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ABSTRACT 

Data Stream Mining algorithms performs under constraints called space used and time taken, which is due to the 

streaming property. The relaxation in these constraints is inversely proportional to the streaming speed of the data. Since 

the caching and mining the streaming-data is sensitive, here in this paper a scalable, memory efficient caching and 

frequent itemset mining model is devised. The proposed model is an incremental approach that builds single level multi 

node trees called bushes from each window of the streaming data; henceforth we refer this proposed algorithm as a Tree 

(bush) based Incremental Frequent Itemset Mining (TIFIM) over data streams. 
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1. INTRODUCTION  

Frequent Itemsets, are the set of items appear together in given transactions over a given threshold number of times. The 

process of mining frequent itemsets is included in divergent mining methods such as formation of Association Rules for 

Market -Basket analysis, classification and clustering of documents, pages, and text in text mining, web mining, which 

enables users to uncover hidden relationships and patterns in large datasets. In a wide range of emerging applications, 

data is in the form of an enormous, continuous stream where the speed at which the data is produced outstrips the rate at 

which it can be mined [1]. This is in direct contrast to traditional static databases; thus data stream mining therefore is 

substantially deviant from conventional data mining in numerous aspects. Firstly, the absolute volume of data embedded 

in a data stream over its lifespan can be overwhelmingly huge [2]. Secondly, due to resource bottlenecks, generating 

timely responses by keeping response time to queries on such data streams is necessary [3]. Because of the issues 

stated above, data stream mining has become the subject of intense research and the problem of obtaining timely and 

accurate association rules is a contemporary research topic. There is a critical need to switch from traditional data mining 

schemes to those methods that are able to operate on an open-ended, high speed stream of data [4]. Due to the inherent 

nature of a data stream, any mining scheme faces the challenges [2] such as, since the data streams, the traditional 

approach of scanning the database multiple times for model creation is no longer feasible. The performance of the 

approaches such as association rules, clustering and classification are focus on the optimality of the frequent itemset 

mining. They're predicated on the calculations that need the alteration of data from one depiction to other, and so 

excessively use resources and incur hefty CPU overhead. This paper projects a tree based incremental frequent itemset 

mining model that is resource efficient and scalable as it performs with less memory requirements and fewer 

computational cost. It characterizes the tradeoffs among data depiction, computation, I/O and heuristics. The projected 

algorithm uses one level multi node tree based item storage for the candidate and frequent itemsets. 

2. RELATED WORK 

Syed Khairuzzaman Tanbeer et.al [5] devised a dynamic tree reformation system called CPS-tree to handle the stream 

data, which is based on prefix tree structure. This dynamic tree reformation approach reforms the tree upon receiving a 

new item, which leads to huge memory usage. Since the reformation process is continuous, the computational time and 

cost also high. 

The weighted sliding window (WSW) algorithm that devised by Pauray S.M. Tsai [6] calculates the weight of each 

transaction in each window. The WSW model accompanied with candidature maintenance, which not a feasible process 

as in terms of memory and time usage. For candidate generation, an apriori algorithm is used. MFI-Trans SW (Mining 

Frequent Item sets with in a Transaction Sensitive Sliding window) is bit-sequence based algorithm devised by Hue-Fu Li 

et.al [7], which worked on three phases. And observations indicating that “memory usage is proportional to window size”, 

“the process time is also proportional to window size in phase1 and 2”. Weighted Support Frequent Item sets mining 

(WSFI-mine) with normalized weight over data stream is devised by Yo Unghee Kim et.al [8], which discovers frequent 

itemsets in a single pass. High Utility Pattern Mining in Stream data (HUPMS) is explored by Chowdhury Farhan Ahmed 

et. al [9], which is a sliding window approach and limited to interactive mining. Mining frequent patterns from streaming 

data from multiple streams is discussed by Jing Guo,Peng Zhang et. al [10]. The resultant patterns of frequent pattern 

mining over multiple streaming data are collaborative and comparative patterns. Privacy preserving in frequent itemset 

mining over data streams is discussed and explored novel model by anushree Gowtham Ringe et. al [11]. The model 

devised by Fan Guidan et al [12] is based on matrix in sliding window over data streams, which is conceptually relative to 

our proposed TIFIM. The algorithm in [12] used two 0-1 matrices to store transaction and 2-itemsets, then we could get 

frequent item sets through some relative operation of the two matrices. Hence the experiment results empirically analyzing 

the performance of the proposed TIFIM with model devised in [12]. 

3. TREE (BUSH) BASED INCREMENTAL FREQUENT ITEMSET MINING (TIFIM) 

3.1 Caching of the Transactions 

Let setA be the attribute set contains set of attributes, and a transaction t is formed by set of attributes such that sett A . 

Let Stream S said to be sliced as windows, such that each window w represents a transaction t  

Upon receiving first transaction: 
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Let Project a set of trees with one hierarchy, such that each tree b contains a pair of attributes 

{ , | , ,  and }i j i j i set j seta a a t a t a A a A    as root and current transaction ct , which is first transaction as child. 

Since these trees are one level multi child models, hence there after we refer each tree as bush, and building a tree as 

bush formation. 

 

 

 

 

 

 

 

 

 

Fig 1: Adding transactions to bush denoted by frequent itemset 

Upon receiving a window cw , extract pairs of attributes from the transaction ct represented by cw , and then verifies that a 

bush is already formed by that pair or not, if not then forms a bush with current pair as root and current transaction ct as 

child. A sample bush formation can be addressed by the Fig 2. 

 

 

 

 

 

 

 

 

 

 

Fig 2: A bush representation of the attribute pair and set of transactions with that pair 

3.2 Finding Frequent Itemsets 

The primary representation of the transactions streamed through S is as described above. An asynchronous parallel 

process runs to find frequent itemsets in incremental manner. 

A bush represents an itemset with two attribute pair and transactions contain that pair. Assume the case of total number of 

transactions unpredictable, the coverage can be considered to measure the frequency of the itemsets. The coverage of 

two attribute itemset can be the count of number of Childs in a bush represented by that pair of attributes. 

An asynchronous parallel process called frequent itemset finder (FIF) performs as follow: 

Initially picks the bushes with coverage more than given coverage threshold cov . 

Prepare new bushes from each two bushes by union the roots and intersects the Childs, and retains it if new bush 

coverage is greater or equal to cov else discards. 

This continues until no new bush formed. 
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3.3 The pruning process  

A bush ib said to be sub-bush to bush 
jb if 

i jb br r and ( ) ( )cov cov
i jb b . Since sub-bush ib represented by

jb , then 

bush ib can be pruned from the bush-set B . 

3.4 Find frequent items  

At an event of time, frequent itemsets can be found as follows 

The roots of the bushes with coverage more than given cov can be claimed as frequent itemsets. 

A bush „ ib ‟ coverage can be find as follows 

If a bush 
jb found to be such that 

i jb b and coverage value of 
jb is higher than any other bush kb such that i kb b , 

then the coverage of ib said to be ( ) ( )cov cov
j ib b . 

3.5 An algorithmic representation of the caching processes 

Input: At an event of time a window iw with transaction it received 

For each transaction it : 

Let set of attributes 1 2 3 1 2 3 1 2 3{( , , ,......... ) ( , , ,......... ) ( , , ,......... ) }i i i i seta a a a a a a a t a a a a A     

For each pair of attributes{( , ) ( , ) }m n m n ia a a a t  , if found a bush { ( , )  }i m nb a a as root  then add transaction it as 

node to bush ib , else prepare a bush such that { ( , )  t   }i m n ib a a as roo t as node 
 

3.6 An algorithmic approach of FIF 

The bush set B prepared by caching process is said to be input to FIF 

For each bush { }i ib b B  perform the following: 

For each bush ( : 1,2,3....... ) )i c i cb c n b B      

Forms a bush 
( ) ( ){ }i i c i i cb b B     by Union the roots of the „ ib ‟and „ i cb  ‟ (

( ) ( )i i cb br r


 ) and intersects nodes of ib

and i cb  (
( ) ( )i i cb bts ts


 ). 

4. PERFORMANCE ANALYSIS 

4.1 Datasets 

Acquiring a real life dataset is quite difficult due to the fact that many organizations refuse to part with their data because 

of the sensitivity and confidentiality of the data. Therefore, artificial synthetic data generators such as IBM are very 

commonly used by researchers to   evaluate and benchmark their algorithms' Performances. The experimentation is 

carried out with the help of synthetic datasets that are generated through the use of a dataset generator that is publically 

available [13]. 

4.2 Performance Metrics 

The TIFIM is evaluated against certain commonly used performance metrics such as   Accuracy (in terms of Recall and 

Precision), Computational performance (in terms of time taken to process the dataset under divergent support values), 

and Memory consumption in terms of   number of bushes maintained in memory. Recall and precision can be defined. 

| |

| |

afi tfi

afi
Recall =


 



           ISSN 22773061 
              

1584 | P a g e                                                            A u g  2 0 ,  2 0 1 3  

| |

| |

afi tfi

tfi
precision =


 

Here in the equations, afi indicates the actual frequent itemsets, tfi indicates traced frequent itemsets. 

4.3 Experimental results 

We compare our algorithm with frequent itemset mining model for data streams devised in [12], which is a matrix based 

frequent itemsets mining algorithm for data streams. The implementation of TIFIM and model devised in [12] done by 

using java 7 and set of flat files as streaming data sources. The streaming environment is emulated using java RMI and 

parallel process involved in proposed TIFIM is achieved by using java multi threading concept. The three parameters of 

each synthetic dataset are the total number of transactions, the average length, and divergence count of items, 

respectively.  The synthetic dataset that used here is labeled as TIFIM9999.9994 and it contains 9999 transactions and 

999 different items, and each transaction consists of 4 items in average. Each transaction of a dataset is scanned only 

once in our experiments to simulate the environment of data streams. In regard to measure the computational cost and 

scalability, the algorithms run under divergent coverage values in the range of 10 to 2. 

Fig 3, 4 shows the comparison of the Memory usage, execution time under divergent coverage values range given 

between 2 to10 respectively. The figure 5 and 6 explores the scalability of TIFIM over Matrix based FIM under divergent 

streaming data sizes respectively, In Fig  3 and 4,  the horizontal axis is the coverage given and the vertical axis is the 

memory in unit of mega bytes and time in unit of seconds respectively. In Fig  5 and 6, the horizontal axis is the streaming 

data size given in unit of transactions and the vertical axis is the execution time in unit of seconds and percentage of 

elapsed time in unit od seconds respectively. The experimental data is the synthetic dataset generated by IBM Quest data 

generator. As the coverage value decreases  the average increment in memory usage for matrix based FIM and TIFIM are 

2.29 and 0.9 respectively (see Fig 3) and average execution time increment for matrix based FIM and TIFIM are 83.2 and 

49.9 respectively (see Fig 4). The results obtained here clearly indicating that the performance of TIFIM is miles ahead 

than the matrix based FIM. The performance of TIFIM is scalable as matrix based FIM is taking average of 17.16% 

elapsed time under uniform increment of streaming data size with 1500 transactions (see Fig 6). 

 

 

 

 

 

 

 

 

 

Fig 3: Memory usage comparison report 
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Fig 4: Performance analysis in terms of execution time  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5: Scalability check under divergent streaming data size 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6: Elapsed time in % taken by Matrix based FIM [12] over TIFIM 

 

5. CONCLUSION 

We explored a novel approach for mining the frequent itemsets from a data stream. We have implemented an efficient tree 

based incremental frequent itemset mining model, which caches itemsets as single level tree called bush. A parallel 

process that determines frequent itemsets from the cached bush structures and prunes these bush structures for memory 

efficiency. We developed an incremental frequent itemset mining algorithm with efficient memory usage, execution time. 

The experiment results confirm that the TIFIM is scalable under divergent streaming data size and coverage values. In 

future this model can be extended to perform utility based frequent itemset mining over data streams. 
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