
 ISSN 22773061

938 | P a g e J u l y 1 5 , 2 0 1 3

An Evaluation for Model Testability approaches

Pourya Nikfard1, Suhaimi bin Ibrahim2, Babak Darvish Rohani3, Harihodin bin Selamat4, Mohd
Naz‟ri Mahrin5

Advanced Informatics School (AIS), University Technology Malaysia (UTM), International campus, Kuala Lumpur,
Malaysia

{1npourya2@live.utm.my, 2suhaimiibrahim@utm.my, 3drbabak3@live.utm.my,
4harihodin@ic.utm.my, 5mdnazrim@utm.my}

Abstract- Design for testability is a very important issue in software engineering. It becomes crucial in the case of Model

Based Testing where models are generally not tested before using as input of Model Based Testing. The quality of design
models (e.g.; UML models), has received less attention, which are main artifacts of any software design. Testability tends to
make the validation phase more efficient in exposing faults during testing, and consequently to increase quality of the end-
product to meet required specifications. Testability modeling has been researched for many years. Unfortunately, the modeling
of a design for testability is often performed after the design is complete. This limits the functional use of the testability model
to determining what level of test coverage is available in the design. This information may be useful to help assess whether a
product meets the target requirement to achieve a desired level of test coverage, but has little proactive effect on making the
design more testable.

Council for Innovative Research

Peer Review Research Publishing System

Journal: INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY

Vol 9, No 1

editor@cirworld.com
www.cirworld.com, member.cirworld.com

http://member.cirworld.com/
http://www.cirworld.com/
http://www.cirworld.com/

 ISSN 22773061

939 | P a g e J u l y 1 5 , 2 0 1 3

1. Introduction

Software testing is a significant part of both the software lifecycle and quality assurance activities. In simple form, testing is the
software products dynamic execution in order to show the errors presence. Software testing is costly, and it is considered as
the final barrier to the software product release. Model-based testing (MBT) is an automation of black box testing technique; its
major difference from the conventional methods of black box testing is that the test cases are automatically produced by
software tools that develop the expected behavioral models of the software under the test (SUT). MBT has

conveyed a lot of benefits. These contain errors early detection, which is measured to be very cheap. The major MBT liability
is to knowing how to model SUT (Reza, Ogaard, & Malge, 2008).

Model-based testing (MBT) is a rising trend in test automation. In MBT, the SUT is modeled at an appropriate level of
abstraction for testing, and tools are used to automatically create test cases based on this model. Given a set of appropriate
methods and tools, MBT has been demonstrated to be a helpful and efficient means for high-level testing in diverse domains.
Some benefits comprise decreased costs of maintenance in concentrating on a single high-level model, and boosted test
coverage over the features expressed in the test model by the means of automated test generation (Puolitaival & Kanstrén,
2010).

Model-based testing (MBT) defendants the systematic use of software models in particular for testing activities, e.g. creation of
test oracles, test execution environments and test cases. If a software model is well appropriate for activities of testing, we
speak of a testable model. Thus, software models testability is a significant quality representing the degree to which a software
model helps activities of testing in a given test context. The software models testability should already be analyzed and
enhanced at modeling time before MBT activities start. This assists to save costs for the detection and correction of defects of
testability in later stages.

For models used in model-based testing, their testability evaluation is a significant problem. Existing approaches lack some
related features for a systematic and complete evaluation. Either they do (1) not think about the context of models of software,
(2) not propose a systematic process for choosing and developing right dimensions,

(3) not describe a reliable and general understanding of quality, or (4) not separate between subjective and objective
measurements (Voigt & Engels, 2008).

Testability is a property of program that is introduced with the purpose of forecasting efforts need for testing the program. To
quantify the program testability is to relate the program with some numbers to present the degree of how easy are those
definite testable properties in the program to be tested. High testability software means that errors could be discovered more
easily during testing (if the software exist errors). Otherwise, it is complicated to be tested and is likely to be fewer rel iable.
Therefore the number of tests need in a program may be taken as the quantify of its testability. There has not been an
instinctively acceptable measure of program testability. Software testability is the degree to which a software artifact (i.e. a
software module, software system, design document or requirements) supports testing in a test context that given. Testability
is not an inherent property of a software artifact and cannot be calculated directly (such as software size). Instead testability is
an extrinsic property that results from software interdependency to be tested and the test goals, test methods used, and test
resources (i.e., the test context). A minor degree of testability results in enhanced test effort. In tremendous cases a testability
lack may hinder software testing parts or software requirements at all (Yeh & Lin, 1998).

2. Model Testability approaches

2.1 An Empirical Analysis of a Testability Model for Object-Oriented Programs

Authors presented a metric based testability model for object-oriented programs. The paper investigated empirically the
relationship between the model and testability of classes at the code level. Testability has been investigated from the
perspective of unit testing. They designed an empirical study using data collected from two open sources Java software
systems for which JUnit test cases exist. To capture testability of classes, they used various metrics to quantify different
characteristics of the corresponding JUnit test cases. In order to evaluate the capability of the model to predict testability of
classes, they used statistical tests using correlation. The achieved results support the idea that there is a statistically
significant relationship between the model and the used test case metrics (Kout et al., 2011).

2.2 Analysis of Object Oriented Complexity and Testability Using Object Oriented
Design Metrics

The approach proposed in this paper revolves around the complexity and testability of object oriented design. Predicting
complexity of design at class level helps to simplify the design as much as possible. Object oriented design metrics extended
by the approach proposed in this paper helps to obtain the quantifiable results so that complexity of design can be predicted
accurately. The approach is based on literature survey and the concepts developed are validated by mapping the metrics

 ISSN 22773061

940 | P a g e J u l y 1 5 , 2 0 1 3

model to the actual software projects. Literature survey concepts and estimated results obtained by actual projects verify each
other. Improvements can be made to the proposed metrics. As more detailed designs are produced during later design
phases, the proposed metrics can be applied to different other types of diagrams produced as a part of detailed design either
in its existing form or by

modifying it according to requirements. Complexity analysis at coding stage can be performed by the object oriented design
metrics proposed in this paper (Khalid et al., 2010).

2.3 Metric Based Testability Model for Object Oriented Design (MTMOOD)

The proposed model for the assessment of testability in object-oriented design has been validated using structural and
functional information from object oriented software. The models‟ ability to estimate overall testability from design information
has also been demonstrated using several functionally equivalent projects where the overall testability estimate computed by
model had statistically significant correlation with the assessment of overall project characteristics determined by independent
evaluators. The proposed model is more practical in nature having quantitative data on testability is of immediate use in the
software development process. The software developer can use such data to plan and monitor testing activities. The tester
can use testability information to determine on what module to focus during testing. And finally, the software developer can
use testability metrics to review code, trying to find refactoring that would improve the testability of the code (Khan & Mustafa,
2009).

2.4 Automating regression test selection based on UML designs

The authors propose a methodology supported by a prototype tool to tackle the regression test selection problem at the
architecture/ design level in the context of UML-based development. Their main motivation is to enable, in the context of UML-
based development, regression test selection based on design change information, early in the change process. They

also present three case studies that were used as an initial feasibility and benefit assessment. These case studies are varied
in the sense that they cover very different systems and changes, in both industrial and academic settings. Results show that
design changes can have a complex impact on regression test selection and that, in many cases, automation is likely to help
avoid human errors. Their objective has been to ensure that regression testing was safe while minimizing regression testing
effort. But they have shown that certain changes may not be visible in the design and may require additional attention during
coding or a special way to document them during design. Another limitation is that, based on UML design information, test
selection may not be as precise as if it was based on detailed code analysis. Improving precision by analyzing in more detail
guard conditions and OCL contracts is the focus of their current research. However, their case studies have only shown one
case of imprecision in classifying a test case as retestable. Despite the above limitations, by providing a methodology and tool
to perform impact analysis and regression test selection based on UML designs, the achievements are:

– Higher efficiency in test selection based on the automation of design change analysis and traceability between UML designs
and regression test cases.

– Better support for assessing and planning regression test effort earlier in the change process that is once design changes
have been determined (Briand et al., 2009).

2.5 Automatic generation of test specifications for coverage of system state
transitions

The authors have presented a novel strategy for automatic state-based system testing for achieving transition path coverage.
A severe handicap in system test generation for transition coverage arises due to the fact that system state models are not
developed during any pragmatic development process. This may be attributed to the fact that the state models for practical
problems tend to be extremely large and complex. To overcome this problem, they synthesize a system state model of an
object-oriented system from the relevant UML models. The synthesized state model is then used to generate test
specifications for transition coverage. Their approach to system testing does not replace traditional testing approaches such
as, method coverage, message path coverage, etc. On the other hand, their approach to testing based on transition path
coverage is intended to be used in a complementary manner with traditional test techniques. The test specification generated
by our approach could detect bugs not detected using traditional testing, since the fault models for the two are different (Sarma
& Mall, 2009).

2.6 Improving the Testability of Object Oriented Software through Software
Contracts

The main goal of the study was to establish the relationship between software testability and software contracts. The software
contracts reduce the testing effort and hence improve the testability of an object oriented class. The same is demonstrated
through an example of a queue class written in C++. The results show that software contracts reduce the number of test cases

 ISSN 22773061

941 | P a g e J u l y 1 5 , 2 0 1 3

by 50% to test a class. Hence, the software practitioners can make use of software contracts to reduce the testing effort and
hence improve the testability of the software (Singh & Saha, 2010).

2.7 Construction of a Systemic Quality Model for Evaluating a Software Product

In referring to the well-known expression “build quality into software,” Dromey points out that high-level quality attributes, such
as reliability and maintainability, cannot be built into the software. What can be done though is to identify a set of properties
(such as modules without side effects) and build them up consistently, harmoniously and fully to provide reliability and
maintainability. Links must be forged between the tangible properties of the product and the high-level quality attributes.
Dromey proposes three models, depending on the products resulting from each stage of the development process:
requirements model, design model, and implementation quality model (programming). In comparing this model to ISO 9126,
additional characteristics like process maturity and reusability are noticeable. It is important to point out the weighting Dromey
gives to process maturity, an aspect not considered in previous models. This model seeks to increase understanding of the
relationship between the attributes (characteristics) and the subattributes (subcharacteristics) of quality. It also attempts to
pinpoint the properties of the software product that affect the attributes of quality. After analyzing various product quality
models, the different quality attributes or characteristics found in each of them must be compared. Table 2.9 shows that the
quality characteristics found in the majority of the models are: efficiency, reliability, maintainability, portability, usability and
functionality, which have been present in more recent models. Because they are present in all the models studied, they can be
considered essential and worthy of study (Ortega & Rojas, 2003).

2.8 An empirical study into class testability

Testability The ISO defines testability as„„attributes of software that bear on the effort needed to validate the software
product‟‟. Binder offers an analysis of the various factors that contribute to a system‟s testability, which he visualizes using the
fish bone diagram as shown in below Figure. The major factors determining test effort Binder distinguishes include the testing
criterion that is required, the usefulness of the documentation, the quality of the implementation, the reusability and structure of
the test suite, the suitability of the test tools used, and the process capabilities. Of these factors, our study is concerned with
the structure of the implementation, and on source code factors in particular. We distinguish between two categories of source
code factors: factors that influence the number of test cases required testing the system, and factors that influence the effort
required to develop each individual test case. We will refer to the former category as test case generation factors and to the
latter category as test case construction factors, which both are discussed below (Bruntink & Van Deursen, 2006).

2.9 Contract-Based Software Component Testing with UML Models

This research takes a different approach by incorporating testing-support artefacts (called test contracts) at the model-based
specification level to improve model-based component testability with model-based test contracts. They believe that model-
based testability stands at a testing level above traditional code-based testability, and thus is consistent with and supports
model-based approaches to SCT (Zheng & Bundell, 2008).

 ISSN 22773061

942 | P a g e J u l y 1 5 , 2 0 1 3

2.10 Quality Assessment and Quality Improvement for UML Models

The ISO/IEC 9126-model defines no uses, but distinguishes between internal quality, external quality and quality-in-use. The
quality ISO/IEC 9126-model is a generic quality model that covers internal and external quality in one abstract model. The
model for quality-in-use is similar to the operation use of the McCall model. However, quality-in-use and external quality are
out of the scope of this paper, and therefore not discussed any further (Jalbani, 2011).

 ISSN 22773061

943 | P a g e J u l y 1 5 , 2 0 1 3

3. Comparative evaluation

In this section we evaluate the above model testability approaches. We declare the achievement and main issue of each
approach.

 Ro

A
u
th
o
rs

 w Method Achievements Main Issue

 Year

 1)investigate empirically the relationship 1)Accountability 2)Accessibility

 between the model and testability of classes 3)Communicativeness 4)Not

 at the code level sufficient for Self-Descriptiveness

et
 a

l.

 2)Design an empirical study using JUnit 5)Not sufficient for both structural

1

 2011 UML 3)evaluate the capability of the model to and behavioural architecture

K
o

u
t

predict testability of classes with using

statistical tests 4)using correlation

 existing statistically significant relationship

 between the model and the used test case

 metrics

et

 1)Extend the object oriented design metrics 1)Accountability 2)Accessibility

2)obtain the quantifiable results

3)Not sufficient for Self-

K
h

a
lid

2 2010 UML 3)predict complexity of design accurately Descriptiveness

 4)Not sufficient for both structural

 and behavioural architecture

 1)Validate model using structural and 1)Accountability 2)Accessibility

 functional information 3)Communicativeness 4)Not

 2)Demonstrate the models’ ability to sufficient for Self-Descriptiveness

 estimate overall testability from design 5)Availability of built-in test

 information function

M
u

st
a

fa

 3)The model is more practical in nature 6)Test restartability

3

 2009 UML having quantitative data on testability 7)Not sufficient for both structural

4)The software developer can use data to

and behavioural architecture

&
 plan and monitor testing activities

K
h

a
n
 5)The tester can use testability information

to determine on what module to focus

 during testing

 6)The software developer can use testability

 metrics to review code, trying to find

 ISSN 22773061

944 | P a g e J u l y 1 5 , 2 0 1 3

 refactoring that would improve the

 testability of the code

 1)tackle the regression test selection 1)Accountability 2)Accessibility

 problem at the architecture/ design level in 3)Not sufficient for Self-

 the context of UML-based development Descriptiveness

al
.

 2)Higher efficiency in test selection based on 4)Not sufficient for both structural

the automation of design change analysis

and behavioural architecture

et

2009

UML

and traceability between UML designs and

4

B
ri

a
n

d

regression test cases

3)Better support for assessing and planning

 regression test effort earlier in the change

 process that is once design changes have

 been determined

 1)synthesize a system state model of an 1)Accountability 2)Accessibility

 object-oriented system from the relevant 3)Communicativeness 4)Not

&
 M

al
l

 UML models sufficient for Self-Descriptiveness

5

 2)The synthesized state model is used to 5)Not sufficient for both structural

 2009

UML

generate test specifications for transition

and behavioural architecture

Sa
rm

a

coverage

 3)The model is used in a complementary

manner with traditional test techniques

 4)The test specification generated by model

 could detect bugs

 1)Software contracts reduce the testing 1)Accountability 2)Accessibility

 effort 3)Communicativeness 4)Not

 2)Software contracts improve the testability sufficient for Self-Descriptiveness

 of an object oriented class 5)Not sufficient for both structural

6

&
 S

a
h

a

 3)Software contracts reduce the number of and behavioural architecture

test cases by 50% to test a class

 2010 UML & 4)Software practitioners can make use of

Si
n

g
h
 Software software contracts to reduce the testing

 contract effort

 5)Software practitioners can make use of

 software contracts to improve the testability

 of the software

 1)requirements model, design model, and 1)Accountability 2)Accessibility

 ISSN 22773061

945 | P a g e J u l y 1 5 , 2 0 1 3

 implementation quality model 3)Communicativeness 4)Not

 (programming) sufficient for Self-Descriptiveness

R
o

ja
s

 2)notice process maturity and reusability 5)Retest efficiency

 3)The model increase understanding of the 6)Not sufficient for both structural

&
 2003 Quality model relationship between the attributes and behavioural architecture

7

O
rt

eg
a

(characteristics) and the subattributes

 (subcharacteristics) of quality

4)the quality characteristics are: efficiency,

 reliability, maintainability, portability,

 usability and functionality

 1)the usefulness of the documentation 1)Accountability 2)Accessibility

D
eu

rs
en

 the quality of the implementation 3)Not sufficient for Self-

 2)the reusability and structure of the test Descriptiveness

 suite 4)Not sufficient for both structural

 3)the suitability of the test tools used and behavioural architecture

&
 V

a
n
 2006 Quality model the process capabilities

8
 4)factors that influence the number of test

B
ru

n
ti

n
k

cases required testing the system

 5)factors that influence the effort required

 to develop each individual test case

 6)test case generation factors

 7)test case construction factors

&
 B

u
nd

el
l

 1)Testability characteristics are: component 1)Accountability 2)Accessibility

 traceability, component observability, 3)Communicativeness 4)Not

 component controllability, component sufficient for Self-Descriptiveness

 9
2008

Test contracts

understandability, and component test

5)Not sufficient for both structural

Zh
en

g

 support capability and behavioural architecture

 2)improve model-based component

testability

 Distinguish between internal quality, 1)Accountability 2)Accessibility

Ja
lb

an
i

 external quality and quality-in-use 3)Communicativeness 4)Not

 sufficient for Self-Descriptiveness

10 2011 UML 5)Not sufficient for both structural

 and behavioural architecture

 ISSN 22773061

946 | P a g e J u l y 1 5 , 2 0 1 3

4. Conclusion

This paper has aimed to provide an overview and compare recent progress in model testability. We study and survey several
approaches. But we cannot claim that these approaches are comprehensive and exhaustive. Finally, we have comparison
table with different columns that compares all the approaches. The main problem with most of these approaches to testing is
considering the behavioral architecture in model testability. It should be noted that although the above comparison is
conducted based on some prominent approaches, the outcome of this research is not restricted to such approaches. In other
words, my considered criteria either can be served as features to be included in a newly developing system or may be applied
to help generally evaluating or selecting model testability approaches. However the results of my comparison show that there
is no single superior model testability approach in all cases. Therefore, deciding which approach to use in a certain scenario
should be done based on its specifications and combine and present the new approach that is more comprehensive and
mature is my future work.

5. Acknowledgement

This project is sponsored by Ministry of Higher Education (MOHE) in corporation with Universiti Teknologi Malaysia, Research
Management Centre (UTM-RMC) under Vote No: 03H74. The authors also would like to thanks those who are directly or
indirectly involved in this project.

6. Reference

Reza, H., Ogaard, K., & Malge, A. (2008). A Model Based Testing Technique to Test Web Applications Using Statecharts.
Fifth International Conference on Information Technology: New Generations (itng 2008), 0-7695-309, 183–188.
doi:10.1109/ITNG.2008.145

Puolitaival, O.-P., & Kanstrén, T. (2010). Towards flexible and efficient model-based testing, utilizing domain-specific
modelling. Proceedings of the 10th Workshop on Domain-Specific Modeling - DSM ’10, 978-1-4503, 1.

doi:10.1145/2060329.2060349

Voigt, H., & Engels, G. (2008). Quality Plans for Measuring Testability of Models. Software Engineering (pp. 1–16). Retrieved
from www.vietnamesetestingboard.org

Yeh, P., & Lin, J. (1998). Software Testability Measurements Derived from Data Flow Analysis Tatung Institute of Technology.
2nd Euromicro Conference on Software

Maintenance and Reengineering (CSMR’98) (pp. 1–7).

Kout, A., Toure, F., & Badri, M. (2011). An empirical analysis of a testability model for object-oriented programs. ACM
SIGSOFT Software Engineering Notes, 36(4), 1. doi:10.1145/1988997.1989020

Khalid, S., Zehra, S., & Arif, F. (2010). Analysis of object oriented complexity and testability using object oriented design
metrics. Proceedings of the 2010 National Software Engineering Conference on - NSEC ’10, 1–8.
doi:10.1145/1890810.1890814

Khan, R. a., & Mustafa, K. (2009). Metric based testability model for object oriented design (MTMOOD). ACM SIGSOFT
Software Engineering Notes, 34(2), 1. doi:10.1145/1507195.1507204

Briand, L. C., Labiche, Y., & He, S. (2009). Automating regression test selection based on UML designs. Information and
Software Technology, 51(1), 16–30. doi:10.1016/j.infsof.2008.09.010

Sarma, M., & Mall, R. (2009). Automatic generation of test specifications for coverage of system state transitions. Information
and Software Technology, 51(2), 418–432. doi:10.1016/j.infsof.2008.05.002

Pourya Nikfard, Mohammad Hossein Abolghasem Zadeh, Suhaimi Bin Ibrahim (2013), A Comparative Evaluation of
approaches for Web Application Testing, International Conference on Soft Computing and Software Engineering 2013
(SCSE'13), International Journal of Soft Computing and Software Engineering [JSCSE], ISSN: 2251-7545 & DOI:
10.7321/jscse, San Francisco, CA, USA.

Pourya Nikfard, Harihodin Selamat, Mohd Naz‟ri Mahrin (2012), Functional Testing on Web Applications, Postgraduate Annual
Research on Informatics Seminar (PARIS 2012).

Mohammad Reza Abbasy, Pourya Nikfard, Ali Ordi and Mohammad Reza Najaf Torkaman (2012), DNA Base Data Hiding
Algorithm, International Journal on New Computer Architectures and Their Applications (IJNCAA) 2(1): 183-192 The Society of
Digital Information and Wireless Communications, 2012 (ISSN: 2220-9085).

Mohammadreza Najaftorkaman ,Pourya Nikfard, Maslin Masrom, Mohammadreza abbasy (2011), An efficient cryptographic

 ISSN 22773061

947 | P a g e J u l y 1 5 , 2 0 1 3

protocol based on DNA chip, © 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of GCSE
2011, Procedia Engineering.

Mohammad Hossein Abolghasem Zadeh, Pourya Nikfard, Mohd Nazri Kama, Suhaimi Bin Ibrahim (2013), Software Changes:
Related Software Artifacts and their Relationships, The Second International Conference on Advances in Computing and
Networking (ACN - 2013), Bangkok, Thailand.

Mohammad Reza Najaf Torkaman, Pourya Nikfard, Nazanin Sadat Kazazi, Mohammad Reza Abbasy, and S. Farzaneh
Tabatabaiee (2011), Improving Hybrid Cryptosystems with DNA Steganography, E. Ariwa and E. El-Qawasmeh (Eds.): DEIS
2011, CCIS 194, pp. 42– 52, 2011. © Springer-Verlag Berlin Heidelberg 2011.

Morteza Bagherpour, Pouria Nikfard, Arash Ghaed Mohammadi (2006), Hybrid Neural Network, Tabu search, Application to
single machine scheduling with earliness and tardiness penalty, Proceeding of the V international conference “System
Identification and Control Problems” SICPRO ‟06 Moscow‟

Singh, Y., & Saha, A. (2010). Improving the testability of object oriented software through software contracts. ACM SIGSOFT
Software Engineering Notes, 35(1), 1. doi:10.1145/1668862.1668869

Ortega, M., & Rojas, T. (2003). Construction of a systemic quality model for evaluating a software product. Software Quality
Journal, 11:3(July), 219–242.

Bruntink, M., & Van Deursen, A. (2006). An empirical study into class testability. Journal of Systems and Software, 79(9),
1219–1232. doi:10.1016/j.jss.2006.02.036

Zheng, W., & Bundell, G. (2008). Contract-Based Software Component Testing with UML Models. Computer Science and its
Applications, 2008. CSA ’08. International Symposium on, 978-0-7695(13 - 15 October 2008), 83–102.

Jalbani, A. A. (2011). Quality Assessment and Quality Improvement for UML Models.

