
Council for Innovative Research International Journal of Computers & Technology

www.cirworld.com Volume 4 No. 2, March-April, 2013, ISSN 2277-3061

648 | P a g e w w w . i j c t o n l i n e . c o m

Analysing The Quality Attributes of AOP using CYVIS Tool

hinam Garg
Mtech Student

CSE
RIMT-IET

Mandi Gobindgarh, India

E-mail: shinamgarg@yahoo.co.in

Mohit Garg
Assistant Professor

CSE
RIMT-IET

Mandi Gobindgarh, India

E-mail: mohit_nabha@yahoo.com

 Abstract— The aim of thesis is to provide the

difference between AOP and OOP in AspectJ by using

CYVIS tool. It gives a way to separate the code from

essential crosscutting concerns, such as logging and

security, from Java programs core application logic

cleanly by making code more readable, less error-prone,

and easier to maintain. It also solves the problem of code

scattering and code tangling by providing the aspect to

crosscutting concerns (concerns which are repeated again

and again). In this paper, aspect oriented programming is

shown better than OOP by considering cyclomatic

complexity and overcoming all those problems which

were occurring in OOP. Two examples such as banking

system and conversion of int and float values to

hexadecimal are illustrated and shows the difference of

quality attributes in AOP than OOP.

Keywords- Aspect Oriented Programming(AOP),

Object Oriented Programming(OOP), Join points, Point

cut descriptors,Aspect J.

 INTRODUCTION

 Aspect Oriented Programming is a new

programming paradigm which increases the

modularization of the program by defining cross cutting

concerns in a separate module. It provides way to separate

the code for essential crosscutting concerns, such as

logging and security, from your Java programs core

application logic cleanly. It can make user code more

readable, less error-prone, and easier to maintain. When

software starts to develop then its problem can be divided

in two types:-

 common concern

 Cross cutting concern.

(a) Common concern: It refers to main goals for which

program are going to develop.

(b) Crosscutting Concern: It is a problem that is

scattered over the multiple modules in a program

and makes the code tangled, difficult to change and

redundant. These are the problems that are not

important from user point of view but user has to

deal with them during development process and they

cut across multiple modules of the program.

The rest of the paper is organized as follows.

Section II introduces the concept of crosscutting

concerns. Section III gives the overview of different

heterogeneous composition of AOP languages. In

section IV, types of metrics in AOP are presented.

Section V presents the proposed work. Experimental

results are described in section VI. Finally the

conclusion is provided in section VII.

CROSSCUTTING CONCERNS

Example of Banking System to explain CCN’s:- In

banking system our main goal is money transaction,

balance enquiry etc. But there are other concerns we

have to keep in mind like security, authentication,

performance etc. Suppose to make a balance enquiry we

have an enquiry module, but user has to authenticate

himself before making an enquiry. In same way before

withdrawing or transferring money user has to

authenticate. In the program there are separate modules

for every task but authentication is a mandatory process

in all these modules. Authentication code is repeated

again and again in our modules. So authentication is a

cross cutting concern. To remove the problem of

crosscutting concern AOP introduces a new modular unit

called aspect which encapsulates the functionality of

crosscutting behaviour.

DIFFERENT HETEROGENEOUS COMPOSITION OF AOP

LANGUAGES

Three different heterogeneous compositions of AOP

languages are AspectJ, CaesarJ and Hyper-J.

(a) Aspect J: - AspectJ is a general purpose aspect

oriented extension for java. It is an open –source project

initiated by PARC and now led by IBM. It can be

downloaded freely. It was built to provide support of AOP

in java programs. It is an extension of java with several

complementary mechanisms, namely Join Points, Pointcut

Descriptors (PCDs), advices, introductions and aspects.

 Join Points: JPs represent well-defined points in a

program’s execution. Typical join points in AspectJ

include method calls, access to class members and

the execution of exception handler blocks.

 PCD is a language construct that picks out a set of

join points based on defined criteria.

 Advice is code that executes before, after or around a

join point.

 Introduction allows aspects to modify the static

structure of a program

 Aspects: advice, pointcuts, ordinary data members

and methods are grouped into class-like modules

called aspects.

Council for Innovative Research International Journal of Computers & Technology

www.cirworld.com Volume 4 No. 2, March-April, 2013, ISSN 2277-3061

649 | P a g e w w w . i j c t o n l i n e . c o m

 AOP languages and frameworks provide a very

similar composition model to the aspect such as Springs

AOP framework and JBoss AOP.

(b) Caesar J: - It represents a different family of AOP

languages, which doesn’t have aspects. It supports

additional concepts such as virtual classes, mixin

composition, aspectual polymorphism and bindings.

(c) Hyper J: - A developer provides three different inputs

which are hyperspace file, concern mapping file and

hypermodule file

 Hyperspace File: describes the Java class files

 Concern Mapping File: describes the pieces of java

source map to concerns

 Hyper module File: describes which dimensions of

concern should be integrated.

TYPES OF METRICS IN AOP

1) Weighted Operations in Module (WOM)

Weighted operations in module counts number of

operations in a given module. Operations include

advice, introductions, methods etc. The number of

operations and the complexity of operations involved is

a predictor of how much time and effort required to

develop and maintain the module. Modules with large

number of operations limit the possibility of reuse.

2) Depth of inheritance(DIT)

DIT of a class is its depth in the inheritance tree, if

multiple inheritances are involved. Maximum path

from the node representing the class to the root. The

deeper a module is in the hierarchy, the greater the

number of operations it is likely to inherit, making it

more complex to predict its behavior. So complexity of

design will increase if more operations and modules are

involved.

3) Number of children(NOC)

It is a number of immediate subclasses or sub-aspects

of a given module. Greater the number of children then

greater the reuse due to inheritance, improper

abstractions of parent module, misuse of sub classing

and also it requires more testing of operations in the

module.

4) Cyclomatic Complexity

Complexity is a software metric used to indicate the

complexity of a Program. It gives the number of paths

that may be taken when a program is executed.

Methods with a high Cyclomatic complexity tend to be

more difficult to understand and maintain. Some of the

tokens (in java) responsible for the program taking

different paths during execution are:

 While & do while statements.

 If statements.

 For statements.

 Ternary Operators & Logical Operators.

 Switch case statements.

 Return, throw, throws, catch statement.

Example of Cyclomatic Complexity Calculation:

 public static int getGreatest(int a, int b)

 {

 return a>b?a:b;

 return a;

 }

The cyclomatic complexity for this method would be 3.

Since the method has a ternary operator, it acts as

one if and else, which in turn adds 2 to the cyclomatic

complexity. We then add one to the cyclomatic

complexity (raising it to 3) to denote the default path (in

this case both if and else failing and the second return

statement being executed).

The cyclomatic complexity should be low. A

low cyclomatic complexity is one factor to improve

readability, maintainability and testability of code. The

cyclomatic complexity is the number of edges minus the

number of nodes plus 2.

 CC = No. Of edges - No. Of nodes + 2

5) Instruction Count

It represents the no of instructions in a particular code.

PROPOSED WORK

In this section calculation of cyclomatic

complexity and instruction count in AOP and OOP by

using Banking system and by using the program of

converting the integer and float values to hexadecimal is

mentioned in detail.

 In the example of banking system using OOP:-

When program starts then there are 4 options

that system asks. Balance Enquiry (), Money

Withdrawl(), Submit Money()/Deposit Money(),

Get Account No() and then exit. There is a class

i.e.Banking usingOOP in which it is having

fields name, password, accountno,, amount

etc.create user account by giving name, amount,

account no and password. In 1st Module i.e.

Balance Enquiry module.enter the name and

then password. if name and password matches

then ―balance is‖i.e. system will tell the balance

else authentication will be failed. In 2nd module

i.e. Money WithDrawl() .system will ask the

http://cyvis.sourceforge.net/cyclomatic_complexity.html
http://cyvis.sourceforge.net/cyclomatic_complexity.html
http://cyvis.sourceforge.net/cyclomatic_complexity.html
http://cyvis.sourceforge.net/cyclomatic_complexity.html
http://cyvis.sourceforge.net/cyclomatic_complexity.html
http://cyvis.sourceforge.net/cyclomatic_complexity.html
http://cyvis.sourceforge.net/cyclomatic_complexity.html
http://cyvis.sourceforge.net/cyclomatic_complexity.html

Council for Innovative Research International Journal of Computers & Technology

www.cirworld.com Volume 4 No. 2, March-April, 2013, ISSN 2277-3061

650 | P a g e w w w . i j c t o n l i n e . c o m

name and password if it matches then it will ask

the amount of money user wants to withdraw. if

amountWithdrawl>=amount present then system

will msg that you can’t withdraw that amount of

money and if amountWithdrawl<amount present

then money will be withdraw and transaction

completes successfully. Then the total remaining

balance will be displayed. In 3rd module i.e.

Submit money/Deposit money. System will ask

the name and password. Then system will ask

the amount of money user want to submit then

that amount will be add to previous amount.

In 4th module i.e. Get Accountno .System will

ask the name and password of user.if user and

password matches then system will gives the

account no . 5th module is exit button .

 Banking Example using AOP:- When user start

program in banking system then 4 options that system

will ask to user. Balance Enquiry (), Money

Withdrawal (), Submit Money()/Deposit Money(), Get

Account No() and then exit. There is a class i.e.

Banking usingOOP in which it is having fields name,

password, account no,, amount etc. Create user

account by giving name, amount, account no and

password. In 1st Module i.e. Balance Enquiry module.

Enter the name and then password. If name and

password matches then ―balance is‖ else

authentication will be failed. In 2nd module i.e.

Money Withdrawal () .system will ask the name and

password if it matches then it will ask the amount of

money user wants to withdraw. if

amountWithdrawl>=amount present then system will

msg that you can’t withdraw that amount of money

and if amountWithdrawl<amount present then money

will be withdraw and transaction completes

successfully. Then the current balance will be shown

In 3rd module i.e. Submit money/Deposit

money. System will ask the name and password.

Then system will ask the amount of money user

want to submit then that amount will be added to

previous amount.

In 4th module i.e. Get Accountno.system

will ask the name and password of user. if user and

password matches then system will gives you the

account no .

Whereas 5th module is exit button.

For each module in AOP, AOP Authenticates the

username and Password for which user make the

aspect Authenticate which is like a

constructor.everytime when the we enter the

username and password then control will 1st move to

the aspect of authentication and after the point cut

control will go back to that particular module. In

AOP we just write once that code which is repeated

again and again in aspect.

 Conversion of integer and float values to

hexadecimal in OOP: - In this program two classes

have taken namely: - Handler (i.e. main class) &

Converter. Converter class has two methods that will

convert int and float numbers in hexa-decimal

strings respectively.

In handler class, a Converter type instance field and

there are two methods that are calling methods of

Converter class. Before making a call to Converter

method user will check if Converter fields hold an

object reference and if converter is null an exception

is thrown. This procedure is repeated in both the

methods. This condition checks is a cross cutting

concern and it can be defined in a separate module to

make our program better.

 Conversion in AOP program:- AOP program

Handle.java is an extension of java program in

AspectJ. The only difference is that a new

module aspect Check is added to the program. In

this program , any kind of condition within the

methods of Handle class before calling the

methods of Converter class willn’t be checked.

Instead of that user will defined a condition in

aspect Check when Handle class methods

execution will start control will be transferred to

the aspect Check, it will check the condition if

converter field is null exception will be thrown

else method of converter will be called.

In the actual implementation, a program is made and then

writes that program in AOP language as well as OOP

language using AspectJ. Then jar file of AOP and OOP

will be created and then executed on Cyvis tool. For this

run the cyvis tool. Select the new project and then select

the project directory where jar files are stored. then add

that jar files .click on the save button and then finish. The

project view will be opened. It shows all the packages that

are in project. It provides all classes and method in GUI

way. Red color represents class with high complexity,

green color represents the class with low complexity and

yellow represents the moderate complexity. Grey color

represents the interfaces and white represents there are no

interface between components. This will result in the

complexity values difference which is shown in this tool.

Html and text reports can also be generated in cyvis tool.

RESULTS AND DISCUSSIONS

CyVis Tool collects data from java class or jar files. Once

the raw data is collected, certain metrics like number of

lines, statements, methods, classes and packages are

obtained. Other metrics like cyclomatic complexity,

instruction count are also be deducted. Cyclomatic

Complexity is a software metric used to indicate the

complexity of a program. The cyclomatic complexity

should be low. Table I shows the cyclomatic complexity

and instruction count (which represents the no of lines in a

byte –code instruction) in Cyvis tool using AspectJ. . A

low cyclomatic complexity is one factor to improve

readability, maintainability and testability of code. This

Council for Innovative Research International Journal of Computers & Technology

www.cirworld.com Volume 4 No. 2, March-April, 2013, ISSN 2277-3061

651 | P a g e w w w . i j c t o n l i n e . c o m

table represents the Cyclomatic complexity and

instruction count for each particular method and also for

default methods which were created by aspect. Table II

shows the cyclomatic complexity and instruction count

for each particular method in OOP.This table shows the

Program of banking system in OOP having high

complexity than OOP just because the problem of

scattering and tangling. Table III shows the cyclomatic

complexity and instruction count for converting the

integer values and float values to hexadecimal values in

AOP. The value of cyclomatic complexity is low for this

table which is good.1, 2, 7, 8 represents the all those

methods which were created by java by itself and

<init>method represents the constructor and float to hex

and int to hex are user defined methods. Table IV shows

the 5 methods i.e. float to hex, int to hex and main

functions are user defined methods.

 ATTRIBUTE VALUES FOR AOP IN BANKING SYSTEM

Table I

S.NO. Method Name Cyclomatic

Complexity

Instruction

count

1. Main 9 110

2. MoneyWithdrawl 3 72

3. getAccountnumber_aroundBody7$advice 3 56

4. sendMoney_aroundBody5$advice 3 56

5. moneyWithdrawl_aroundBody3$advice 3 56

6. balanceEnquiry_aroundBody1$advice 3 56

7. <init> 1 68

8. AccountConfirmation 1 65

9. SendMoney 1 30

10. BalanceEnquiry 1 18

11. GetAccountNumber 1 18

12. CreateAccount 1 13

13. getAccountNumber_aroundBody6 1 4

14. sendMoney_aroundBody4 1 4

15. moneyWithdrawal_aroundBody2 1 4

16. balanceEnquiry_aroundBody0 1 4

ATTRIBUTE VALUES FOR OOP IN BANKING SYSTEM

Council for Innovative Research International Journal of Computers & Technology

www.cirworld.com Volume 4 No. 2, March-April, 2013, ISSN 2277-3061

652 | P a g e w w w . i j c t o n l i n e . c o m

Table II

S.NO. Method Name Cyclomatic Complexity Instruction count

1. Main 9 90

2. MoneyWithdrawl 6 117

3. SendMoney 3 66

4. BalanceEnquiry 3 51

5. GetAccountNumber 3 51

6. accountConfirmation 1 69

7. <init> 1 68

8. CreateAccount 1 13

 ATTRIBUTES VALUE FOR CONVERTING INT AND FLOAT VALUES TO HEXADECIMAL IN AOP

Table III

S.NO. Method Name Cyclomatic

Complexity

 Instruction

count

1. floatToHex_aroundBody3$advice 3 24

2. intToHex_aroundBody1$advice 3 24

3. Main 1 35

4. FloatToHex 1 11

5. IntToHex 1 11

6. <init> 1 10

7. floatToHex_aroundBody2 1 8

8. intToHex_aroundBody0 1 8

9. <init> 1 6

 ATTRIBUTES VALUE FOR CONVERTING INT AND FLOAT VALUES TO HEXADECIMAL IN OOP

Table IV

S.NO. Method Name Cyclomatic

Complexity

 Instruction

count

1. FloatToHex 3 20

2. IntToHex 3 20

3. Main 1 34

4. <init> 1 9

5. <init> 1 5

Council for Innovative Research International Journal of Computers & Technology

www.cirworld.com Volume 4 No. 2, March-April, 2013, ISSN 2277-3061

653 | P a g e w w w . i j c t o n l i n e . c o m

Chart result for instruction count

18

19

20

21

22

23

24

 AOP OOP

IC

Chart result for cyclomatic complexity

0

1

2

3

4

5

6

AOP OOP

CC

CONCLUSION

Understandability: Complexity in the base code was

decreased by the AO approach slightly. So

understandability increases.

Maintainability Almost 20% of the base code was

modularized into the aspects removing the scattered code

and making modifications to the application easier.

 Manageability Instability is an indicator of

manageability.

AOP is 3 times more stable than the OO

In this thesis work, a framework for better cyclomatic

complexity and instruction code in AspectJ by using

Cyvis tool has been proposed. This considered two

different programming languages i.e. Aspect oriented and

Object Oriented Programming in AspectJ on the same

program by using Cyvis tool. Cyvis tool shows how AOP

provides better cyclomatic complexity than OOP. In

Cyvis tool it is also generating Cyvis report at backend.

 In future, the all other metrics for AOP and

OOP can be validated. With the help of other metrics ,

which programming language is providing better results

can be proven.

REFERENCES

[1] Avadesh Kumar,Rajesh Kumar and P.S.Grover May 2009.

‖Generalising Coupling Measures for Aspect Oriented

Systems‖, International Conference on Advances in Recent

Technologies in Communication and Computing, IEEE.

[2] Rupali Ahuja and Anita Goel 2008. ‖A study of Applications

of Aspect Oriented Programming‖, National conference on

Challenges & Opportunities in Information Technology.

 [3]G.kiczales, J.Lamping, A.Mendhekar, C.maeda, C.Lopes,

J.M.LoingTier and J.Irwin 1997. ‖Aspect Oriented

Programming‖ 11th European Conference on Object Oriented

Programming.

[4] Jay Gattani 2004, ‖An Analysis of Aspect Oriented

Programming with AspectJ‖ Technical report, University of

Houstan.

[5] Nicholas Leisiecki 2005 ‖AOP @work:Enhance design

patterns with AspectJ‖.

 [6] .www.cs.umu.se

[7] Kotrappa sirbi and Prakash Jayanth Kulkarni ‖Design

Patterns v/s AOP – A quantitative and Qualitative Assessment‖

[8] L.Berger , A.M.Dery and M.Fornarino ‖Interactions between

objects:An aspect of Object – oriented Languages‖

 [9] Sven Apel and Don Batory 2008 ‖How AspectJ is used- An

analysis of eleven AspectJ programs‖

 [10] www.enwikipedia.org

[11] http://cyvis.sourceforge.net/inde

http://www.enwikipedia.org/

