
 ISSN 22773061

949 | P a g e J u l y 1 5 , 2 0 1 3

A Comparative Evaluation of approaches for Model Testability

Pourya Nikfard1, Suhaimi bin Ibrahim2, BabakDarvish Rohani3, Harihodin bin

Selamat4, MohdNaz’ri Mahrin5
Advanced Informatics School (AIS), University Technology Malaysia (UTM), International campus,

Kuala Lumpur, Malaysia

{1npourya2@live.utm.my,2suhaimiibrahim@utm.my,3drbabak3@live.utm.my,
4harihodin@ic.utm.my,5mdnazrim@utm.my}

Abstract- Design for testability is a very importantissue in software engineering. It becomes crucial in
the case of Model Based Testing where models are generally not tested before using as input of
Model Based Testing. The quality of design models (e.g.; UML models), has received less attention,
which are main artifacts of any software design. Testability tends to make the validation phase more
efficient in exposing faults during testing, and consequently to increase quality of the end-product to
meet required specifications. Testability modeling has been researched for many years.
Unfortunately, the modeling of a design for testability is often performed after the design is complete.
This limits the functional use of the testability model to determining what level of test coverage is
available in the design. This information may be useful to help assess whether a product meets the
target requirement to achieve a desired level of test coverage, but has little pro-active effect on
making the design more testable.

Council for Innovative Research

Peer Review Research Publishing System

Journal: INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY

Vol 9, No 1

editor@cirworld.com
www.cirworld.com, member.cirworld.com

mailto:%7B1npourya2@live.utm.my,2suhaimiibrahim@utm.my,3drbabak3@live.utm.my
http://member.cirworld.com/
http://www.cirworld.com/
http://www.cirworld.com/

 ISSN 22773061

950 | P a g e J u l y 1 5 , 2 0 1 3

1. Introduction

Software testing is a significant part of both the software lifecycle and quality assurance activities. In simple form, testing is the
software products dynamic execution in order to show the errors presence. Software testing is costly, and it is considered as
the final barrier to the software product release. Model-based testing (MBT) is an automation of black box testing technique; its
major difference from the conventional methods of black box testing is that the test cases are

automatically produced by software tools that develop the expected behavioral models of the software under the test (SUT).
MBT has conveyed a lot of benefits. These contain errors early detection, which is measured to be very cheap. The major MBT
liability is to knowing how to model SUT (Reza, Ogaard, &Malge, 2008).

Model-based testing (MBT) is a rising trend in test automation. In MBT, the SUT is modeled at an appropriate level of
abstraction for testing, and tools are used to automatically create test cases based on this model. Given a set of appropriate
methods and tools, MBT has been demonstrated to be a helpful and efficient means for high-level testing in diverse domains.
Some benefits comprise decreased costs of maintenance in concentrating on a single high-level model, and boosted test
coverage over the features expressed in the test model by the means of automated test generation (Puolitaival&Kanstrén,
2010).

Model-based testing (MBT) defendants the systematic use of software models in particular for testing activities, e.g. creation of
test oracles, test execution environments and test cases. If a software model is well appropriate for activities of testing, we
speak of a testable model. Thus, software models testability is a significant quality representing the degree to which a software
model helps activities of testing in a given test context. The software models testability should already be analyzed and
enhanced at modeling time before MBT activities start. This assists to save costs for the detection and correction of defects of
testability in later stages.

For models used in model-based testing, their testability evaluation is a significant problem. Existing approaches lack some
related features for a systematic and complete evaluation. Either they do (1) not think about the context of models of software,
(2) not propose a systematic process for choosing and developing right dimensions,

(3) not describe a reliable and general understanding of quality, or (4) not separate between subjective and objective
measurements (Voigt & Engels, 2008).

Testability is a property of program that is introduced with the purpose of forecasting efforts need for testing the program. To
quantify the program testability is to relate the program with some numbers to present the degree of how easy are those
definite testable properties in the program to be tested. High testability software means that errors could be discovered more
easily during testing (if the software exist errors). Otherwise, it is complicated to be tested and is likely to be fewer reliable.
Therefore the number of tests need in a program may be taken as the quantify of its testability. There has not been an
instinctively acceptable measure of program testability. Software testability is the degree to which a software artifact (i.e. a
software module, software system, design document or requirements) supports testing in a test context that given. Testability is
not an inherent property of a software artifact and cannot be calculated directly (such as software size). Instead testability is an
extrinsic property that results from software interdependency to be tested and the test goals, test methods used, and test
resources (i.e., the test context). A minor degree of testability results in enhanced test effort. In tremendous cases a testability
lack may hinder software testing parts or software requirements at all (Yeh& Lin, 1998).

2. Model Testability approaches

2.1 Measuring design testability of a UML class diagram

In this paper, the authors identified two configurations in a UML class diagram that can lead to code difficult to test. These
configurations are called testability antipatterns, and can be of two types, either class interaction or self-usage interaction.
Those anti-patterns between classes may be implemented as interactions between objects in which case, the final software
may be very difficult to test. The paper proposes a test criterion that forces to cover all object interactions. It also defines a
model that can be derived from a class diagram, and from which it is possible to detect, in an unambiguous way all the anti-
patterns. From this model, it is also possible to compute the complexity of anti-patterns which is the maximum number of object
interactions that could exist (and should be tested). The testability measurement corresponds to the number and complexity of
the antipatterns (Baudry&Traon, 2005).

2.2 Quality Plans for Measuring Testability of Models

In this paper, the authors focused on the evaluation of software models that are used for testing activities. They introduced the
Model Quality Plan (MQP) approach for measuring quality of software models. They presented by an example how a MQP can
be systematically developed for measuring the testability of UML statecharts. The MQP approach is based on a combination of
the Goal Question Metric (GQM) and quality models. It consists of a top down process and a related metamodel. The process
guides one how to develop a Model Quality Plan (MQP) and the metamodel states how a MQP may look like. The most
important differences of their approach in respect to GQM are (1) adoption of the context characterization,

(2) integration of quality models, (3) refinement of measurement level, and (4) the formalization of their approach by an
integrated UML model. Due to the documentation of a set of intermediate products and their high degree of details the initial
effort for applying their approach remains heavy. Nevertheless, they are convinced that their approach is cost effective in the
long term. Involving context factors tap the full potential to reuse existing quality plans. In addition, the systematic usage of
context factors for the identification of information needs makes their approach more efficient. Last but not least the
development effort can be considerably reduced by a dedicated tool support (Voigt & Engels, 2008).

2.3 Using UML Models and Formal Verification in Model-Based Testing

The authors presented an approach on combining UML modeling with formal verification in order to improve the quality of the
models used for automated test derivation. While incorporating formal verification in the overall process gave number of
advantages. Firstly, the quality of the models was improved allowing them to detect inconsistence in the models that were not

 ISSN 22773061

951 | P a g e J u l y 1 5 , 2 0 1 3

detected by their custom OCL validation rules. Secondly, while modeling with UML-B, they observed several ambiguities, or not
well-explained details, in the specifications that might have been difficult to observe by using UML only. In a way, by using
formal specifications, they better understood the functionality of the SUT. However, it also increased the complexity of the
model as we had to add more details just to prove the system correct. At the moment, traceability of requirements from test
cases into formal models is not performed. However, this can be done by attaching textual requirements, taken from
requirement model, to the generated Event-B specifications. This would certainly help to find which part of the system has
passed or failed the

test and constitute a topic for our future work (Malik et al., 2010).

2.4 A Novel Quality Model for UML Models

In this paper, a continuous quality assessment and improvement methodology for UML have been proposed, which is based on
quality model. The quality model uses inclusion relationship for three types of model Completeness, these are: incomplete,
complete and executable UML models. The quality attributes of each quality attributes are adopted from a generic quality
model ISO/IEC 9126. The three types of model completeness takes into account the different level of model completeness or
different level of abstraction of UML model developed during software development phases. The purpose of the quality model is
to provide a way to the modeler to select appropriate methods for continuous quality assessment and improvement of UML
models (Jalbani et al., 2012).

2.5 Method for Improving Design Testability through Modeling

In this paper, authors mentioned that testability modeling is part of an overall strategy. In order to utilize testability modeling it is
important to understand what role it will take in the products test strategy. With this understanding, a definition of what needs to
be modeled and to what extent can be generated. From this, the testability modeling can be performed. The information yielded
by the testability modeling can then be utilized as part of the design processes of investigation, analyzing alternatives, acting on
the alternatives to yield the optimum balance of test within a product design. Documenting the testability decisions, actions and
reasons behind them will provide information that is useful through the products lifecycle, potentially leading to reduced lifecycle
costs (Emmert, 2010).

2.6 Contract-Based Software Component Testing with UML Models

The authors in this research extended the DbC concept to the SCT domain, and developed a new TbC technique with a key
aim to bridge the gap between ordinary UML models (non-testable) and target test models (testable) and improve model-based
component testability for effective UML-based SCT. Moreover, they introduced the new concept of test contract as the key
testing-support mechanism, and the new concept of Contract for Testability as the principal goal of the TbC technique. They
described the concept of test contracts based on basic component contracts, classified test contracts into internal and external
test contracts for effective testing based on the new concept of effectual contract scope, and developed a set of TbC test
criteria to realise testability improvement for achieving the CfT goals. Then, following the developed TbC working process, they
put the TbC technique into practice to conduct UML-based CIT with the CPS case study and described and discussed contract-
based component test model construction, component test design, and component test generation (Zheng&Bundell, 2008).

2.7 Research and Practice of the IVF Software Testability Model

Authors in this paper first analyze and review the research and practice of existing software testability models and various
factors which affect software testability in software development process and then proposes an IVF (Iteration of Vector
Factorization) software testability model based on years of statistics and analysis of test data of the Software Test and
Evolution Center and validates it with practice. The IVF testability model is compact and practical and can directly be applied to
the

practice of software engineering (Wri et al., 2010).

2.8 A measurement framework for object-oriented software testability

The framework presented in this paper provides practical and operational guidelines to help assess the testability of designs
modelled with the UML. These guidelines are presented in such a way that the evaluation procedure can be tailored to the
specific design and test strategies employed in a specific environment. From a research viewpoint, this paper presents a
number of precise hypotheses that can be investigated through empirical means. In other words, it presents a starting point
theory that can be verified and refined by experimental means (Mouchawrab et al., 2005).

2.9 Measuring Testability of Aspect Oriented Programs

The proposed model for the assessment of testability in aspect-oriented design has been validated. The models’ ability to
estimate overall testability from design information has also been demonstrated. The proposed model is more practical in
nature having quantitative data on testability is of immediate use in the software development process. The software developer
can use such data to plan and monitor testing activities. The tester can use testability information to determine on what module
to focus during testing. And finally, the software developer can use testability metrics to review the design (Kumar, Sharma,
&Sadawarti, 2010).

3. Comparative evaluation

In this section we evaluate the above model testability approaches. We declare the achievement and main issue of each
approach.

 ISSN 22773061

952 | P a g e J u l y
1 5 , 2 0 1 3

 R

A
u
th
o
rs

Method

Achievements

Main Issue

 o

Year

w

 1)Testability anti patterns 1) Accountability

 2) class interaction 2) Accessibility

 3)self-usage interaction 3)Communicativeness

Tr
a

o
n

 4) cover all object interactions 4) Self-Descriptiveness

 5) defines a model that can be 5) Availability of built-in test

UML class

 derived from a class diagram function

6) the model is possible to detect,

6) Retest efficiency

1
 &

diagram

B
a

u
d

ry

2005

in an unambiguous way all the anti-

7) Test restartability

 patterns 8) not sufficient for both

 7) the model computes the structural and behavioural

 complexity of anti-patterns architecture

 8) The testability measurement

corresponds to the number and

 complexity of the anti patterns

 1)measuring quality of software 1)Accountability

 models 2)Accessibility

 2) Goal Question Metric (GQM) 3)Communicativeness 4)Not

 3) quality models sufficient for Self-

En
g

el
s Model 4) top down process Descriptiveness 5)Availability

2
 adoption of the context of built-in test function

 Quality

2008

5) characterization

6)Retest efficiency

Plan

integration of quality models

7)Test restartability

 &

(MQP)

V
o

ig
t 6) refinement of measurement 8)Not sufficient for both

 level structural and behavioural

7) the formalization of the

architecture

 approach by an integrated UML

 model

 8) the approach is cost effective in

 the long term

 1)Improve the quality of the models 1)Accountability

 2)Automated test derivation 2)Accessibility

 3)Detect inconsistence in the 3)Communicativeness 4)Not

 combining models that were not detected by sufficient for Self-

custom OCL validation rules

Descriptiveness 5)Availability

al
. UML

4)Using formal specification with

of built-in test function

modelling

3
 et

 UML-B and have better 6)Retest efficiency

with

M
al

ik

2010

5)Understanding the functionality

7)Test restartability

formal

 of the SUT 8)Not sufficient for both

verificatio

structural and behavioural

 n architecture

 9)Not sufficient for

 traceability of

 requirements

 ISSN 22773061

953 | P a g e J u l y
1 5 , 2 0 1 3

4

5

6

Ja
lb

a
n

i e
t

a
l.

Em
m

er
t

Zh
en

g
&

B
u

n
d

el
l

 1)The quality model uses inclusion 1)Accountability

 continuou relationship for three types of 2)Accessibility

 s quality model Completeness, incomplete, 3)Communicativeness 4)Not

 assessme complete and executable UML sufficient for Self-

models

Descriptiveness

 nt and

2)The quality attributes are

5)Not sufficient for

improvem

2012 adopted from a generic quality Availability of built-in test

ent

 model ISO/IEC 9126 function

methodol

 3)select appropriate methods for 6)Retest efficiency

 ogy for continuous quality assessment 7)Test restartability

 UML 4)select appropriate methods for 8)Not sufficient for both

 improvement of UML models structural and behavioural

 architecture

 1)design processes of investigation, 1)Accountability

analyzing 2)alternatives, acting on

2)Accessibility

 the alternatives 3)Not sufficient for

 3)to yield the optimum balance of Communicativeness

products

 test within a product design 4)Not sufficient for Self-

2010 4)Documenting the testability Descriptiveness

test

 5)decisions, actions and reasons 5)Not sufficient for

strategy

 behind them Availability of built-in test

 6)reduced lifecycle costs function

 6)Not sufficient for both

 structural and behavioural

 architecture

 1)bridge the gap between ordinary 1)Accountability

 UML models (non-testable) and 2)Accessibility

 target test models (testable) 3)Communicativeness 4)Not

 2)improve model-based component sufficient for Self-

 testability for effective UML-based Descriptiveness

 SCT 5)Not sufficient for both

 3)introduce the new concept of test structural and behavioural

TbC (Test

 contract architecture

 4)introduce the new concept of

by

 Contract for Testability

2008 Contract) 5)describe the concept of test

 technique contracts based on basic

 component contracts

 6)classify test contracts into

 internal and external test contracts

 for effective testing based on the

 new concept of effectual contract

 scope

 7)develop a set of TbC test criteria

 to realise testability improvement

 for achieving the CfT goals

 ISSN 22773061

954 | P a g e J u l y 1 5 , 2 0 1 3

 1)propose an IVF (Iteration of 1)Accountability

 Vector Factorization) 2)Accessibility

al

. Software 2)software testability model 3)Not sufficient for

validate the model with practice

Communicativeness

 developm

et

7

2010

3)The IVF testability model is

4)Not sufficient for Self-

ent

W
ri

compact and practical

Descriptiveness

methods

4)The IVF testability model can

5)Not sufficient for both

 directly be applied to the practice structural and behavioural

 of software engineering architecture

 et

 1)presents a number of precise 1)Accountability

hypotheses that can be investigated

2)Accessibility

M
o

u
ch

a
w

ra
b

8 2005 UML through empirical means 3)Not sufficient for Self-

 2)presents a starting point theory Descriptiveness

 that can be verified and refined by 4)Not sufficient for both

 experimental means structural and behavioural

architecture

 1)Validate a model for the 1)Accountability

 assessment of testability in aspect- 2)Accessibility

 oriented design 3)Communicativeness not

 2)Demonstrate the models’ ability sufficient for Self-

Sa
d

a
w

a
rt

i to estimate overall testability from Descriptiveness

 design information 4)Availability of built-in test

 3)The proposed model is more function

 practical in nature having 5)Not sufficient for both

 quantitative data on testability structural and behavioural

9
 &

UML

2010

4)The software developer can use

architecture

Sh
a

rm
a

,

such data to plan and monitor

 testing activities

5)The tester can use testability

K
u

m
ar

,

 6)information to determine on

 what module to focus during

testing

 7)The software developer can use

 testability metrics to review the

 design

4. Conclusion

This paper has aimed to provide an overview and compare recent progress in model testability. We study and
survey several approaches. But we cannot claim that these approaches are comprehensive and exhaustive.
Finally, we have comparison table with different columns that compares all the approaches. The main problem
with most of these approaches to testing is considering the behavioral architecture in model testability. It
should be noted that although the above comparison is conducted based on some prominent approaches, the
outcome of this research is not restricted to such approaches. In other words, my considered criteria either
can be served as features to

be included in a newly developing system or may be applied to help generally evaluating or selecting model
testability approaches. However the results of my comparison show that there is no single superior model
testability approach in all cases. Therefore, deciding which approach to use in a certain scenario should be
done based on its specifications and combine and present the new approach that is more comprehensive and
mature is my future work.

 ISSN 22773061

955 | P a g e J u l y 1 5 , 2 0 1 3

5. Acknowledgement

This project is sponsored by Ministry of Higher Education (MOHE) in corporation with UniversitiTeknologi Malaysia,
Research Management Centre (UTM-RMC) under Vote No: 03H74. The authors also would like to thanks those who are
directly or indirectly involved in this project.

6. Reference

Reza, H., Ogaard, K., &Malge, A. (2008). A Model Based Testing Technique to Test Web Applications Using Statecharts.
FifthInternational Conference on Information Technology: New Generations (itng 2008), 0-7695-309, 183–
188.doi:10.1109/ITNG.2008.145
Puolitaival, O.-P., &Kanstrén, T. (2010). Towards flexible and efficient model-based testing, utilizing domain-specific modelling.
Proceedings of the 10th Workshop on Domain-Specific Modeling - DSM ’10, 978-1-4503, 1. doi:10.1145/2060329.2060349
Voigt, H., & Engels, G. (2008). Quality Plans for Measuring Testability of Models. Software Engineering (pp. 1–16). Retrieved from
www.vietnamesetestingboard.org
Yeh, P., & Lin, J. (1998). Software Testability Measurements Derived from Data Flow Analysis Tatung Institute of Technology.
2nd Euromicro Conference on Software Maintenance and
Reengineering (CSMR’98) (pp. 1–7).
Baudry, B., &Traon, Y. Le. (2005). Measuring design testability of a UML class diagram.Information and Software Technology,
47(13), 859–879. doi:10.1016/j.infsof.2005.01.006
Voigt, H., & Engels, G. (2008). Quality Plans for Measuring Testability of Models. Software Engineering (pp. 1–16). Retrieved from
www.vietnamesetestingboard.org
Malik, Q. a., Truscan, D., &Lilius, J. (2010).Using UML Models and Formal Verification in Model-Based Testing.2010 17th
IEEEInternational Conference and Workshops on Engineering of Computer Based Systems, 978-1-4244(22 - 26 March 2010), 50–56.
doi:10.1109/ECBS.2010.13
Jalbani, A. A. (2011). Quality Assessment and Quality Improvementfor UML Models.
Emmert, G. (2010). Method for improving design testability through modeling.2010 IeeeAutotestcon, 978-1-4244, 1–4.
doi:10.1109/AUTEST.2010.5613613
PouryaNikfard, Mohammad HosseinAbolghasemZadeh, Suhaimi Bin Ibrahim (2013), A Comparative Evaluation of approaches for Web
Application Testing, International Conference on Soft
Computing and Software Engineering 2013 (SCSE'13), International Journal of Soft Computing and Software Engineering [JSCSE],
ISSN: 2251-7545 & DOI: 10.7321/jscse, San Francisco, CA, USA.
PouryaNikfard, HarihodinSelamat, MohdNaz’riMahrin (2012),
Functional Testing on Web Applications, Postgraduate Annual Research on Informatics Seminar (PARIS 2012).
Mohammad Reza Abbasy, PouryaNikfard, Ali Ordi and Mohammad Reza Najaf Torkaman (2012), DNA Base Data Hiding Algorithm,
International Journal on New Computer Architectures and Their Applications (IJNCAA) 2(1): 183-192 The Society of Digital Information
and Wireless Communications, 2012 (ISSN: 2220-9085).
MohammadrezaNajaftorkaman ,PouryaNikfard, Maslin Masrom, Mohammadrezaabbasy (2011), An efficient cryptographic protocol based
on DNA chip, © 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of GCSE 2011, Procedia Engineering.
Mohammad HosseinAbolghasemZadeh, PouryaNikfard, MohdNazri Kama, Suhaimi Bin Ibrahim (2013), Software Changes: Related
Software Artifacts and their Relationships, The Second International Conference on Advances in Computing and Networking (ACN -
2013), Bangkok, Thailand.
Mohammad Reza Najaf Torkaman, PouryaNikfard, Nazanin Sadat Kazazi, Mohammad Reza Abbasy, and S. FarzanehTabatabaiee
(2011), Improving Hybrid Cryptosystems with DNA
Steganography, E. Ariwa and E. El-Qawasmeh (Eds.):
194, pp. 42–52, 2011. © Springer-Verlag Berlin Heidelberg 2011.
MortezaBagherpour, PouriaNikfard, ArashGhaedMohammadi (2006), Hybrid Neural Network, Tabu search, Application to single machine
scheduling with earliness and tardiness penalty,
Proceeding of the V international conference “System Identification and Control Problems” SICPRO ’06 Moscow’
Zheng, W., &Bundell, G. (2008).Contract-Based Software Component Testing with UML Models.Computer Science and itsApplications,
2008.CSA ’08. International Symposium on, 978-0-7695(13 - 15 October 2008), 83–102.
Wri, S., Congress, W., & Engineering, S. (2010).Research and Practice of the IVF Software Testability Model.2010 Second
WorldCongress on Software Engineering, 978-1-4244, 249–252.doi:10.1109/WCSE.2010.110
Mouchawrab, S., Briand, L. C., &Labiche, Y. (2005).A measurement framework for object-oriented software testability.
Information and Software Technology, 47(15), 979–997.doi:10.1016/j.infsof.2005.09.003
Kumar, M., Sharma, P., &Sadawarti, H. (2010). Measuring testability of aspect oriented programs. Computer Applicationsand …, (Iccaie),
345–349. Retrieved fromhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5735101

 DEIS 2011, CCIS

