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ABSTRACT 

Electro-discharge machining (EDM) is increasingly being used in many industries for producing molds and dies, and 

machining complex shapes with material such as steel, cemented carbide, and engineering ceramics. The stochastic 

nature of EDM process has frustrated number of attempts to model it physically. Artificial neural networks (ANNs), as 

one of the most attractive branches in Artificial Intelligence (AI), has the potentiality to handle problems such as 

prediction of design and manufacturing cost, material removal rate (MRR), diagnosis, modeling, and adaptive control in 

a complex design and manufacturing systems. This paper uses Back Propagation Neural Network (BP) and Radial 

Basis Function (RBF) approach for prediction of material removal rate and surface roughness and presents the results 

of the experimental investigation. Charmilles Technology (EDM-ROBOFORM200) in he mechanical engineering 

department is used for machining parts.  The networks have four inputs of current (I), voltage (V), Period of pulse on 

(Ton) and period of pulse off (Toff) as the input processes variables. Two outputs results of material removal rate (MRR) 

and surface roughness (Ra) as performance characteristics. In order to train the network, and capabilities of the models 

in predicting material removal rate and surface roughness, experimental data are employed. Then the output of MRR 

and Ra obtained from neural net compare with experimental results, and amount of relative error is calculated. 
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INTRODUCTION 

Electro-discharge machining (EDM) is non-conventional, process, which erodes material from the work piece by a series 

of discrete sparks between a work-piece and tool electrode immersed in a liquid dielectric medium. These sparks are 

generated between two closely spaced electrodes and will melt and vaporize tiny amounts of the work-piece, which are 

then ejected and flushed away by the dielectric [1]. EDM has  

been used effectively in machining hard, high-strength, and temperature-resistant metals, and since there is no physical 

contact between the two electrodes, slender and fragile tasks can be machined conveniently, making the process more 

versatile. Comprehensive qualitative and quantitative analysis of the material removal mechanism and subsequently the 

development of model(s) of material removal are not only necessary for a better understanding of the process but also 

are very useful in parametric optimization, process simulation. Operation and process planning, parametric analysis (i.e. 

understanding the influence of various process parameters on the process performance measures), verification of the 

experimental results, and improving the process performance by implementing/incorporating some of the theoretical 

findings [2].  A systematic study of the phenomenon of the electrical discharge in a liquid dielectric has proven to be very 

difficult due to its complexity. The erosion by an electric discharge involves phenomena such as heat conduction, 

melting, evaporation» ionization, formation, and collapse of gas bubbles and energy distribution in the discharge 

channel. These complicated phenomena coupled with surface irregularities of electrodes, interactions between two 

successive discharges, and the presence of debris particles make the process too abstruse, so that complete and 

accurate physical modeling of the process has not been established yet [3,4]. There are a lot of theoretical studies 

concerned with microscopic metal removal arising from a single spark, the effects being modeled from heat conduction 

theory [5,6,7and 8]. Recent established models for EDM are mainly based on empirical data or basically data driven 

models. Ghoreishi and Atkinson [9, 10] employed statistical modeling and process optimization for the case of EDM 

drilling and milling. Wang and Tsai [11, 12] proposed semi-empirical models of the material removal rate, surface finish 

and tool wear on the work and the tool for various materials in EDM, employing dimensional equations based on 

relevant process parameters for the screening experiments and the dimensional analysis. Artificial neural networks 

(ANNs), as one of the most attractive branches in artificial intelligence, has the potentiality to handle problems such as 

modeling, estimating, prediction, diagnosis, and adaptive control in complex non-linear systems [13]. The capabilities of 

ANNs in capturing the mathematical mapping between input variables and output features are of primary significance for 

  modeling   machining processes. The use of neural networks in both EDM and wire-EDM (WEDM) processes has also 

been reported. Kao and Tamg [14]. Liu and Tamg [15] have employed feed forward neural networks with hyperbolic 

tangent functions and abductive networks for the classification and on-line recognition of pulse-types. Based on their 

results, discharge pulses have been identified and then used for controlling the EDM machine. Indurkhya and Rajurkar 

[16] developed a 9-9-2-size back propagation neural network for orbital EDM modeling. Spedding and Wang [17, 18], 

and Tamg et al. [19] have developed BP neural networks for modeling of WEDM. Experimental results have shown that 

the cutting performance of WEDM can be greatly enhanced using the neural model. Tsai and Wang [20,21] have been 

presented seven models for predictions of surface finish and material removal rate of work in EDM process and then 

compared based upon six neural networks and a neuro-fuzzy network with pertinent machine process parameters given 

by the DOE method. The networks, namely the LOGMLP, the TANMLP, the RBFN, the Error TANMLP, the Adaptive 

TANMLP, the Adaptive RBFN and the ANFIS have been trained and compared by the same experimental data together 

with the change of electrode polarity condition. Neural networks have become a very useful tool in the modeling of 

complicated systems. This is because neural networks have an excellent ability to learn and to generalize (interpolate) 

the complicated relationships between input and output variables. Also, the ANN behaves as model free estimators, i.e., 

they can capture and model complex input-output relations without the help of mathematical model. 

ARTIFICIAL NURAL NETWORK MODELS OF EDM PROCESS 

In the current work, three supervised neural networks for modeling the EDM process are compared. The first one is a 

Logistic Sigmoid Multi-layer Perceptron (LOGMLP); the Second is a Hyperbolic Tangent sigmoid Multi-layer Perceptron 

(TANMLP) and third is a Radial Basis Network (RBN) with Gaussian activation functions. The LOGMLP and TANMLP 

are two different BP neural networks. The LOGMLP is a Back propagation neural network with log-sigmoid transfer 

function in hidden layer and output layer, but the TANMLP is a Back propagation neural network with tangent-sigmoid 

transfer function in hidden layer and output layer. The BP Neural Network is very popular, especially in the area of 

manufacturing modeling, as its design and operation are relatively simple. The radial basis network has some additional 

advantages such as rapid convergence and less error. In particular, most commonly used RBNs involve fixed basis 

functions with linearly appearing unknown parameters in the output layer. Radial Basis networks may require more 

neuron than standard feed-forward back propagation networks, but often they can be designed in a fraction of the time it 

takes to train standard feed-forward networks. They work best when many training vectors are available. In contrast, 

multi-layer BP ANNs involve adjustable basis functions. That result in nonlinearly appearing unknown parameters. It is 

commonly known that linearity in parameters in RBN allow the use of least squares error based updating schemes that 

have faster convergence than the gradient-descent methods used to update the nonlinear parameters of multi-layer BP 

ANN. On the other hand, it is also known that the use of fixed basis functions in RBN results in exponential complexity in 

terms of the number of parameters, while adjustable basis functions of BP ANN can lead to much less complexity in 

terms of the number of parameters or network size [22]. However, in practice, the number of parameters in RBN starts 
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becoming unmanageably large only when the number of input features increases beyond about 10 or 20, which is not 

the case in our study. Hence, the use of RBN was practically possible for our problem. The general network topology for 

BPNN is shown in fig.1. A typical RBF network is shown in fig.2. MATLAB Neural Network Tool Box was used as a 

platform to create the networks. 

 

Fig1:Back-Propagation neural network with one hidden layer 

 

Figure2:Architecture of the RBFN. 

EXPERIMENTAL DETAILS   

In order to obtain different machining process parameters and output features for training and testing of neural networks, 

a series of experiments was performed on a ROBOFORM 200 machine. At first, some preliminary tests were carried out 

to determine the stable domain of the machine parameters and also the different ranges of process variables. Based on 

preliminary tests results and working characteristics of the EDM machine, discharge current (I), period pulse on (Ti), 

Period of pulses off (To) and source voltage (V) were chosen as independent input parameters. During these 

experiments, by altering the values of the input parameters in different levels, stable states of the machining conditions 

have also been specified. Accordingly,  the  experiments were conducted with three levels of discharge current, three 

levels of period of pulses on, three levels of period of pulses off and three levels of source voltage. Table 1 shows the 

input process variables and their levels in the experiments. Throughout the experiments, SPK steel and commercial 

copper were used as work-piece and tool electrode materials. Also, the dielectric fluid used was elf oil. Particular 

attention was paid to ensuring that operating conditions permitted. Effective flushing of machining debris from the 

working region. Thus, the experiments were done in the planning process mode in which the bottom surface of the 

electrode is flat and parallel to the work-piece surface. Also, the diameter of cylindrical electrode was equal to the 

diameter of the round bar work-piece and was chosen to be 12 mm. The total data obtained from machining 

experiments (3*3*3*3) is 81 and these forms the neural networks' training and testing sets. To achieve validity and 

accuracy, each test was repeated three times. Material removal rate (MRR) and surface roughness (Ra) were assigned 

as performance characteristics or process outputs, since the performance of any machining process is evaluated in 
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terms of these two measures. Then, the mean values of the three response measurements (MRR and Ra) were used as 

output at each set of parameters. The machining time considered for each test was dependent on the discharge current 

and much time was allocated to the tests with lower current. The material removal rate (MRR) was estimated by 

weighing the work-piece on a digital single pan balance before and after the experiments and was reported in gr/hr unit. 

The surface roughness (Ra) was measured by means of a Mahr with Ra value in microns at a cut-off length of 0.8 mm. 

Table 1. Pertinent process parameters and their levels for machining experiments 

Process parameters Operating conditions 

Source voltage V (v) 80,160,200 

Discharge current I (A) 6,16,48 

Period of pulses on Ti (  sec) 6.4,100,800 

Period of pulses off To (  sec) 12.8,50,400 

 

For normalization of input and output variable, the following linear mapping formula is used: 
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Modeling of EDM process with BP neural networks and RBF network are composed of two stages: training and testing of 

the networks with experimental machining data. The training data consisted of values for current (I), period of pulses on 

(Ti), period of pulses off (To), and source voltage (V), and the corresponding material removal rate (MRR) and surface 

roughness (Ra). In all, 81 such data sets were used, of which 66 data sets were selected at random and used for 

training purposes while the remaining 15 data sets were presented to the trained networks as new application data for 

verification (testing) purposes. Thus, the networks were evaluated using data that had not been used for training.    The 

size of hidden layer(s) is one of the most important considerations when solving actual problems using multi-layer feed 

forward network. In RBF neural network, two parameters need to be defined. Spread factor and goal factor. The spread 

factor S, has to be specified depending on the particular case in hand. It has to be smaller than the highest limit of the 

input data and larger than the lowest limit [20-22]. Based on this, and assuming that all the training data is mapped 

between -1 and 1. The goal factor value is set to zero, since error is a decisive factor in this study. However, it has been 

shown that BP neural network with one hidden layer can uniformly approximate any continuous function to any desired 

degree of accuracy given an adequate number of neurons in the hidden layer and the correct interconnection weights 

Therefore; one hidden layer was adopted for the BP model. For determining the number of neurons in the hidden layer, a 

procedure of try and error approach needs to be done. That is, attempts have been made to study the network 

performance with a different number of hidden neurons. Hence, a number of candidate networks are constructed, each 

of them is trained separately, and the "best" network is selected based on the accuracy of the predictions in the testing 

phase. It should be noted that if the number of hidden neurons is too large, the ANN might be over-trained giving 

spurious values in the testing phase. If too few neurons are selected, the function mapping may not be accomplished 

due to under-training. Back-Propagation neural network model with one hidden layer is developed. The model is 

demonstrated in figure 1.  Table 2 shows the 15 experimental data sets, which are used for verifying or testing network 

capabilities in modeling the process. Therefore, the general network structure is supposed to be 4-n-2, which implies 4 

neurons in the input layer, n neurons in the hidden layer, and 2 neurons in the output layer. Then, by varying the number 

of hidden neurons and spread factor, different   network configurations are trained, and their performances are checked. 

The results are shown in table 3.1, 3.2 and 3.3.  

TRAINING RESULTS 

Each experimental set (except the validation set) is used to train each network. This training is repeated for each 

topology. The performance is measured by the linear regression (R) of each output (fig.3–8). With this analysis it is 

possible to determine the response of the network with respect to the targets. A value of 1 indicates that the network is 

perfectly simulating the training set while 0 means the opposite. For all the cases in this study, the value of R (for all 

output sets) is shown in Table 5. The case of RBN showed a good fitting pattern for all the cases) as expected since the 

goal error factor is set to zero. 
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VALIDATION RESULTS OF THE LOGMLP, TANMLP & RBF MODELS 

As a result, from table 3.1, the best network structure of BP model is picked to have 10 neurons in the hidden layer with 

the average verification errors of 20.31% and 5.13% in predicting MRR and Ra, respectively, for TANMLP. Thus, it has a 

total average error of 12.72% over the 15 experimental verification data sets. And from table 3.2, the best network 

structure of BP model is picked to have 11 neurons in the hidden layer with the average verification errors of 32.02% 

and 12.91% in predicting MRR and Ra, respectively, for LOGMLP. Thus, it has a total average error of 22.47% over the 

15 experimental verification data sets. As a result, from table 3.3, the best network of RBF model is picked to have 66 

neurons in hidden layer, while spread factor is 0.07.The average verification errors of 17.54% and 7.84% in predicting 

MRR and Ra, respectively. Thus it has a total error of 12.69% over the 15 experimental verification data test. Table 

4.1,4.2 and 4.3 shows the comparison of experimental and predicted values for MRR and Ra in verification cases by 

three neural network models.  

CONCLUSION  

In this paper, three types of supervised neural networks LOGMLP, TANMLP and RBF have been used to successfully 

model EDM process. An effort was made to include as many different machining conditions as possible that influence 

the process. Based on the results of testing each network with some data set which was different from those used in the 

training phase, it was shown that RBF neural model has superior performance than TANMLP and LOGMLP network 

model. In summary, the following items can also be mentioned as the general findings of the present research: 

Conclusion 1 

The TANMLP, LOGMLP and RBF neural networks are capable of constructing models using only experimental data 

describing proper machining behavior. This is the main attraction of neural networks, which make them suitable for the 

problem at hand. 

Conclusion 2 

Modeling accuracy with RBF neural networks is better than TANMLP and LOGMLP. As a result, from table 5, the 

difference between correlation coefficients (R) for TANMLP and RBF is negligible, because of small difference between 

their average errors. 

Conclusion 3 

Discharge current is the dominant factor among the other input parameters, so that, increasing current in a constant 

level of pulse period and gap voltage, increases MRR and Ra steadily. A high discharge energy associated with high 

current is capable of removing a chunk of material leading to the formation of a deep and wide crater, and hence, 

worsening the machined surface quality. 

Conclusion 4 

For the effect of pulse period, initially, it is observed that for all values of gap voltage and a constant current, material 

removal rate and surface roughness increase with increasing pulse period, but these trends continue until about 400 

 sec of pulse period in which MRR gains its maximum value. Although, it is generally understood that increasing pulse 

period, and hence, pulse-on time, results in greater discharge energy, but with too long pulse durations, the results   

become reverse. This is mainly because of undesirable heat  

Conclusion 5 

In normal EDM, the discharge voltage (V), influenced primarily by the electrode and workpiece materials, is somehow 

constant so that an increase in source voltage will have little effect on the discharge energy for a given pair of electrode-

workpiece    materials. Hence, increasing source voltage alone, does not necessarily confirms the availability of high 

discharge voltage, which directly affects MRR and Ra. 

Conclusion 6 

5.6. High material removal rate and low surface roughness are conflicting goals, which cannot be achieved 

simultaneously with a particular combination of control setting. To achieve the optimum machining conditions, the goals 

have to be taken separately in different phases of work with dissipation phenomena of the thermal energy liberated 

during discharge, which in turn lessens the erosive effects of sparks. 
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Table 2. Machining conditions for verification experiments. 

Test 

No. 

V (v) I (A) Ti (  sec) To(  sec) MRR (gr/hr) Ra( m) 

1 80 6 6.4 400 0.2 2.62 

2 80 6 800 12.8 0.3 2.87 

3 80 16 6.4 400 0.3 3.05 

4 80 16 800 12.8 10.0 7.63 

5 80 48 100 12.8 63.0 9.75 

6 160 6 800 12.8 0.2 2.68 

7 160 16 100 12.8 20.4 8.32 

8 160 16 800 50 12.8 7.85 

9 160 48 100 12.8 55.1 9.31 

10 160 48 800 400 44.0 10.61 

11 200 6 6.4 400 0.3 2.05 

12 200 6 800 50 0.3 2.69 

13 200 16 100 12.8 21.6 8.32 

14 200 48 6.4 12.8 7.6 4.27 

15 200 48 800 50 54 10.43 

 

Table3.1.The effects of different number of hidden neurons on the TANMLP. 

 (No. Of hidden 

neuron 

Epoch Average error 

in MRR (%) 

Average error in 

Ra (%) 

Total average error 

(%) 

8 1529 43.59 6.47 25.03 

9 1042 28.44 7.22 17.83 

10 1137 20.31 5.13 12.72 

11 2076 35.47 8.44 21.96 

 

Table3.2.The effects of different number of hidden neurons on the LOGMLP. 

No. Of hidden 

neuron 

Epoch Average 

Error in 

MRR (%) 

Average 

Error in Ra (%) 

Total 

Average 

Error (%) 

6 7437 36.42 10.45 23.44 

7 1244 42.28 9.23 25.76 

8 334 48.72 10.60 29.66 

9 572 37.61 14.48 26.05 

10 311 75.14 12.18 43.66 

11 848 32.83 12.91 22.87 

15 542 67.54 9.31 38.43 
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Table 3.3. The effects of different spread factor on the RBF model (Radial Basis Network) 

Spread factor Average 

Error in MRR (%) 

Average 

Error in Ra (%) 

Total 

AverageError (%) 

0.01 21.00 7.41 14.21 

0.03 20.81 7.17 13.99 

0.05 20.54 7.23 13.89 

0.06 19.48 7.41 13.45 

0.07 17.54 7.84 12.69 

0.08 20.87 9.02 14.95 

0.09 24.98 10.28 17.63 

0.1 28.17 11.51 19.84 

0.12 35.85 13.66 24.76 

0.15 46.04 16.01 31.03 

 

 Table4.1. Comparison of MRR and Ra measured and predicted by the TANMLP neural network. 

Test 

No. 

MRR (gr/hr) Ra (  m) Error (%) 

Experimental 
TANMLP 

model 
Experimental 

TANMLP 

model 

Error in  

MRR 

Error in 

Ra 

1 0.2 0.15 2.62 2.38 25.00 9.16 

2 0.3 0.31 2.87 2.85 3.33 0.7 

3 0.3 0.19 3.05 2.88 36.67 5.57 

4 10.0 8.96 7.63 7.79 10.4 2.1 

5 63.0 63.69 9.75 9.24 1.11 5.23 

6 0.2 0.4 2.68 2.80 100.00 4.48 

7 20.4 20.79 8.32 8.12 1.91 2.40 

8 12.8 12.45 7.85 7.72 2.73 1.66 

9 55.1 62.61 9.31 8.85 13.63 4.94 

10 44.0 43.00 10.61 10.54 2.27 0.66 

11 0.3 0.18 2.05 2.38 40.00 16.10 

12 0.3 0.41 2.69 2.80 36.67 4.09 

13 21.6 16.40 8.32 8.37 20.07 0.60 

14 7.6 7.85 4.27 3.45 3.29 19.20 

15 54 55.90 10.43 10.44 3.52 0.10 
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Table4.2. Comparison of MRR and Ra measured and predicted by the LOGMLP neural network. 

No. of 

Experi

ments 

MRR (gr/hr) 

 
Ra (  m) Error (%) 

Experimen

tal 

LOG 

MLP 

model 

Experiment

al 

LOG 

MLP model 

Error in 

MRR 

Error in 

Ra 

1 0.2 0.14 2.62 2.41 30.00 8.02 

2 0.3 0.20 2.87 2.89 33.33 0.70 

3 0.3 0.17 3.05 3.05 43.33 0.00 

4 10.0 11.98 7.63 7.62 19.80 0.13 

5 63.0 54.27 9.75 9.36 13.86 0.40 

6 0.2 0.18 2.68 3.48 10.00 29.85 

7 20.4 0.12 8.32 8.13 99.41 2.28 

8 12.8 12.86 7.85 7.70 0.47 1.91 

9 55.1 55.70 9.31 8.23 1.09 11.60 

10 44.0 45.86 10.61 10.96 4.23 3.30 

11 0.3 0.21 2.05 2.10 36.67 2.44 

12 0.3 0.17 2.69 2.76 43.33 7.00 

13 21.6 0.12 8.32 6.98 99.44 16.11 

14 7.6 11.56 4.27 4.01 52.11 6.09 

15 54 56.89 10.43 10.80 5.35 3.55 

 

Table4.3. Comparison of MRR and Ra measured and predicted by the RBF neural network model. 

NO. of 

experiment 

MRR (gr/hr) 

 

Ra (  m) 
Error (%) 

Experimental RBF 

model 

Experimental RBF 

model 

Error in 

MRR 

Error in 

Ra 

1 0.2 0.3 2.62 2.74 50.00 4.58 

2 0.3 0.1 2.87 2.59 66.67 9.76 

3 0.3 0.3 3.05 2.74 0.00 10.16 

4 10.0 9.3 7.63 7.56 7.00 0.92 

5 63.0 54.41 9.75 9.14 13.63 6.26 

6 0.2 0.2 2.68 2.99 0.00 11.57 

7 20.4 14.58 8.32 7.90 28.53 5.05 

8 12.8 13.2 7.85 7.18 3.13 8.54 

9 55.1 54.71 9.31 8.63 0.71 7.30 

10 44.0 52.0 10.61 10.21 18.18 3.77 

11 0.3 0.3 2.05 2.86 0.00 39.51 

12 0.3 0.4 2.69 2.66 33.33 1.12 

13 21.6 14.21 8.32 7.65 34.26 8.05 

14 7.6 7.3 4.27 4.29 3.95 0.47 

15 54.0 56.0 10.43 10.37 3.70 0.58 
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Table 5. Different value of Correlation Coefficient (R) 

(R) Coefficient RBF model TANMLP model LOGMLP model 

R coefficient for MRR 0.996 0.993 0.963 

R coefficient for Ra 0.993 0.996 0.988 

 

 
 

Fig4:.Linear regression analysis between RBF network 

outputs and experimental values for Ra. 

Fig3:.Linear regression analysis between RBF network 

outputs and experimental values for MRR. 

 
 

Fig6: Linear regression analysis between TANMLP 

network outputs and experimental values for Ra. 

Fig.5:.Linear regression analysis between TANMLP 

network outputs and experimental values for MRR. 

 
 

Fig8:Linear regression analysis between LOGMLP 

network outputs and experimental values for Ra. 

Fig7: Linear regression analysis between LOGMLP 

network outputs and experimental values MRR 
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