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ABSTRACT 

Dispersion is defined as - the phenomenon in an optical fiber whereby light photons arrive at a distant point  in the different 
phase then they entered the fiber. Dispersion causes signal distortion that ultimately limits the bandwidth and usable 
length of the fiber cable. Therefore dispersion compensation (management) becomes an essential part to study in optical 
communication for better transmission. In this paper we have reviewed the various techniques (schemes) that are used for 
dispersion compensation. 

General Terms 

Dispersion Compensation Schemes (techniques), Dispersion, Dispersion Compensation. 

Indexing terms 

Dispersion Compensation Schemes, Dispersion, High Speed Optical Communication System. 

INTRODUCTION 
Dispersion is defined as - the phenomenon in an optical fiber whereby light photons arrive at a distant point  in the different 

phase then they entered the fiber. Dispersion causes signal distortion that ultimately limits the bandwidth and usable 

length of the fiber cable. Dispersion compensation is used to avoid  the chromatic dispersion of optical element. This goal 

can be achieved by avoiding excessive temporal broadening of the pulse or the distortion of signals. Dispersion 

compensation is an important issue for fiber –optic links. Strong dispersive broadening of modulated signal can occur in 

cases with higher data rates. Without dispersion compensation, each signal would be broadened so much that it would 

strongly overlap with a number of neighboured symbols. Even for moderate broadening, significant inter-symbol 

interference can strongly distort the detected signal. Therefore, it is essential to compensate the dispersion before 

detecting the signal.  

 

DISPERSION COMPENSATION SCHEMES 

1) Precompensation Scheme:-To avoid the effect of dispersion this scheme modifies the characteristics of 

input pulses at the transmitter before they are sent into the fiber link. Precompensation techniques are:-            

a) Prechirp Technique.                       
b) Novel Coding Technique. 
 

a) Prechirp Technique:- It modifies the characteristics of input pulse before sending into the fiber link. If input pulse is 

Gaussian then by prechirping (chainging amplitude) the amplitude of this pulse is given by [1]-  
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                                                                                                   where C is the chirp parameter. 

A suitably chirped pulse ( 2 C<0) can propagate over longer distances before it broadens outside its allocated bit slot. 

Assuming pulse broadening factor is tolerable by 2  then the transmission distance is given by:- 

                                                             

2

2

1 2

1
D

C C
L L

C

 



 

                                                                                  where DL =

2

0

2

T


 is the dispersion length.  

If C=1 then L increases by 36%. And if C=1/ 2  then maximum improvement by a factor of 2 accurs. 
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Prechirp technique was used in 1980s with directly modulated semiconductors lasers [2]-[5]. These lasers have chirp 
parameter which is negative. Also chirp parameter is negative for standard fibers. Therefore condition for chirping is not 

satisfied (which is 2 C<0) [1]. The chirp induced during the direct modulation increases GVD induced pulse broadening 

and due to this transmission distances decreases. To increase the transmission distance without effecting the current 
pulse shape several technique were used in 1980s [3]-[5]. 
By using external modulator at the transmitter side for prechirping , then optical pulse are nearly chirp-free and prechirp 

technique in this case uses positive value of chirp parameter C.  So that condition  for chirping is satisfied ( 2 C<0). Many 

techniques used for this purpose [6]-[12]. 
 

b) Novel Coding Technique (FSK):-In novel coding technique, frequency shifted keying (FSK) format is used for 

transmission of signal. In it the FSK signal is generated  by switching the wavelength of laser between 1 and 0 bits by a 

constant amount  .The 1 and 0 are transmitted with different carrier wavelengths. Two wavelengths travel at different 

speeds inside the fiber. The wavelength shift  determines the time delay between 1 and 0. The time delay  is given by- 

                                                                  T =  DL     

                                                                                       is chosen such that T =1/B. 

This scheme is known as dispersion-supported transmission. Because of fiber dispersion FSK signal is converted into the 
amplitude modulated signal .At the receiver side this signal is decoded using an electrical integrator with decision device 
[13]. 
If the system is properly designed then FSK technique is used for longer distance transmission with better performance 
[14]. 
The transmission distance can also be increased by using Duobinary Coding. Dispersive effects are reduced for smaller 

bandwidth signal. And  Duobinary Coding reduces the signal bandwidth by 50% [15]. Therefore it increases the 
transmission distance.  
Two successive bits in the digital bit stream summed to form a three level duobinary code at half bit rate. 
1+1=2;  0+0=0;  0+1=1;  1+0=1 
At the reciever side phase information is used to distinguish the two. By using duobinary coding in optical communication 
system instead of using binary coding then 10Gbps signal was transmitted over 30km to 40 km [16]. Also by duobinary 
coding with an external modulator (frequency chirp with C>0 ) then 10Gbps signal was transmitted over 160km of a 
standard fiber [16]. 
 

c) Nonlinear Prechirp Techniques:- In this technique transmitter output is amplified by using a semiconductor 

optical amplifier (SOA). SOA operates in gain saturation region. Due to gain saturation region time dependent variation 
takes place in carrier density, which chirps the amplified pulse. SOA not amplifies the input pulse but also chirp (chirp 

parameter C>0) it. Due to this chirp, the input pulse is compressed in the fiber with 2 <0. An input pulse of 40-ps is 

compressed to 23-ps and it can propagate over 18 km of standard fiber [17]. This technique is used for transmitting a 16-
Gb/s signal, obtained from a mode-locked external cavity semiconductor laser, over 70km of fiber [18]. This technique is 
used for simultaneous compensation of fiber loses and GVD if SOAs are used as in-line amplifiers [19]. A nonlinear 
medium is also used to prechirp the pulse by self phase modulation of pulse. 

SPM Induced Prechirping – It uses self phase modulation for chirping the pulse. In it transmitter output is passed 

through a fiber of suitable length before passing into the fiber link. The input signal at the fiber input is given by [1]- 
 

                                                  (0, ) ( ) exp[ ( )]mA t P t i L P t    (1)  

                                                                                        where P(t) is the power of pulse, mL is the length of nonlinear 

medium,   is the nonlinear parameter. 

In case of Gaussian pulse                
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Then equation (1) can be written as:- 
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                                                                     where C= 2 0mL P is the chirp parameter, C is positive and suitable for 

dispersion compensation. 
Transmission fiber itself is used for chirping the pulse because  >0 for silica fiber.  This technique was used in 1986 [20].  

2) Postcompensation Technique:- This technique is used to manage the GVD at the receiver side .It uses 

an electronic technique at the receiver side. It is an easy technique for dispersion compensation with the use of  
heterodyne receiver for signal detection. Heterodyne receiver first converts data (optical signal) into microwave signal, it 
preserves both amplitude and phase information. A microwave filter cancels the effects of GVD. This technique has a 
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great importance for dispersion compensation in coherent light wave system [21]. A 31.5cm long microstrip line is used for 
dispersion equalization [22]. By using this 8-Gbps signal was transmitted  over 188 km of standard fiber having dispersion 
of 18.5ps/km-nm. To avoid the GVD of light wave system using fiber length of 4900km having bit rate 2.5Gbps microstrip 
lines were used [23]. If the phase information of the optical signal is lost then it is difficult to avoid the effect of GVD in this 
technique. 
An optoelectronic equalization technique is also used to compensate the GVD which is based on transversal filter [24]. 

In this technique power splitter used at the receiver splits the received signal into several branches. Fiber optic delay line 
introduces delays in different branches. A variable- sensitivity photodetector converts the optical signal of each branch into 
photocurrent and the summed photocurrent is used by the decision circuit. The transmission distance of light wave system 
operating at 5Gbps is extended by a factor 3 by using this technique. 

3) Dispersion Compensating Fibers:-The precompensation and postcompensation scheme extends the 

transmission distance of dispersion limited system by a factor of 2 and these schemes are not suitable to avoid the GVD 
dispersion of long hall system [1].  To avoid these limitations a special kind of fiber is used, known as Dispersion 
Compensating Fiber (DCF). The dispersion compensating fiber uses an all-optical technique , fiber based solution to 
compensate the fiber GVD completely if the average optical power kept low enough that the non- linear effect insibe the 
optical fibers are negligible.  

Process of dispersion compensation by DCF- Let us take an example in which each optical pulse propagates 

through two fiber segment, the second segment is DCF. 
Optical power after the each fiber section is given by- 
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                                                                                  where L= 1 2L L  , 
2 j  is the GVD for the fiber segment of length 

jL (j=1,2). 

The pulse recover its original shape at the end of DCF if
2  phase term vanishes for DCF. Therefore condition for 

dispersion compensation is  

                                                                    21 1 22 2L L  =0  

                                                                Or 1 1 2 2D L D L =0       (2)  

The equation (2) shows that the DCF must have normal GVD at 1.55  m for 2D <0. Because 1D >0 for standard 

communication fiber. 
The length of DCF should satisfy the relation 
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2L  should be as small as possible. This is possible only when DCF has a large negative value of 2D .  

DCF module (6-8 km) with optical amplifiers spaced apart by 60-80 km is used to upgrade the old light wave system of 
standard fiber [1] .The DCF compensates GVD and amplifier removes the fiber loses. But this scheme has two problems. 
1)  insertion losses of a DCF module typically exceed 5 dB. 2) DCFs have small mode diameter therefore effective mode 

area is only 20
2m . DCF has large optical intensity at the given input power due to this nonlinear effects increase [25]. 

The problems of DCF is solved by using two mode fiber (V  2.5) such that higher-order is near cutoff. The loss of these 
fiber is same as of single-mode fiber but dispersion parameter D for higher order mode has large negative value [26]-[29]. 
Two –mode DCF requires a mode-conversion device. Mode-conversion device converts the energy from fundamental 
mode to higher-order mode. All -fiber devices are used used for mode -conversion. Mode conversion devices use a two-

mode fiber with a fiber grating. Fiber grating provides the coupling betweem two modes. Grating period 100 m    is 

chosen two match the index difference n  between two modes   

( / n   ). Figure below shows the two-mode DCF with two long period gratings. 
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                             Figure: Two-mode DCF design with two long period gratings. 

First grating transfers power to higher mode and second  mode transfers power back into fundamental mode. Measured 
dispersion characteristics of such a 2-km-long DCF shows that parameter  D has a value of -420ps/(km-nm) near 1550 
nm. This feature allow it to use for broadband dispersion compensation [29]. 

4) Optical Filters:- The limitations of DCFs is that in order to compensate the GVD over 50km of standard fiber it 

needs long length DCF (>5km). Due to this, link loss increases in long-haul applications. These limitations are removed by 
using optical filters.  
The pulse propagation in linear case is given by- 
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                                                                  where A is the pulse-envelope amplitude. 
Using fourier transform method the solution of the equation (3) is given by- 
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                                                                                   where (0, )A   is the fourier transform of (0, )A t . 

GVD affects the optical signal through the spectral phase of 
2

2exp( / 2)i z  . 

 If an optical filter has property that its transfer function cancels this phase then it will restore the signal. No optical filter 
has the property to compensate the GVD exactly (expect for an optical fiber). 
Optical signal after the filter if this filter is placed after a fiber length L is given by- 
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Expanding the phase of ( )H  in a Talyor series-  
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The constant phase 0 and time delay 1  are ignored because they do not effect the pulse shape.  The dispersion 

compensation takes place when  2 2L    and 3 3L   . 

If ( ) 1H   and higher-order terms in the expansion are negligible then signal is restored perfectly. 

Dispersion management is shown in figure a) by optical filters. Filters compensate for GVD and also reduce amplified 
noise. 

 
                   Figure a) : Dispersion management in a long-haul fiber link using optical filters after each amplifier [1]. 

5) Fiber Bragg Gratings:-Fiber Bragg Grating acts as an optical filter because of a stop band in it.  Stop band is 

the frequency region in which most of the incident light reflected back [30]. Stop band is centered at the Bragg wavelength 

2B n   , where n  is the average mode index and  is the grating period. For1.55 m  Grating period is 

0.5 m  . A holographic technique is used for making Bragg gratings. Use of grating for dispersion compensation 

was proposed in 1980s [31] .But their use became practical after1990. 
 

a) Uniform period Gratings:-It is the type of grating in which refractive index varies along the length periodically as 

                                        ( ) cos(2 / )gn Z n n z A   

                                                                                where 
gn is the index modulation depth 

410
. 

Coupled-mode equations are used to analyze the Bragg Grating and written as [52] 
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                                                                               where 
fA and bA  are the spectral amplitude of two waves and  
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Transfer function of the grating is [53] given as 
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                                                                 where 
2 2 2q     is the dispersion relation,

gL is the grating length. 

Grating –induced Dispersion:- Dispersion of the grating is related to the frequency dependence of the phase 

of ( )H  .Grating induced dispersion exists mostly outside the stop band. In this region (   ) and the dispersion 

parameters are- 
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                                                                                            where g is the group velocity of the pulse with carrier 

frequency 0 02 /c   . 

Grating dispersion become normal (
2 0g  ) on “red” side of the stop band (used for dispersion compensation). A single 

2-cm long grating is used to compensate the GVD dispersion of 100-km fiber.  

Apodization technique:- This technique is used to improve the grating response in which the index change gn is 

made non uniform across the grating, resulting in a z- dependent  . An ultraviolet Gaussian beam is used to write the 
apodization grating holographically [30]. The reflectivity spectrum of an apodized is 7.5-cm long grating.  
In some grating  varies linearly over the length. A 11-cm long grating is used to compensate the GVD acquired by a 
10Gbps signal transmitted over 100 km of standard fiber [32].   
 

 b) Chirped Fiber Gratings:- These gratings have broad stop band and are used for dispersion compensation [33]. 

The optical period n of chirped grating is non -uniform over its length [30]. Bragg wavelength 2B n    also varies 

along grating length, therefore different frequency component of an optical pulse are reflected at different points. 
Operation of chirped fiber grating fiber is shown in figure- 

 
The low-frequency components of a pulse are delayed more because of increasing optical period. It provides anomalous 

GVD. The same grating provides normal GVD if it is flipped. Thus the optical period n  of the grating should decrease 

for it to provide normal GVD. Dispersion magnitude is determined by the rate at which  n  decreases. 
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Calculation of dispersion parameter- Dispersion parameter 
gD of a chirped grating of length

gL is given by using 

relation- 

                                                 
R g gT D L     ; where RT is the round –trip time and  is the difference in the Bragg 

wavelengths of the ends of grating. 

Also 
2 g

R

nL
T

c
 therefore grating dispersion is given by 
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Limitation of chirped fiber bragg grating- The main limitation of the chirped fiber bragg gratings is that they work 

as a reflection filter. It uses 3dB fiber coupler to separate the reflected signal from the incident one. The use of 3-dB fiber 
coupler increases the insertion losses. These insertion losses are reduced by using optical circulator. 
Low insertion losses are achieved by combining two or more fiber gratings as a transmission filter [34]. 
 

C) Chirped Mode Coupler:- A chirped mode fiber coupler is an all-fiber and it is based on the concept of chirped 

distributed reasonant coupling [35]. Figure below shows the operation of two devices. 

 
               Figure:  Dispersion compensation by Chirped dual-mode coupler. 

                            
                      Figure: Dispersion compensation by tapered dual-core fiber. 

The chirp grating couples the two spatial modes of dual fiber core. The grating transfers the signal from the fundamental 
mode to a higher-order mode, but different frequency components travel different length before being transferred. If 
grating period increases along the coupler length the coupler can compensate for the fiber GVD. The signal remains 
propagating in the forward direction but ends up with in a higher-order mode of the coupler. The signal is reconverted back 
into the fundamental mode by uniform-grating convertor. 
If the two cores are close then transfer of energy from one core to another  takes place because of evanescent-wave 
coupling between the modes. When the spacing between the core is linearly tapered (close), such transfer takes place at 
different points along the fiber, according to frequency of propagating signal. Thus, a dual core fiber with the linearly 
tapered core spacing can compensate for fiber GVD. 

6) Optical Phase Conjuction:- OPC is a nonlinear technique. It was implemented in 1993. 
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                                                                          Figure b). 

It uses four-wave mixing to generate phase conjugated idle field in the middle of the fiber link. This is shown in above 
figure b). 
The pulse propagation equation is given by- 
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                                                                                             where A is the pulse-envelope amplitude. 
Take the complex conjugate of above equation (4) we get 
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Comparison of above two equation shows that 2 is reversed for the phase-conjugated field. Therefore pulse shape is 

restored at the fiber end. The 3 term does not change sign on phase conjugation therefore OPC cannot compensate for 

the third-order dispersion. OPC compensates the even order dispersion terms and leaves the odd order dispersion term. 
Pulse spectrum just before the phase conjugator is given by 

                                                                2
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And pulse spectrum after the phase conjugation is 
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Spectrum inversion takes place because 2C P    . 

Optical field at the end of the fiber link is given by 
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 Put this value in equation (5), we get          

                                               
*( , ) (0, )A L t A t . 

 Thus pulse shape is restored to its input form irrespective of how much pulse broadened in the first section. 
This technique is also known as midspan spectral inversion. 
 

a) Self-Phase Modulation (SPM) Compensation:- The OPC technique is different from all other dispersion 

compensation techniques. It can compensate both GVD and SPM simultaneously. This feature was noted in 1980s [36]. 
 Pulse propagation in a lossy fiber is given by- 
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           (6)  

Where 3  term is neglected,  is related to the fiber losses. When  =0, 
*A  satisfies the same equation when we take 

the complex conjugate of equation (6) and change z to –z. Therefore midspan OPC can compensate for  SPM and GVD 
simultaneously. Fiber losses destroy this important property of midspan OPC. The main reason for this is: SPM –induced 
phase shift is power dependent. Due to this much larger phase shifts are induced in the first-half of the link than the 
second half and OPC cannot compensate for the nonlinear effects. 

                                                       Using, ( , ) ( , )exp( / 2)A z t B z t z         (7)    
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The pulse propagation is given by- 
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                                                                                                where ( ) exp( )z B z    . 

By taking the complex conjugate of equation (4) then perfect SPM compensation accurs only if ( ) ( )z L z   . This 

condition is not satisfied for 0  . 

Perfect compensation of both GVD and SPM is obtained by using Dispersion-decreasing fibers. In such fibers 2  

decreases along fiber length. Assuming that 2  in equation (8) is a function of z. With transformation   

 

0

( )

z

z dz        (9)  

where 2( ) ( ) / ( )b z    . Both GVD and SPM are compensated if ( ) ( )Lb b    , where L is the value of  at 

z=L. This condition is satisfied when the dispersion decreases in the same way as ( )z therefore 2 ( )  = ( )   and 

( ) 1b   . 

 ( )Z  decrease exponentially as exp(- z) due to fiber losses, both GVD and SPM can be compensated exactly in 

dispersion-decreasing fiber whose GVD decreases as exp(- z). 

If  FBG dispersion compensation  technique is compared with Optical Phase Conjugation dispersion compensation 
technique then Optical Phase Conjugation is best technique to reduce the dispersion in optical fiber communication [54]. 
 

7) Dispersion Compensation For High-Capacity System:- WDM light wave system uses a large 

number of channels to handle the capacity of more than 1 Tb/s. Therefore it becomes necessary to compensate the 
dispersion of each channel for better transmission.  
 

a) Broadband Dispersion compensation:- A WDM signals occupy  bandwidth of 30nm. Because of wavelength 

dependence of 2  or the dispersion parameter D, the dispersion will be different for each channel. Various types of 

method are used for dispersion compensation in WDM systems.1) by using single broadband fiber grating or multiple fiber 
grating with their stop bands tuned to individual channels. 2) use an optical filter with periodic transmission peaks. 

Dispersion compensation by fiber grating [29]- A chirp fiber grating can have a stop band of 10nm. These 

gratings are used in WDM system if the number of channels are small (<10). A 6-nm-bandwidth chirped grating was used 
for four- channel WDM systems (each channel operating at 40Gb/s) [37]. If the WDM–signal bandwidth is much larger 
then a cascaded chirped grating is used in series for dispersion compensation. Each channel reflects one channel and 
compensates its dispersion [38]-[42]. 
Advantage of this technique is that the grating is tailored to match the GVD of each channel. Cascaded grating scheme for 
four-channel WDM system is shown in figure below. 
 

 
 
                        Figure: Cascaded Grating used for dispersion compensation in WDM system [41].  

 
Four grating compensates the GVD of all the channels and two optical amplifiers handles the losses. The use of multiple 
grating becomes difficult when number of channel increases and signal bandwidth becomes more than 30nm. 
This problem is solved by using FP filter. This filter compensates the GVD of all the channels if all the channels are 

spaced apart equally and free spectral range of the filter is matched to the channel spacing. But FP filters are not be 
designed with large amount of dispersion. This problem is solved by using Sampled Fiber Grating [43]-[45]. This grating 

has multiple stop band and is easy to fabricate. These fibers are used for simultaneous compensation of fiber dispersion 
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over 240 km for two 10-Gb/s channels [43]. But if the number of channels increase then it becomes more difficult to 
compensate the GVD of all channel simultaneously. This problem is solved by using negative-slope dispersion 
compensating fibers. These fibers are used for dispersion management in highly capacity WDM system with large 

number of channels. A broadband DCFs was  used to transmit a 1-Tb/s WDM signal ( total 101 channels and and each 
operating at 10Gb/s) over 9000 km [46].  The highest capacity of 11-Tb/s WDM signal ( total 273 channels and and each 
operating at 40Gb/s) is transmitted by using reverse-dispersion fibers [47]. 
 

b) Tunable Dispersion Compensation:- It is very difficult to achieve the full GVD compensation for all channels in 

a WDM system. A small amount of residual dispersion always remains there. Postcompensation technique is used to 
avoid the residual dispersion of each channel. But this technique cannot be used for commercial WDM system because of 
following reasons-1) Precise amount of residual dispersion is not known in practice (dispersion variations takes place 

along the fiber length). 
2) Dyanamic variations can accur because of temperature fluctuations. 

Therefore tunable dispersion compensation technique is used. 

Tunable Dispersion Compensation By Stretched Fiber Grating:- In it dispersion is tuned by stretching a 

nonlinearly chirped grating. Grating is placed on a mechanical stretcher and a piezoelectric transducer is used to stretch it 
[48]. In a chirped grating group delay is given by 

                                                             

0

2
( )

gL

g n z dz
c

    

Stress-induced changes in the mode index n  change the local Bragg wavelength as                                                                       

 ( ) ( ) ( )B z n z z    

 

Slope of group delay at a given wavelength does not change when n  is a linear function of z. 

Grating dispersion is given by 
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                                                            where 
g  is the group delay and  

g
L  is the grating length. 

Value of 
gD  at any wavelength can be changed by changing the mode index  n  by stretching.  

Temperature Tuning :- In it grating is made with a linear chirp and a temperature gradient is used to produce the 

tunable dispersion. Distributed heating of the Bragg grating requires a thin film heater deposited on the outer surface of 
the fiber grating.           
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A segment thin-film heater provides better temperature control. It contains 32 chromium heating elements formed on a 

silica substrate. It needs a few volts to change the dispersion slope from +100 to -300 ps/n
2m .   

 

c) Higher-Order Dispersion Management :- When bit rate of single channel increases from 40 Gb/s then third 

and higher- order dispersive effects increase and effects the optical signal. The third order dispersion is compensated by 

using DCFs. DCFs fibers have negative dispersion slope therefore 2  and 3  are of opposite signs in comparison with 

standard fibers. Consider a fiber link containing two different fibers of length  1L  and 2L . The condition for third- order 

dispersion compensation becomes         

                                                      31 1 32 2 0L L     

Cascaded MZ ferometric filters is used for higher order dispersion management because of programmable nature of 

such filter. These filters have dispersion slope -15.8 ps/n
2m  over 170-GHz bandwidth [49] and they are used to 

compensate  third- order dispersion over 300 km of a dispersion shifted fiber with 3   0.05ps/(km-n
2m ) at operating 

wavelength.  

Figure below compares the pulse at the fiber output with and without 3  compensation when a 2.1-ps pulse is transmitted 

over 100 km.               

    
 The equalizing filter eliminates the oscillatory tail and reduces pulse width to 2.8 ps. Residual increase in the pulse width 
takes place due to PMD. 

Cascaded Chirped Fiber Gratings – A nonlinearly chirped fiber grating is used to compensate the third –order 

dispersion [50]. Cascading of two chirped grating compensates 3  without affecting 2 .  

 
One of the chirped grating is flipped so that the combination provides no net dispersion. 
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d) PMD Compensation:- The use of dispersion management technique can eliminate the GVD –induced broadening 

but does not affect the PMD- induced broadening. Therefore it is necessary to compensate the PMD dispersion for better 
transmission. 

Need for PMD Compensation- 
Average pulse broadening for a link of length L is given by- 

                                                                    T PD L   

                                                                                  where PD is the PMD parameter. 

If 0.1TB  , then the system length and bit rate should satisfy the condition  
22 10 PB L D


 .   

In case of old fiber links, 
2 4 210 ( / )B L Gb s km  if 1 /PD ps km

  
is used as representative value. Such fibers 

require PMD compensation at B= 10 Gb/s when links length exceeds even 100km. For modern fibers 

0.1 /PD ps km .As a result,
2B L exceeds 

6 210 ( / )Gb s km . 

PMD compensation is not necessary at 10 Gb/s but it becomes necessary at 40 Gb/s if link length exceeds 600 km. 

PMD Compensation Technique- 
 

a) Optical PMD compensator:- In it PMD–distorted signal is separated into two components along PSPs, which are 

delayed by different amounts being combined. 

 
 Delay is adjustable in one branch through a variable delay line. A feedback loop is used to adjust polarization controller in 

response to change in the fiber PSPs. The success of this technique is depend upon L/ PMDL .  

PMDL =

2

0

P

T

D

 
 
 

is the PMD length for pulses of width 0T [51]. 

 

b) Electrical PMD compensators- Electrical PMD equalizer corrects for the PMD effects within the receiver using a 

transversal filter. 

 
This filter splits the electrical signal x(t) into a number of branches using multiple delay lines to form output as  

                                                      y(t)= 
1

0
( )

N

mm
c x t m




  where N is the total number of taps,  is the delay time, 

mC is the tap weight for mth tap. Tap weight is adjusted in a dynamic fashion to improve the system performance [52]. 

Conclusion:- In this paper we have reviewed the various dispersion compensation techniques (schemes). The 

dispersion compensating fiber (DCF) removes the limitations of precompensation and postcompensation schemes. The 
limitations of DCF  is removed by optical filter. Fiber Bragg Grating works as an optical filter. Fiber Bragg Grating has also 
certain limitations. And when FBG technique is compared with Optical Phase Conjugation technique then  Optical Phase 
Conjugation techniques  becomes the best technique to reduce the dispersion in optical communication system[54]. 
Therefore overall Optical Phase Conjugation technique is the best technique to reduce the dispersion in optical 
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communication system. In this paper case we also reviewed the dispersion management for high-capacity system. 

Various techniques are used to avoid the dispersion of high-capacity system according to requirement. 
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