
 ISSN 22773061

995 | P a g e J u l y 1 5 , 2 0 1 3

A Petri Net approach for representing Orthogonal Variability Models

Cristian Martinez, Silvio Gonnet, Horacio Leone
INGAR, Instituto de Desarrollo y Diseño, Santa Fe, Argentina

{ocmartinez,sgonnet,hleone}@santafe-conicet.gov.ar

ABSTRACT

The software product line (SPL) paradigm is used for developing software system products from a set of reusable artifacts,
known as platform. The Orthogonal Variability Modeling (OVM) is a technique for representing and managing the
variability and composition of those artifacts for deriving products in the SPL. Nevertheless, OVM does not support the
formal analysis of the models. For example, the detection of dead artifacts (i.e., artifcats that cannot be included in any
product) is an exhaustive activity which implies the verification of relationships between artifacs, artifacts parents, and so
on. In this work, we introduce a Petri nets approach for representing and analyzing OVM models. The proposed net is built
from elemental topologies that represents OVM concepts and relationships. Finally, we simulate the net and study their
properties in order to avoid the product feasibility problems.

Keywords: software product line, orthogonal variability model, Petri nets

Council for Innovative Research

Peer Review Research Publishing System

Journal: INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY

Vol 9, No 1

editor@cirworld.com
www.cirworld.com, member.cirworld.com

http://member.cirworld.com/
http://www.cirworld.com/
http://www.cirworld.com/

 ISSN 22773061

996 | P a g e J u l y 1 5 , 2 0 1 3

1 INTRODUCTION

Software product line engineering (SPLE) has proven to be the methodology for developing a diversity of software-
intensive systems at lower costs, in shorter time, and with higher quality using platforms and mass customization [1]. This
is achieved through the management of commonalities and variability in the set of systems’ artifacts.

SPLE has two central processes: domain engineering and application engineering.The former is responsible for
establishing the reusable platform and thus for defining the variability and the commonality of the product line (PL). The
platform consists of all types of software artifacts (requirements, design, realization, tests, etc.). Traceability links between
these artifacts facilitate consistent and systematic reuse.The latter process is responsible for deriving product line
applications from the platform established in domain engineering. It exploits the variability of the product line and ensures
the correct binding of the variability according to the product’ specific needs.

Variability can be defined either in a separate variability model or as an integral part of development artifacts. Many
contributions have suggested the integration of variability in software development models and diagrams such as class
diagrams, feature models and use case diagrams. Nevertheless, it has some disadvantages [2]: the variability spread
across different artifacts become almost impossible to keep the information consistent; the single artifacts often leads
ambiguous information; an increasing complexity of the software models by adding the variability definitions; a low
integration since the concepts used in different kinds of development artifacts differ between them; and the influence of
bias in the variability information which come from specific needs of analysis, design, realization, or test artifacts.

Pohl et al. [2] propose a separate model to define the variability of the software product line (SPL). They introduce an
Orthogonal Variability Model (OVM) which provides a cross-sectional view of the variability across all software
development artifacts. An OVM relates the variability defined to other software development models such as feature
models, use case models, design models, component models, and test models.

The idea behind OVM is similar to feature model (FM), but OVM focuses on artifacts relationships whereas FM
emphasizes the features decomposition. Therefore we examine some operations (or functions) of automated analysis of
feature models (FMs) to be applied in automated analysis of OVM. Kang et al. [3] and Benavides et al. [4] have identified
and discussed a complete sets of operations. For this work we only tackle three functions: detection of dead nodes, finding
a product, and obtaining all products, however further issues can be covered with our proposal.

(i) Detection of dead nodes: a dead node represents a variation point or variant that never appears in any configuration of
a SPL. These unviable nodes lead to inconsistency problems which cause an increase in complexity and a reduction of
maintainability.

(ii) Finding a product: this function returns a product which configuration is feasible.

(iii) Obtaining all products: this function returns all possible products. This operation plays a central role during the product
line evolution, since all products previously generated must be valid after the changes.

The function (i) refers to a consistency problem while (ii) and (iii) are grouped into satisfiability problem.

Even though these operations will avoid ambiguities and inconsistency, there is still a lack of automated support. Some
researches have proposed the use of formal methods to study both FMs [5, 6, 7, 8] and orthogonal variability models [9,
10]. Each one of them use different formalism, e.g., propositional logic and constraint programming. These techniques
allow the automation check throughout SPLE, both at early stages of development as well as during evolution.

In this work we will introduce a novel approach for automated support of OVM using Petri nets (PNs). The central idea is
to represent the dependencies and constraints within in OVM, and next, analyze the properties of the resulting Petri net.

The remainder of this paper is structured as follows. In Section II we present an overview of OVM meta model and Petri
net formalism. Section III describes our approach and the proposed topologies. The formalization of the model is given in
Section IV. The approach is applied to an example in Section V. Finally, Section VI is dedicated to conclusions and future
works, respectively.

2 OVM META MODEL AND PETRI NETS

In this section, we introduce the Orthogonal Varibility Model technique and Petri nets formalism.

2.1 OVM meta model

An OVM is a model that defines the variability of a software product line. It relates the variability defined to other software
development models such as feature models, use case models, design models, component models, and test models [2].

The two central elements of OVM depicted in Fig. 1 are the variation point (VP) and variant (V). A VP documents a
variable item (what vary) and a V documents the possible instances of a variable item (how a VP can vary). There are two
types of relationships between variation points (VPs) and variants (Vs): variability dependency and constraint dependency.

A variability dependency represents that a VP offers a certain V and it is specialized into mandatory and optional. The
former states that a V must beselected for an application if and only if the associated VP is part of the application. The
latter defines that a V can (but does not need to) be a part of the application. A set of Vs that are related through an
optional variability dependency (to the same VP) can be grouped into an alternative choice which are constrained by the

cardinality maximum and minimum (min and max in Fig. 1).

 ISSN 22773061

997 | P a g e J u l y 1 5 , 2 0 1 3

A constraint dependency documents a restriction that exists between two Vs, a VP and a V, or two VPs; and it is either of
the type requires or excludes. An excludes (requires) constraint specifies a mutual exclusion (implication) between two
elements.

Fig 1: OVM meta model proposed in [2]

2.2 Petri net formalism

Petri nets are a well-known graphical and mathematical modeling tool [11, 12]. A Petri net (PN) is a directed graph
consisting of two kinds of nodes, called transitions and places, where arcs are either from a transition to a place or from a
place to a transition.In graphical representation, transition are drawn as boxes and places as circles.Arcs are labeled with
their weights (positive integers, ℕ), where a k-weighted arc can be interpreted as the set of k parallel arcs. Labels for unity

weight (k-1) are omitted.A marking (M) assigns to each place a nonnegative integer (ℕ0). If a marking assigns to place p a
nonnegative integer k, we say thatp is marked with k tokens.

In this work we use the concept of conditions and events, where places represent conditions, and transitions represent
events.A transition (event) has a certain number of input and output places representing the pre-conditions and
postconditions of the event, respectively. The presence of a token in a place is interpreted as holding the truth of the
condition associated with the place.

3 THE APPROACH

In this contribution we introduce a PN approach to represent and study OVMs. The OVM elements and the main activities
of application engineering are dealt from an event/condition perspective. To be more precise, the selection of a variation
point and the selection of a variant during the product derivation process are represented by the events (transitions), the
variation points, variability and constraint dependencies are the pre-conditions (places), and the variants selected are the
post-conditions (places).

The goal is to study the behavior of the PN and show the relationships between their markings (𝑴) and the valid

configurations of the underlying OVM. The interesting 𝑴 are those which no transitions are enabled (leaf nodes in the

reachability graph), in other words, all decisions about the inclusion of variation points and variants have been taken.
Although the following PNs belong to trivial OVMs, they can also be combined to support models with increasing
complexity.
We briefly introduce the notation used throughout the paper. Given the place 𝒑𝟏 represents the variant𝑽𝟏, 𝑴 the marking,
and 𝑴(𝒑𝟏) the number of tokens in 𝒑𝟏, whereas 𝑴 𝒑𝟏 = 𝟏 depicts the consideration of the variant 𝑽𝟏, 𝑴 𝒑𝟏 = 𝟎

indicates the no inclusion of 𝑽𝟏. The firing sequence 𝝈 is the chain of events (selections) to reach that marking.

3.1 Variability dependency

A variability dependency is an association between a variation point and a variant, and it is specialized intomandatory and
optional (Fig. 1).

3.1.1 Mandatory

A mandatory dependency states that the consideration of a VP implies the inclusion of the Vs associated to that VP.

 ISSN 22773061

998 | P a g e J u l y 1 5 , 2 0 1 3

In the OVM shown in Fig. 2 (a), the variants 𝑉1 , 𝑉2, … 𝑉𝑛 are associated to 𝑉𝑃1 through mandatory dependencies. There are

two configurations {∅, 𝑉1 , 𝑉2, … 𝑉𝑛 }. The former (∅)does not include the variation point. The latter configuration
(𝑉1 , 𝑉2, … 𝑉𝑛) considers 𝑉𝑃1 together with all variants.

VP1

VP

V1

V

…….
Vn

V

(a) (b)

n

……..

1t

1p

2p 3p

41
p

2t

31t nt3

n
p

551
p

n
p

4

Fig 2: Mandatory dependency. In (a) 𝑽𝑷𝟏 and their mandatory variants 𝑽𝟏,𝑽𝟐, …𝑽𝒏. In (b) the topology proposed.

In the PN illustrated in Fig. 2 (b) the place 𝑝1represents 𝑉𝑃1, the transitions 𝑡1 and 𝑡2 the events no-selection and selection

of 𝑉𝑃1 respectively. Each 𝑡3𝑖 corresponds to the selection of the variant 𝑖. Places 𝑝4𝑖 constraint the maximum number of

selection of a variant (OVM allows up to 1 instance for each variant), and places 𝑝5𝑖 indicates the selection of the variant 𝑖.
Finally, 𝑝3 enables the variant selection transitions.

The only one token in 𝑝1 enables𝑡1and 𝑡2, but exactly one can be fired.If𝑡1 fires, no other transitions is enabled and 𝑉𝑃1 is

not included. The marking 𝑀 𝑝51 = 𝑀 𝑝52 = 𝑀 𝑝5𝑛 = 0 corresponds to the configuration∅.Otherwhise, if𝑡2 fires,𝑛tokens

are put in 𝑝3 and transitions 𝑡31 , … 𝑡3𝑛 are enabled.After firing the transitions, 𝑀 𝑝51 = 𝑀 𝑝52 = 𝑀 𝑝5𝑛 = 1 which

represent the configuration (𝑉1 , 𝑉2, … 𝑉𝑛).

3.1.2Optional

In an optional dependency the consideration of a VP does not imply necessarily the inclusion of the V.

In the OVM shown in Fig. 3 (a), the variation point 𝑉𝑃1 is related through an optional variability dependency to the variants

𝑉1 , V2 , … Vn . The possible configurations are: ∅ and 𝑉𝑃1 ∪ 𝒫(𝑉1 , V2 , … Vn) (𝒫 indicates the power set).

The topology (Fig. 3 (b)) is similar to the above PN (Fig. 2 (b)) but is extended with the addition of 𝑡4, 𝑝6, and 𝑝7.

𝑡4corresponds to the event no-selection of variant, and 𝑝6 and 𝑝7 indicate the maximum event occurrences and the

effective occurrences respectively. In this case the number of tokens of 𝑝6 is the amount of variants (𝑛 in Fig. 3 (b)).

As stated above after firing 𝑡1 no other transitions is enabled. The resulting marking is 𝑀 𝑝51 = 𝑀 𝑝52 = 𝑀 𝑝5𝑛 = 0 and

no variants is included (configuration ∅). Otherwise, if 𝑡2 is fired,𝑛tokens are put in 𝑝3, and transitions 𝑡31 , … 𝑡3𝑛 are

enabled. After selecting the variants, the rest of tokens in 𝑝3 will be consumed by 𝑡4.

VP1

VP

V1

V

…….
Vn

V

(a) (b)

n

……..

1t

1
p

2p
3p

41p 51p

2t

31t
nt3 4t

n

np4 np5 6p 7p

Fig 3: Optional dependency. In (a) the 𝑽𝑷𝟏 and their optional variants 𝑽𝟏, 𝑽𝟐, …𝑽𝒏. In (b) the topology proposed.

3.1.3Alternative choice

An alternative choice groups a set of Vs and defines a range [𝑚. . 𝑛] for the amount of Vs to be selected, with 𝑚and 𝑛 the
minimum and maximum cardinality respectively (𝑚𝑖𝑛 and 𝑚𝑎𝑥 in Fig. 1).

The topology is similar to the previous PN (Fig. 3 (b)) but the initial marking of𝑝6is𝑛 − 𝑚. It means that at least 𝑚 variants

must be included. An alternative choice will be show in the case study in Section 5.

3.2 Constraint dependency

 ISSN 22773061

999 | P a g e J u l y 1 5 , 2 0 1 3

A constraint dependency documents a restriction that exists between two Vs, between a VP and a V, or between two VPs.
Each restriction is either of the type requires or excludes.

VP1

VP

V1

V

Requires_v_v

V1

V

V2

V

Requires_vp_vp

VP2

VP

VP1

VP

(a)

t1
p1

t2

(b)

Requires_v_vp

Fig 4: Requires dependency. In (a) the three types of requires constraints and their topology (b).

3.2.1Requires constraint

In a requires constraint the consideration of a variation point (or variant) implies the inclusion of another variation point (or
variant).

Fig. 4 (a) illustrates the dependencies 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑠_𝑣_𝑣𝑝, 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑠_𝑣_𝑣 and 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑠_𝑣𝑝_𝑣𝑝 and (b) thetopology proposed.
The transitions 𝑡1 and 𝑡2 represents the events selection of variation point (or variant) and the place 𝑝1corresponds to the

constraint. After firing 𝑡1 (event unrestricted), 𝑡2 (event restricted) is enabled.

3.2.2Excludes constraint

A excludes constraint indicates that two variation points, two variants or a variation point and a variant are mutually
exclusive.

Fig. 5 (a) illustrates the dependencies 𝐸𝑥𝑐𝑙𝑢𝑑𝑒𝑠_𝑣_𝑣𝑝, 𝐸𝑥𝑐𝑙𝑢𝑑𝑒𝑠_𝑣_𝑣 and 𝐸𝑥𝑐𝑙𝑢𝑑𝑒𝑠_𝑣𝑝_𝑣𝑝 and (b) the topology proposed.

The transitions 𝑡1 and 𝑡2 represents the events selection of variation point (or variant) and the place 𝑝1 indicates the

constraint. The token in 𝑝1 enables 𝑡1 and 𝑡2 but only one can be fired.

VP1

VP

V1

V

Excludes_v_v

V1

V

V2

V

Excludes_vp_vp

VP2

VP

VP1

VP

(a)

t1
p1

t2

(b)

Excludes_v_vp

Fig 5: Excludes dependency. In (a) the three types of excludes constraints and their topology (b).

4 CONCEPTS AND PROPERTIES OF THE TOPOLOGY PROPOSED

In this section we provide PNs concepts and properties in terms of OVM.

 ISSN 22773061

1000 | P a g e J u l y 1 5 , 2 0 1 3

4.1 Concepts

The meaning of some Petri net concepts helps to understand the relationship between the dynamic of the PN and the
configurations allowed by the OVM.

4.1.1Marking

A marking is am-vector where m is the total number of places. The i-th component of M (M(i)), is the number of tokens in
place i. Each M depicts a specific product (or configuration) of the product line and tokens indicate which variation points
and variants are included.

The interesting markings are those with no transition enabled denoted by dead-end. In these markings all decisions have
been made and there are not unresolved variabilities.

4.1.2Token

The presence of a token in a place has several meanings according to the OVM concept associated. In the case of
variation point (variant) a token states that the variation point (variant) is included. In a constraint dependency, the token
ensures the accomplishment of mutually exclusive (inclusive) constraint disabling (enabling) a transition after firing another
one. In the case of cardinality, the number of tokens in a place restrict the maximum or minimum of transition that can be
fired, when the place is empty no more variants can be selected.

4.1.3Firing sequence

The firing sequence from the initial marking to a dead-end points out the sequence of transition (or events) to reach a
marking. This sequence gives information about the selection of VP and selection of V necessary to set a configuration. Of
course, not all sequences are possible since dependencies gives rules, e.g., the selection of a variation point is previous
to the selection of their variants.

4.2 Properties

One of the major strength of Petri nets is their support for analysis of problems and properties associated with dynamic
systems. We focus on those properties which are closely related with the functions identified in Section I. In the following
we will explain how boundedness, reachability and liveness allow to deal with consistency and satisfability problems.

4.2.1Liveness

This property is related with the absence of deadlocks. There are five different levels of liveness, we focus on L1-live also
called potencially firable. A PN is said to be L1-live if all transitions can be fired at least once in some firing sequence.

In the topologies proposed each variation point and variant is associated to some transition; therefore if exist at least one
firing sequence for any VP and V, there is not any dead node. L1-live provides sound basis for function (i) detection of
dead nodes.

4.2.2Reachability

A reachability graph (RG) of a Petri nets contains all possible reachable markings for a given initial marking. Nodes
represent markings and its successors and each arc indicates the transitions which transforms one marking to another.
This property helps to find all possible configurations of a product line and allows to deal with functions (ii) finding a
product and (iii) obtaining all products.

4.2.3Boundedness

The reachability is closed related with the boundedness. A reachability graph of a PN has a finite number of states if and
only if the PN is bounded. A net with this property allows to discover all possible products and no overflow occurs.

5 CASE STUDY: ELECTRONIC PAYMENT

The following case study describes partially the variability of aelectronic payment (e-payment) for a software product line.
Initially we introduce the OVM diagram which takes only the payment aspects, then build a Petri net for representing the
OVM diagram and we finish studying their properties.

5.1 OVM diagram for electronic payment

The OVM diagram illustrated in Fig. 6 presents the variation points: 𝑒 − 𝑝𝑎𝑦𝑚𝑒𝑛𝑡(𝑉𝑃1), 𝑐𝑎𝑠ℎ 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 (𝑉𝑃2) and

𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦(𝑉𝑃3). The variant 𝑑𝑒𝑏𝑖𝑡 𝑐𝑎𝑟𝑑 (𝑉1) is mandatory for 𝑉𝑃1. The variants ℎ𝑡𝑡𝑝𝑠(𝑉2) and 𝑠𝑠𝑙(𝑉3) are optional for 𝑉𝑃3 and

defines an alternative choice with range [1..1]. The variants associated to 𝑉𝑃2 does not affect the rest of dependencies so

they were not included in the OVM diagram. Finally the constraint dependencies shown the mutually exclusion between
𝑉𝑃2 and 𝑉2 (𝐸𝑥𝑙𝑢𝑑𝑒𝑠_𝑣𝑝_𝑣𝑝) and the implication between 𝑉𝑃1 and 𝑉𝑃3 (𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑠_𝑣𝑝_𝑣𝑝).

 ISSN 22773061

1001 | P a g e J u l y 1 5 , 2 0 1 3

e-payment

VP

cash

machine

VP security

VP

debit card

V

https

V

ssl

V

Requires_vp_vp

Requires_vp_vp

Excludes_vp_v

[1..1]

Fig 6: Case study: electronic payment

5.2 𝑷𝑵𝑶𝑽𝑴for electronic payment

The PN for electronic payment is shown in Fig. 7. The places 𝑝1, 𝑝6 and 𝑝8 corresponds to the variation points 𝑉𝑃1, 𝑉𝑃2
and 𝑉𝑃3; 𝑝5, 𝑝12 and 𝑝14 represents the variants 𝑉1, 𝑉2, and 𝑉3; 𝑝15 is the constraint dependency 𝐸𝑥𝑐𝑙𝑢𝑑𝑒𝑠_𝑣𝑝_𝑣 (𝑉𝑃2 - 𝑉2);

and 𝑝17, 𝑝16 corresponds to the constraint dependencies 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑠_𝑣𝑝_𝑣𝑝 (𝑉𝑃1 - 𝑉𝑃3 and 𝑉𝑃3 - 𝑉𝑃2).

The interpretation of the places 𝑝2, 𝑝7, 𝑝9, 𝑝3, 𝑝10, 𝑝4, 𝑝11 and 𝑝13 is not directly observable from the OVM diagram and

their meaning is related to the cardinalities and rules explained in Section III.

The transitions 𝑡2, 𝑡5 and 𝑡6 (𝑡1, 𝑡4 and 𝑡7) represents the selection (no-selection) of variation point; and 𝑡3, 𝑡8 and 𝑡9
corresponds to the selection of variant 𝑉1, 𝑉2 and 𝑉3 respectively.

1t 2t

3t

4t 5t 6t 7t

9t8t

1
p

2
p

3
p

4
p

5
p

6
p

7
p

8
p

9
p

10
p

11
p

12
p

13
p

14
p

15
p

16
p

17
p

Fig 7: OVM for electronic payment

 ISSN 22773061

1002 | P a g e J u l y 1 5 , 2 0 1 3

5.3 Analysis of 𝑷𝑵𝑶𝑽𝑴 electronic payment using the reachability graph

The Fig. 8 (a) illustrated the reachability graph of the 𝑃𝑁𝑂𝑉𝑀electronic payment. For simplicity the nodes only described a

subset of places, those which corresponds to variation points, variants and constraint dependencies.

Fig 8:𝑷𝑵𝑶𝑽𝑴 of e – payment. (a) shows the reachability graph, and (b) dead-ends and firing sequence.

The top node (111000001) is the initial marking and the terminal nodes (gray scale) are the four affordable configurations
in the software product line, for example 000101000 indicates the configuration {debit card, ssl}. The reachability graph
also provides information regarding the sequence of events to reach such configurations. The independence of certain
events (those without any constraint dependency) results in several paths to the same dead-end. Fig. 8 (b) shows some
firing sequence and the corresponding dead-end node.

By examining the graph we can get information about the consistency and satisfability of the underlying OVM. All
transitions concerning variation points (𝑡2, 𝑡5and 𝑡6) can be fired in some sequence, then all variation points live. However

the situation is certainly different in the case of variants, whereas the transitions 𝑡3 and 𝑡9 are firable, 𝑡8 is nonfirable for

any firing sequence, thus ℎ𝑡𝑡𝑝𝑠will never be included during the product derivation.With respect to satisfability, the set of

configuration allowed is {∅, 𝑠𝑠𝑙 , 𝑑𝑒𝑏𝑖𝑡 𝑐𝑎𝑟𝑑, 𝑠𝑠𝑙 } (shown in Fig. 8 (b)). Note that configuration 000000010 (*) is related to
𝑉𝑃2 which is not completely covered in this example.

6 CONCLUSIONS AND FUTURE WORK

Some general problems and operations of feature modeling identified in [3] and [4] can be observed in OVMs as well. In
that sense, this paper introduced a Petri net approach for representing and studying OVMs during the development and
evolution of a software product line. We defined set of elemental topologies of PNs which dealts the OVM concepts and
rules from a event/condition perspective. Then, we focused on Petri net properties and shown that liveness, reachability
and boundedness provide a sound basis for analyzing satisfiability and consistency functions mentioned above.Finally, the
case study electronic-payment was developed using our approach and reported that the variant debit card will never be
included in any product.

An important challenge is the size of the variability models. Benavides et al. [4] observe an ascendant tendency in the
amount of features in last years, from 15 features used in 2004 up to 300 features in 2010. The increasing complexity
plays a key role in the evaluation of techniques and tools. Future work will be address toward the use of reduction rules for
Petri nets in order to facilitate the analysis by reducing the system model to a simpler one, while preserving the properties.

Another trend is to study other Petri net properties such reversibility and synchronic distance. The reversibility could help
us to recover the initial marking given the possible configurations (or products). Synchronic distance is a metric closely
related to a degree of mutual dependence between two events, and could provide qualitative information of product line
variability.

A third issue is to extend the topologies proposed to feature modeling. Since FMs and OVMs share variability and
dependency constraints (e.g., excludes, includes, and alternative choice) we will applied the same event/condition
perspective of Petri nets for studying feature models.

 ISSN 22773061

1003 | P a g e J u l y 1 5 , 2 0 1 3

ACKNOWLEDGEMENTS

The authors wish to acknowledge the financial support received from CONICET,Universidad Tecnológica Nacional and
Agencia Nacional de Promoción Científicay Tecnológica (PAE-PICT 02315).

REFERENCES

[1] Northrop, L., Clements, P. 2009. A framework for Product Line Practive. Version 5.0. Software Engineering Institute.
Carnegie Mellon University. http://www.sei.cmu.edu/productlines/frame_report/index.html (ver. 06/24/2013).

[2] Pohl, K., Böckle, G., van der Linden F. 2005. Software Product Line Engineering: Foundations, Principles, and
Techniques. Springer Heidelberg.

[3] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson S. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report CMU/SEI-90-TR-21. Software Engineering Institute. Carnegie Mellon University.

[4] Benavides, D., Segura, S., Ruiz-Cortés A. 2010. Automated analysis of feature models 20 years later: A literature
review. Journal of Information Systems 35 (2010) 615-636.

[5] Batory, D. 2005. Feature models, grammars, and propositional formulas. In Software Product Lines Conference.

[6] Sun, J., Zhang, H., Li, Y., Wang H. 2005. Formal semantics and verification for feature modeling. In Proceedings of
ICECSS05.

[7] Benavides, D., Ruiz-Cortés, A., Smith, B., O’Sullivan, B., Trinidad, P. 2006. Computational issues on the automated
analyses of feature models using constraint programming. International Journal of Software Engineering
andKnowledge Engineering.

[8] Benavides, D., Ruiz-Cortés, A., Trinidad, P. 2005. Using constraint programming to reason on feature models. In the
17

th
 International Conference on Software Engineering and Knowledge Engineering.

[9] Metzger, A., Heymans, P., Pohl, K., Schobbens, P., Saval, G. 2007. Disambiguating the Documentation of
Variabilityin Software Product Lines. In the 15

th
IEEE International Requirements Engineering Conference, pp. 243-

253.

[10] Lauenroth, K., Pohl, K. 2008. Dynamic Consistency Checking of Domain Requirements in Product Line Engineering.
In the 16

th
IEEE International Requirements Engineering Conference, pp. 193-202.

[11] Murata, T. 1989. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, Vol. 77:4.

[12] Peterson, J. 1977. Petri Nets. ACM Computing Surveys, Vol. 9:3.

http://www.sei.cmu.edu/productlines/frame_report/index.html

