to read, understand, and troubleshoot. Does
the method try to accomplish too many tasks?
Can it be restructured or broken into smaller
methods? If possible, it should be done.

d. Long Parameter List: Long Parameter

List, are there to increase complexity of the
method. Thus makes it harder to understand
and troubleshoot. Does the method contain too
many variables or arguments? Try to use as
variables as minimum as possible.

For long class, if a lot of variables are declared and they
are jamming up the memory in the regular memory
cycle, then we need to remove them. The cases are like
that

 What type of constraints we are going to put
over the code for the long method

 Where we are going to find the long method

 How we are going to find the long method

We have inherited the C++ structure. The function
block starts with a round bracket. If we are getting a
round bracket it means the previous structure
written before is the name of the function that we
have to store the name of the function in the array
file to represent it later on.

Objectives of Study:

a. Designing a tool for detecting code smells
from any object oriented software during
development phase only.

b. To present a generic tool to analyze any
OO software for presence of code smells.

c. To apply clustering and classification with
K-mean techniques for segregating code
smells based upon their extensions.

d. For suggesting reasons for code smells in
different modules.

e. Ultimately will help to achieve
understandability, flexibility, simplicity and
to reduce power requirements.

Tools used: This tool has been developed in .Net

Environment as Front-End and SQL Server as Back-
End. K-mean nearest neighbor algorithm is used to

create clusters on the basis of different combinations
like .cs for classes. Then theses clusters are used to
classify different groups for each classes, methods and
parameters. Further theses classified groups are
checked for if contains Long Parameter List, Long
Method, Long Class & Dead Code. It gives totally a
different approach.

Implementation: This Proposed code smell

detector tool is implemented in Visual Studio 2010. .net
environment is used to develop the tool because of
default support for optimizing code and inbuilt support
for code refactoring. This tool is capable for tracing
entire code and look for meta classes having extension
“.cs”, functions, methods, parameters as well individual
lines of code. This tool can be used with any project or a
single file following syntax and semantics of Object
Oriented Language i.e. same set of delimiters and
classes.

Any project or file following Object Oriented concept
(.net, java or C# project), can be uploaded. Once a
project is successfully uploaded,

As shown in fig. 1, testing of various code smells can be
done using Parameters menu Testing of various
parameters. This menu can also be used for getting
information about what is code smell? And regarding
various code smells detected by this tool.

Figure 1: Showing Parameters menu to select Testing of
various parameters.

Smell Testing dialog box will allow us to have testing of
software code on the basis of

 Long Methods

 Long Parameter List

 Long Classes and

 Dead Code

 ISSN 22773061

244 |P a g e M a y 1 5 , 2 0 1 3

Figure 2: Showing select Test Code and
Then long method and then click on Test
to show Long Method Dialog box.

If we are dealing with complete project, then we can use
option “Load All files” and then click on start option to
start tracing process, here all long methods will be
displayed in Long Methods list box, Otherwise if one is
dealing with a single file hen in that case, we can simply
click on start and there is no need of loading all files.

Figure 3: Showing Long Method dialog box, giving
options for loading all files, start testing and storing
results for creation of graphs.

. If we click on any file manually then it will show all long
methods in Long Methods dialog box of that respective
file, then we can see code of method in Data of methods
dialog box.

Figure 4: Showing Loaded files and long methods of
employee.cs class and code of employee_load method
in Data Of Method Dialog box.

Another test is regarding long parameter list, generally it
says that any method using parameters as arguments
and those parameters are not in use. In that case
method will be long and complex one.

We can check for, which parameters are not in use, by
following Long Parameter list. If we click on any file in All
files list box, It will show all methods based upon long
parameter list in Long Parameter Methods list box. If we
click on any of the method there, it will show justification
that why this method is considered long, which
parameters are created but not used as such.

Figure 5: Showing Various Parameters just declared but
not used.

Same way around, we can check for Long classes, They
are those classes, which are trying to cover as many
jobs as it can. Those jobs may be independent, related
or not related at all. Those contents can be moved or
shifted to some more sub classes, if they related or we
can shift them to new classes if they are independent or
not related at all. As adding up more and more code in
same class, will only increase the complexity and will

 ISSN 22773061

245 |P a g e M a y 1 5 , 2 0 1 3

make code harder to understand. Even more number of
comments are also increasing complexity and as they
cannot help in refactoring or debugging. They are there
for helping users not the developers.

Figure 6: Showing various Long Classes, Methods
responsible and code of that class.

Every parameter check provides capability for storing
results in database created in SQL Server 2005.
Relationship called tbvalue is created in database called
banking. Two fields are there which are used for storing
Smell name (@ parametername) and number of smells
(@ valuegot). Table values are further used for graph
generation for analysis purpose.

Figure 7: Showing Tool traversing code for finding Dead
Code and Store result and Exit option.

Click on store result and exit. If you do not store the
result then graph will not be created and all parameter
checks should be performed and their respective results
should be stored. Otherwise we will not be capable of
performing it.

Figure 8: Showing Graph menu and its option check
parameters to see the analysis.

Analysis is on the basis of all parameters check.
Following graph is created for a .Net Project called
Banking.

We can also check for memory occupied by various
parameters, Dead Code, Long Classes and Long
Methods. It also helps to specify that which parameters
are declared but not used and is consuming memory.
We can also release memory through Release memory
option.

Figure 9: Shows Memory Occupied and released option
for long Method Check.

Memory is occupied and released is represented in
terms of bytes. We have used mmcb variable to
calculate this parameter. We can also convert it into
KB’s by applying requires formulas. Where

1 KB = 1021 Bytes.

Memory in KB’s=Number of Bytes retrieved/102

 ISSN 22773061

246 |P a g e M a y 1 5 , 2 0 1 3

Figure 10: Shows Memory Occupied in Bytes.

Talking about the dead code – a dead code is a code
which is not giving the client means the caller a
response on time. As per the operating system rules a
dead code stops working after 2000 ms. so check the
process with the help of the task manager of the
operating system where a processes tab is available. To
clarify the statement, a browser would be a great
example. if we are opening up a browser for the first
time , it allocates a certain amount of memory to the
browser and all the other tabs which we are opening up
shares the same amount of space from the allocated
space . If the allocated space is over, it fetches the last
working tab and releases its memory and allocates it to
itself. If the memory is not getting release, it is
considered to be a dead tab which results into the
browser hang some times. We have applied the same
concept in our technique.

Long Class: The Long class wraps a value of the
primitive type long in an object. An object of
type Long contains a single field whose type is long. In
addition, this class provides several methods for
converting a long to a String and a String to a long, as
well as other constants and methods useful when
dealing with a long. For a long class to be detected, we
first need to search out that what exactly a long
message in a class is.

Suppose a class has 50 lines and only 30 lines are such
lines which are acting like a memory consumed part
originally but now we do have 10 lines which are being
declared only but not getting used. Hence we need to
find those classes which are not getting used by the
code section. For this purpose we would be using an
array file. As soon as you upload a project, it searches
all the .cs files of the project and one by one it executes
them.

A class always starts from the keyword class hence, If
the keyword class if found we consider it as a class and
the class body is to be considered to be from where it
gets a curly bracket. Now to check out the memory
cycle, we need to perform the cyclic redundant less
code.

Analysis: This tool was used for two projects i.e.
Banking and Code Smell Project. Both are created in
.Net. This analysis shows that any of the project created,
suffers from some code smells, which need to be
Refactored. This analysis shows that Quality is
compromised because of presence of those code
smells. Refactoring will help to ensure the Quality
Control, which will ultimately lead to Quality assurance

as well. Project named “Code Smell” suffers from more
smells of Long Methods, Parameter Lists and Dead
Code, Where as Project called “Banking” Suffers smell
of more number of Long Classes. Memory can be
saved by removing Dead code and unwanted
parameters. Complexity can be simplified to major
extent, if it would be possible to divide Large Classes
and Long Methods into more in number but small,
simplified and relevant ones.

Figure 11: Shows graph of various code smells and their

analysis on the basis of various Code Smells found by
the tool.

Here we have applied a little classification technique in
the development phase. Suppose if we to put on a java
file , we need to put it in the code that if the extension
ends with .java then it could go to the directory where
exactly the files are stored and we can copy all the files
from the directory and put it on to the development and
testing phase .

Conclusion

This paper introduces an innovative Detection tool for
finding out various smells presence in code using a bit of
classification approach. In this approach all files have
extension either .java or .cs files can be used. For this
purpose a bit classification technique is being used.
Suppose if we to put on a .cs file , we need to put it in
the code that if the extension ends with .cs then it could
go to the directory where exactly the files are stored and
we can copy all the files from the directory and put it on
to the development and testing phase. At initial stage
classification helps to identify all code file and helps to
load them into the list box and then helps to check the
smells in that code. Four Smells have been successfully
detected out of code. Memory can be saved by
removing Dead code and unwanted parameters.
Complexity can be simplified to major extent, if it would
be possible to divide Large Classes and Long Methods
into more in number but small, simplified and relevant
ones. Once these code smells are discovered, we can
refactor them to improve upon scalability, maintanability,
reusability, unserstandability as well as modifiability.

Future Work

“Change or Updation is the law of
nature.”

 ISSN 22773061

247 |P a g e M a y 1 5 , 2 0 1 3

Even though a positive level of Smell recognition has
been achieved in this paper, the recognition rate is
excellent as compared to other tools or previous works
of various researchers. As every software, has to
evolve, this tool also requires updating. So in future
some another algorithm instead of K-Mean clustering
can be used for getting better results. More number of
smells can be captured from the code by enhancing the
tool. Refactoring of some of these smells can be done at
run time to show actual performance being improved like
Extract and move methods in case of Long Method
Code smell or Sub class classes in case of Large
Classes. More over this project is compatible for
detecting code smells only in Object Oriented
languages, but it can be expanded to work upon
MATLAB, C or with code of web languages like PHP,
Java Script etc. It can be made more generic one.

References:

[1] Baghel Ranjan, Baghel Vimal, Ilyas Mohd. (2012),
Seminal description of Data Mining approaches with
reference to Rough Dataset Approaches, MIT
International Journal Of Computer science & Information
Technology, Vol. 2, No. 1, Jan 2012, P 25-3

[2] Francesa Arcelli Fontana, Pietro Braione, Marco
Zanoni (2011), Automatic Detection Of Bad Smells in
Code: An experimental assessment, Journal Of Object
Technology, Published at AITO P 1-38.

[3] Felienne Hermans, Martin Pinzger and Arie Van
Deursen (Report TUD-SERG-2011-030), Detecting
Code Smells in Spreadsheet Formulas, delft University
Of Technology, Software Engineering research Group
Technical Report Series P 111-15

[4] Isela Macia, alessandro Garcia, Arndt von Staa
(2010), Defining and Applying Detection Strategies For
Aspect Oriented Code Smells, Brazilian Symposium On
Software Engineering P 60-69.

[5] Isela Macia, alessandro Garcia, Arndt von Staa
(2010), An Exploratory Study Of Code Smells In
Evolving Aspect Oriented Systems, P 203-21

[6] Wong Sunny, kim Mirvung, Dalton Michael (2011),
Deteting Software Modularity Violations, ICSE ’11 May
2011, Waikiki Honolulu, HI, USA P 21-28.

[7] Whitehead Jim, Zimmerman Tom (2011), Clones:
What is that Smell, © Springer Science + Business
Media, LLC 2011 P 503-530.

