
Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 3, March-April, 2013, ISSN 2277-3061

765 | P a g e w w w . i j c t o n l i n e . c o m

Fault Tolerant Heterogeneous Limited Duplication Scheduling algorithm
for Decentralized Grid

Neha Agarwal, Piyush Chauhan and Nitin, Senior Member, IEEE
Jaypee University of Information Technology,

P.O. Waknaghat, Solan-173234,

Himachal Pradesh, India.

{lko.neha, shbichauhan, delnitin}@gmail.com
ABSTRACT

Fault tolerance is one of the most desirable property in decentralized grid computing systems, where computational

resources are geographically distributed. These resources collaborate in order to execute workflow applications as fast as

possible. In workflow applications, tasks are dependent on each other, so it becomes extremely vital that scheduling

techniques should also have some decentralized fault tolerant mechanism. In this paper, we have proposed a

decentralized fault tolerant mechanism which utilize the checkpoint concept; for Heterogeneous Limited Duplication (HLD)

algorithm. HLD is based on task duplication scheduling in heterogeneous environment. There are two fold benefits firstly; if

node failure occurs then rest of grid nodes sustain the execution of application. Secondly, less makespan of application is

obtained using checkpoint concept. Therefore, application scheduled over decentralized grid systems (which are known

for their unreliable behavior) will yield results fast utilizing algorithm proposed in this paper.

General Terms

Grid Computing, Fault Tolerance

Indexing terms

Grid computing; dependent task scheduling; task duplication strategy; decentralized fault tolerance.

Academic Discipline And Sub-Disciplines

Grid Computing

SUBJECT CLASSIFICATION

Computer Science and Engineering

COVERAGE

Task Scheduling Algorithm

TYPE (METHOD/APPROACH)

Experimental

INTRODUCTION

In current scenario, grid computing has gained a lot of attention for executing application in parallel fashion on
geographically distributed systems. Computational intensive applications consist of a lot of tasks. These tasks are
dependent on one another. Hence weighted directed acyclic graph (DAG) can be used to represent a Computational
intensive application which is shown in figure 1. [1]. In DAG the edges represent dependency among tasks and nodes
represent tasks of application. We schedule these tasks upon grid using various Task scheduling strategies. Task
scheduling strategies are classified into three categories for DAG; applications-list scheduling [3,4,5],cluster based
scheduling [7] and duplication based scheduling[1,2,6,8-11]. In list based scheduling, a task sequence is generated on the
basis of priority and according to that tasks are scheduled on grid nodes. In clustering scheduling, tasks which
communicate more with each other, are grouped and assigned to same cluster so that communication delay is reduced. In
duplication scheduling, the parent task can be duplicated on other grid node in its idle time slot if communication cost is
high. By doing that the makespan (total time of execution) of application is reduced. Although it is finest technique for
dependent task scheduling, it has a shortcoming that resources can be over consumed if heavy duplication is needed.
Beside that task duplication scheduling is best one for DAG application in which communication latencies among task is
high because by duplicating parent tasks makespan of application can be easily trimmed down.

Savina et al. in 2005 recommended the heterogeneous limited duplication (HLD) algorithm [2] that is based on the concept
of the SD algorithm [15] in heterogeneous environment and then estimated the effectiveness of limited duplication
approach while dealing with the strains of heterogeneity in a system. Dogan et al. in 2002 put forwarded a level sorting
(LDBS) algorithm [12] in which tasks in DAG are categorized into various precedence levels. The tasks which are at the

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 3, March-April, 2013, ISSN 2277-3061

766 | P a g e w w w . i j c t o n l i n e . c o m

same level having no data dependencies can execute in parallel. Tasks are scheduled level wise in LDBS starting from
the top level task. In 2010 Amit Agarwal et al. proposed EDS-G algorithm which is also based on task duplication and in
this algorithm the unnecessary duplicated tasks are removed if they are not affecting the makespan of application.

In heterogeneous environment resources may fail frequently and it will affect the execution of the application. So it is
desired that scheduling techniques should have some fault tolerance mechanism.Without any fault tolerance mechanism if
fault occurs in any grid node then we have to reschedule all tasks again and it will increase the schedule length
(completion time) of the application. A fault tolerant approach will be beneficial in order to potentially prevent a malicious
resource affecting the overall performance of the application. In this paper we are proposing a fault tolerance mechanism
on HLD algorithm (HLD-FT) by using the checkpoint strategy. According to that proposed algorithm if any fault occurs then
there is a server who will detect the failed grid node and it will handle the execution of application by resuming the
execution from the maintained checkpoints.

The paper is organized as follows: Section 2 presents a review of the related work in this field. In Section 3 task
scheduling problem is described in brief by using the DAG. Section 4 is presenting our proposed algorithm that is HLD-FT.
The simulation results and analysis part is described in section 5.Finally, Section 6 concludes the paper and presents
future work.

RELATED WORK

Dependent Task Scheduling Techniques

The dependent task scheduling algorithms can be classified into a variety of classes, such as list scheduling algorithms,
cluster algorithms, and duplication-based algorithms. The list scheduling algorithms afford a good quality of makespan and
their performance is as good as the other classes at a lower time complexity. Some examples are: dynamic critical-path
(DCP) [16], heterogeneous earliest finish time (HEFT) [17], critical path on a processor (CPOP) [17] and the longest
dynamic critical path (LDCP) [18]. Cluster algorithms unite tasks in a graph to an unrestricted number of clusters and tasks
in a cluster are scheduled on the same grid node. Some examples in this class are clustering for heterogeneous
processors (CHP) [19], clustering and scheduling system (CASS) [20], objective- flexible clustering algorithm (OFCA) [21].
The proposal of duplication-based algorithms is to schedule a task graph by mapping some tasks redundantly, which
lessens the interprocess communication overhead. There are various duplication-based algorithms, for example, selective
duplication (SD) [15], heterogeneous limited duplication (HLD) [2], heterogeneous critical parents with fast duplicator
(HCPFD) [14], and heterogeneous earliest finish with duplication (HEFD) [13], Economical Task Scheduling Algorithm for
Grid Computing System (EDSG) [1]. This class of algorithms can trim down the makespan effectively, but it is traded with
huge amount of energy consumption.

Grid Fault Management

A vast number of task scheduling algorithms for DAG applications have been put forwarded. But most of the existing
algorithms presume that the processors of the system are completely in safe hands, so they do not tolerate any
breakdown in the system components. In heterogeneous environments, workflow execution failures can transpire for
various causes such as network failure, overloaded resource circumstances, or non-availability of required software
components.

A variety of approaches are exploited for tolerating faults in grid, so grid fault management can be classified as :

Pro-active and Post-active management

In literature, the work of tolerating fault in grid nodes can be divided into pro-active and post-active strategy. In pro-active
strategy, before executing the task the failure consideration for grid is made and tasks are assigned to the grid nodes in
the hope that no fault will be occurred. Whereas, post-active strategy handles the task failures after it has occurred and no
failure consideration is made before the execution of tasks. However, in the dynamic systems only post-active mechanism
is applicable [22].

Push Model and. Pull Model

In order to identify occurrence of fault in any grid node two approaches can be used: the push or the pull model. In the
push model, grid components sporadically send heartbeat messages to a failure detector server declaring that they are
alive and no fault is occurred. In the absence of any heartbeat message from any grid node, the fault detector server
identifies that failure has occurred at that grid node.

 After the identification of failure it employs suitable measures dictated by the predefined fault tolerance mechanism. In
contrast, in the pull model the failure detector server sends some request messages (“Are you alive?” messages)
sporadically to grid nodes in order to check the fault.[23].If no reply message is received from any grid node by the failure
detector server then it can easily identify that at which grid node failure has occurred.

The checkpointing is one of the most popular techniques to provide fault-tolerance on unpredictable systems. It is a trace
of the snap of the entire system state in order to reschedule the application if some fault is occurred at any grid node. The
checkpoint can be maintained on temporary as well as stable storage. However, the effectiveness of the mechanism is
strongly reliant on the span of the checkpointing interval. Frequent checkpointing may boost up the overhead, while lazy
checkpointing may go ahead to loss of significant computation.

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 3, March-April, 2013, ISSN 2277-3061

767 | P a g e w w w . i j c t o n l i n e . c o m

TASK SCHEDULING PROBLEM

In a grid computing system when a dependent task scheduling model is considered then it comprises 1) a target grid
computing system in which plentiful computing grid nodes are connected, and 2)A DAG which demonstrates the
dependency among different tasks and communication cost in communicating desired data among different tasks.

Grid Resource Model

A grid computing system can be represented by GR (GN, CE) where GN is the set of k capricious connected computing
grid nodes (1, 2, 3..... k) which are geographically distributed and together form grid system and CE is the set of
communication edges which unite grid nodes. As in grid computing system, grid nodes are heterogeneous and
geographically separated, so the execution time of tasks on different grid nodes will be different. In this grid resource
model some points are presumed which are as follows:

1) Execution of tasks on grid node are non preemptive.

2) When two tasks are scheduled on a similar grid node then communication overhead between these tasks will be
negligible.

3) There is a co-processor attached with each grid node which will deal with communication among the grid nodes so that
communication and computation both can be done in parallel fashion.

Table 1. Computation cost matrix [ccij] for dag in figure.1

Task

Computation Costs on different Grid nodes Mean Costs

gn0 gn1 gn2 gn3 𝒎𝒑𝒊

t0 1 1 2 1 1.25

t1 3 2 4 2 2.75

t2 5 6 3 4 4.5

t3 2 4 4 2 3.0

t4 4 8 7 8 6.75

t5 3 3 1 2 2.25

t6 5 5 5 5 5.0

t7 1 2 2 2 1.75

Grid Application Model

A grid computing system can be represented by a quadruple GM=(T, PR, [cc ij], [mi,k]) where T = {t0, t1, t2 -------tn-1} is a set
of n tasks, PR specifies the precedence relation ti R tj that is task ti must finish before tj can carry on its execution, [ccij] is a
n×n matrix of communication cost that gives amount of dataflow between task ti and tj for 0≤ i, j <n, and [mi,k] is a n×m
matrix of task’s execution time on different grid nodes for 0≤ i <n and 0≤k < m (Table 1). This grid computing system can
better be demonstrated by weighted directed acyclic graph(DAG) (Figure 1) where tasks are signified by vertices and

dependency among them is signified by edges, and weights along them represents mean computation cost mpi and

mean communication costs ccij , respectively.

mpi =
 mp i ,k

m
k =1

m
 1≤ i ≤n and 1≤k≤m (1)

ccij =
ccij

average data transfer rate over the links of grid
 (2)

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 3, March-April, 2013, ISSN 2277-3061

768 | P a g e w w w . i j c t o n l i n e . c o m

Fig 1: Weighted Directed Acyclic Graph (DAG) with Precedence Constraints

PROPOSED ALGORITHM

As we have discussed above that in heterogeneous environment fault tolerant mechanism is necessary, so here we are
proposing a fault tolerance mechanism along with HLD algorithm that is HLD-FT to handle the execution of any workflow
application if fault occurs. In dependent task scheduling HLD algorithm is the finest one so we are incorporating fault
tolerance mechanism in that scheduling. According to our proposed algorithm if no failure occurs at any grid node then the
normal execution of HLD algorithm will be going on but in presence of fault FT(GN, ø) algorithm will be called to run fault
tolerance mechanism.

Pseudo Code for HLD-FT Algorithm is shown in figure 2.Firstly the application will be originated at one grid node that will
be origin node and it will distribute the tasks on other grid nodes. In this we are assuming that our origin grid node is gn0
and it will distribute tasks on all grid nodes GN. In the normal execution of HLD algorithm firstly priority sequence of the
tasks ø is to be constructed which is based on their levels. We will use following equation to generate it:

psi = mpi + max psj + ccij ∀tj ∈ successor(ti) (3)

Here in equation 3 successor (ti) is the set of immediate child nodes of task ti in the DAG. After constructing the task
sequence based on priority (i.e. ø), first unscheduled task from the sequence will be picked up. Now we will find out the
finishing time FNTik of task ti on different grid nodes GN. At the grid node gnk on which finishing time is minimum we will
schedule that task ti. A task on a grid node can only execute when that grid node have all required data of all its immediate
parents. The parent of task ti whose data received last of all at the grid node is termed as the most important immediate
parent (MIIP).

DA ti , gnk = maxtj∈ipr (ti)
{ min⁡{FNTjk , FNTjk′ + ccji } (4)

In the above equation ipr (ti) is a set of all immediate parent nodes of task ti in the DAG. To calculate the earliest finishing
time (FNT) of the task firstly we should know that at which time the task can start its execution on that grid node. So
starting time of the task is totally dependent on data arrival from its MIIPs. There are two methods to find out the data of
the set of immediate parents (MIPi) which is needed for that execution of task: 1) Duplicating the immediate parent MIPi in
the suitable idle time slot IISk on that grid node gnk, 2) By communicating to the grid node where that parent MIPi is
scheduled for required data. If communication cost is high between the tasks then we adopt first method which is
duplicating task otherwise second one. So starting time STTik of ti on grid node gnk can be figured out by following
equation

STTik=max {DAT (MIPi, gnk), min {rk
R , IISk}} (5)

In this equation IISk is the start time of first idle slot at which MIPi can be executed on the grid node gnk. After having the
start time of task ti on the grid node gnk , finishing time of task FNTik can be figured out by using following equation:

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 3, March-April, 2013, ISSN 2277-3061

769 | P a g e w w w . i j c t o n l i n e . c o m

FNTik = STTik +mpik (6)

Here mpik is the execution time of task ti on grid node gnk. After having the finishing time of task ti on all grid nodes GN,
determine the minimum finishing time. The grid node gnk at which the finishing time FNTik of task ti is minimum the task will
be scheduled to that grid node. In the presence of any fault on grid node proposed algorithm will call FT(GN,ø) fault
tolerance mechanism. In this mechanism there is a failure detector sever (FD) which works on push method to detect the
failure in grid node. A heartbeat message (h) is periodically sent by all the grid nodes GN to FD. If from any grid node gnf
reply message is not arrived at FD then it comes to know that at grid node gnf fault is occurred. In this we are assuming
that FD will be that grid node on which application will be originated. As in this the origin grid node is gn0 so it will work as
fault detector server as shown in figure 3. If this origin grid node gn0 fails then we don’t need to go further as origin grid
node has failed.

Fig 3: Origin task working as fault detector server

In addition to sending heartbeat message(h),all grid nodes GN will also tell the FD that which task is scheduled on that and
by using this information FD will maintain checkpoints. The main motive of maintaining checkpoints is that if any fault is
occurred at any grid node then there is no need to reschedule all the tasks.

Checkpoint will tell that from which task tf the execution of the application can be resumed. So now from the task t f in
sequence ø the task will be rescheduled and earliest finishing time of task is calculated on grid nodes GN except on

gnf(GN-gnf). The grid node gnk at which the finishing time FNTik of task ti is minimum the task will be scheduled to that

grid node.

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 3, March-April, 2013, ISSN 2277-3061

770 | P a g e w w w . i j c t o n l i n e . c o m

Fig 2: Pseudo code for HLD-FT

 the task tf which we get from step 2;

HLD-FT

Begin

Step 1: Generate task sequence øbased on priority;
Step 2: if (no fault occurs in grid nodes)
 {
 Do
 Step 2a: 𝑡𝑖 ← first unscheduled task in ø ;
 Step 2b: for (all gnk in GN)
 Call Cal_EFT (ti, gnk) and record the FNTi, k;
 Step 2c: Find out gnk on which FNTi, k is minimized
 Step 2d: Schedule ti on grid node gnk at which FNTi,k is minimized
 while (there exists an unscheduled task in ø)

 }
else
Call FT(GN,ø) for running fault tolerance mechanism
End

Cal_EFT (ti, gnk)

Begin

Repeat

 {
Step s1: STTi ,k ← Find start time of ti on gnk

Step s2: FNTi,k ← STTi ,k + mi,k

Step s3: MIPi ← Find MIIP of tifor gnk
Step s4: if (MIPi does not exist or is already scheduled on gnk)

 Return FNTi, k;
else if (suitable slot exists for MIPi on gnk)

 { FNTi,k ← Find the finish time of MIPi = ti say on gnk

if (FNTj, k is less than STTi, k)

 Duplicate MIPi on gnk; // duplication successful, repeat the loop for next MIIP.
else Return FNTi, k

 }
elseReturn FNTi, k;

}
End

FT(GN,ø)

Begin

Step 1: Failure detector server will detect the grid node gnf on which fault occurs.
Step 2: Server will find out the task tf from the maintained checkpoints from which the task will be rescheduled now.
Step 3:Do

 Step 3a: 𝑡𝑎𝑖 ← Start unscheduled task in φ from

 Step 3b: for (all gnk in (GN-gnf))

 Call Cal_EFT (ti, gnk) and record the FNTi, k;
 Step 3c: Find out gnk on which FNTi, k is minimized
 Step 3d: Schedule ti on grid node gnk at which FTTi,k is minimized
while(there exists an unscheduled task in 𝜑)
End

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 3, March-April, 2013, ISSN 2277-3061

771 | P a g e w w w . i j c t o n l i n e . c o m

RESULTS AND ANALYSIS

We applied HLD-FT algorithm for the DAG as shown in figure 1 on four grid nodes. We are referring table 1 for
communication cost matrix. It is visible in figure 4 that, if in HLD there is no fault tolerance mechanism, then after the grid
node failure we have to reschedule all the tasks on non faulty grid nodes. We have assumed that grid node 2 fails after
executing task t1. Here scheduling is non preemptive so before the execution of other tasks we can’t do rescheduling.
Note that ti(D) is representing the duplication of that task. Figure 5 is showing what happens when we apply our proposed
algorithm HLD-FT for the same DAG (as shown in figure 1).

 In HLD-FT fault detector server will come to know that grid node 2 has failed and it will resume the execution of
application on other grid nodes. It will reschedule the tasks from checkpoint (t1) in task sequence øon grid nodes which are

not faulty. Waiting time for individual tasks of application also decreases when we apply HLD-FT as shown in figure 6.
Figure 7 is showing the comparison between the makespan if we apply HLD and our proposed algorithm HLD-FT. In HLD-
FT makespan is less as compared to HLD when grid node failure occurs.

Fig 4: Detailed time wise (in seconds) schedule for all tasks of application using HLD algorithm.

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 3, March-April, 2013, ISSN 2277-3061

772 | P a g e w w w . i j c t o n l i n e . c o m

Fig 5: Detailed time wise (in seconds) schedule for all tasks of application using HLD-FT algorithm.

Fig 6: Waiting time for individual tasks of application when we schedule using HLD and HLD-FT algorithms

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 3, March-April, 2013, ISSN 2277-3061

773 | P a g e w w w . i j c t o n l i n e . c o m

Fig 7: Makespan comparison between HLD and HLD-FT.

CONCLUSION AND FUTURE WORK

In all static dependent task scheduling strategies, task duplication is finest one to shrink the makespan of application.
However, existing task duplication based scheduling algorithms are short of fault tolerant mechanism to overcome the
unreliable nature of decentralized grid. Hence, we have proposed HLD-FT algorithm in which failure detector server
detects the failure at grid node by utilizing push model and reschedule tasks through maintained checkpoint. Proposed
fault tolerance mechanism is very effective in handling grid node failure. Results show that in case of node failure, HLD-FT
gives minimum makespan as compared to HLD algorithm. In future, we want to add real time constraints in HLD-FT
algorithm.

REFERENCES

[1] Agarwal,A., and Kumar,P. 2010. Economical Task Scheduling Algorithm for Grid Computing System. Global Journal
of Computer Science and Technology, Vol. 10, 48-53.

[2] Bansal, S., Kumar, P., and Singh, K. 2005. Dealing with heterogeneity through limited duplication for scheduling
precedence constrained task graphs. Journal of Parallel and Distributed Computing, Vol. 65, 479-491.

[3] Vincent B.B., and Yves, R. 2002. The Iso-level Scheduling Heuristic for Heterogeneous Processors. Euromicro
workshop on parallel, distributed and network based processing, 335-342.

[4] Topcuoglu, H., Hariri, S., and Wu,M.Y. 2002. Performance-Effective and Low-Complexity Task Scheduling for
Heterogeneous Computing. IEEE Trans. on Parallel and Distributed System, Vol. 13(3), 260- 274.

[5] Hagras, T., and Janecek, J. 2003. A High Performance, Low Complexity Algorithm for Compile-Time Job Scheduling
in Homogeneous Computing Environments. International Conference on Parallel Processing Workshops, 149-155.

[6] Sharma, R., and Nitin. 2012. Optimal Method for Migration of Tasks with Duplication. 14th International Conference
on Computer Modelling and Simulation, 510-515.

[7] Sharma, R., and Nitin. 2011. Duplication with task assignment in mesh distributed system. World Congress on
Information and Communication Technologies (WICT), 672-676.

[8] Lai, K.C., and Yang, C.T. 2008. A Dominant Predecessor Duplication Scheduling Algorithm for Heterogeneous
Systems. Journal of Supercomputing,Vol. 44(2), 126-145.

[9] Ernemann, C., Hamscher, V., and Yahyapour,R.2002. Economic scheduling in grid computing. Workshop on Job
Scheduling Strategies for Parallel Processing,Lecture Notes in Computer Science, Springer Vol. 2537, 128-152.

[10] Ahmed, I., and Kwok Y.K. 1998. On Exploiting Task Duplication in Parallel Program Scheduling”, IEEE Trans. on
Parallel and Distributed Systems, Vol. 9(9), 872-892.

[11] Hwang, S. and Kesselman, C.2003. Grid Workflow: A Flexible Failure Handling Framework for the Grid. In 12th IEEE
International Symposium on High Performance Distributed Computing (HPDC’03), Seattle, Washington, USA.

[12] Dogan, A., and Ozguner, F. 2002. LDBS: A Duplication Based Scheduling Algorithm for Heterogeneous Computing
Systems. International Conference on Parallel Processing, 352-359.

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 3, March-April, 2013, ISSN 2277-3061

774 | P a g e w w w . i j c t o n l i n e . c o m

[13] X. Tang, X., Li, K., Liao, G., and Li, R.2010. List scheduling with duplication for heterogeneous computing systems.
Journal of Parallel and Distributed Computing,Vol. 70(4), 323-329.

[14] Hagras, T. and brevecek, J.J. 2005. A high performance, low complexity algorithm for compile-time task scheduling in
heterogeneous systems. Parallel Computing,Vol. 31(7), 653-670.

[15] S. Bansal, S., Kumar, P., and Singh, K.2003. An improved duplication strategy for scheduling precedence constrained
graphs in multiprocessor systems. IEEE Transactions on Parallel and Distributed Systems, Vol. 14(6), 533-544.

[16] Kwok, Y.-K.and Ahmad, I. 1996. Dynamic critical-path scheduling: an effective technique for allocating task graphs to
multiprocessors. IEEE Transactions on Parallel and Distributed Systems, Vol. 7(5), 506-521.

[17] Topcuoglu, H., Hariri, S., and Wu,M.-Y.2002. Performanceeffective and low-complexity task scheduling for
heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems, Vol. 13(3), 260-274.

[18] Daoud, M.I. and Kharma, N.2008. A high performance algorithm for static task scheduling in heterogeneous
distributed computing systems. Journal of Parallel and Distributed Computing, Vol. 68(4), 399-409.

[19] Boeres, C., Filho, J., and Rebello,V. 2004. A cluster-based strategy for scheduling task on heterogeneous processors.
In 16th Symposium on Computer Architecture and High Performance Computing, (SBAC-PAD 2004),214-221.

[20] Liou J., and Palis, M.1996. An efficient task clustering heuristic for scheduling dags on multiprocessors. In
Proceedings of Parallel and Distributed Processing Symposium,152-156.

[21] Fangfa, F., Yuxin, B., Xinaan, H., Jinxiang, W., Minyan, Y., and Jia, Z.2010. An objective-flexible clustering algorithm
for task mapping and scheduling on clusterbased noc. In 2010 10th Russian-Chinese Symposium on Laser Physics
and Laser Technologies (RCSLPLT) and 2010 Academic Symposium on Optoelectronics Technology (ASOT), 369-
373.

[22] Medeiros, R., Cirne, W., Brasileiro, F., and Sauve, J. 2003.Faults in grids: why are they so bad and what can be
done about it? In proceedings of the 4th international workshop, 18-24.

[23] Li, Y., and Lan, Z. 2006. Exploit failure prediction for adaptive fault tolerance in cluster. In Proceedings of the sixth
IEEE International symposium on cluster computing and the grid, Vol 1, 531-538.

[24] Chauhan P., and Nitin 2012. Decentralized Computation and Communication Intensive Task Scheduling Algorithm for
P2P Grid. In Proceedings of 14th International Conference on Computer Modelling and Simulation (UKSim), 516-521.

[25] Chauhan, P., and Nitin 2012. Resource Based Optimized Decentralized Grid Scheduling Algorithm. Advances in
Computer Science, Engineering & Applications Advances in Intelligent and Soft Computing, Volume 167, pp. 1051-
1060.

[26] Agarwal, N., Gupta, C., Khare, A. 2012. Task scheduling through limited duplication with processor utilization in grid
computing system. In Proceedings of 2nd IEEE International Conference on Parallel Distributed and Grid Computing
(PDGC), 921-926.

Author’ biography with Photo

Neha Agarwal has done her B.Tech. in Computer Science and Engineering and currently
pursuing M.Tech. in Computer Science and Engineering from Jaypee University of Information
Technology, Waknaghat, Solan (H.P, India).

Piyush Chauhan has done his B.Tech. in Information Technology and M.Tech. in Computer

Science and Engineering. Currently he is pursuing Ph.D. in Computer Science and

Engineering from Jaypee University of Information Technology, Waknaghat, Solan (H.P, India).

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 3, March-April, 2013, ISSN 2277-3061

775 | P a g e w w w . i j c t o n l i n e . c o m

Dr.Nitin is Ex First Tier Bank Professor, University of Nebraska at Omaha, NE, USA. His
permanent affiliation is with Jaypee University of Information Technology (JUIT), Waknaghat,
Solan-173234, Himachal Pradesh, INDIA as a Associate Professor in the Department of
Computer Science & Engineering and Information & Communication Technology. He joined
Jaypee University of Information Technology in July 2003. He was born on October 06, 1978,
in New Delhi, INDIA.
In July 2001, he received the B.Engg. in Computer Science & Engineering [Hons.] and
M.Engg. in Software Engineering from Thapar Institute of Engineering and Technology,
Patiala, Punjab, INDIA in March 2003. In 2008, he received his Ph.D. in Computer Science &
Engineering from JUIT, INDIA. He has completed his Ph.D. course work from University of
Florida, Gainesville, FL, USA.
He is a IBM certified engineer. He is a Life Member of IAENG, Senior Member IACSIT and
Member of SIAM,IEEE and ACIS and has 125 research papers in peer reviewed International
Journals & Transactions, Book Chapters, Symposium, Conferences and Position. His research
interest includes Social Networks especially Computer Mediated Communications & Flaming,
Interconnection Networks & Architecture, Fault-tolerance & Reliability, Networks-on-Chip,
Systems-on-Chip, and Networks-in-Packages, Application of Stable Matching Problems,
Stochastic Communication and Sensor Networks. Currently he is working on Parallel
Simulation tools, BigSim using Charm++, NS-2 using TCL. He is referee for the Journal of
Parallel and Distributed Computing, Elsevier Sciences, Computer Communications, Elsevier
Sciences, Computers and Electrical Engineering, Elsevier Sciences, Mathematical and
Computer Modelling, Elsevier Sciences. WSEAS Transactions, The Journal of
Supercomputing, Springer and International Journal of System Science, Taylor & Francis.

