ISSN 2277-3061

Comparative Neural Network Models on Material Removal Rate and
surface Roughness in Electrical Discharge Machining

Morteza Sadegh Amalnik, M.Mirzaei, Farzad Momeni,
Assist. Prof.of mech. Eng. and Director of Environment Research Center of University of Qom, Iran
sadeghamalnik@yahoo.com
Assist. Prof.of mechanical engineering department of Qom University, Qom,l.R. Iran
m.mirzaei@qom.ac.ir
Lecturer at Mechanical engineering Dept. University of Chamran, Ahvaz,|.R. Iran
F.Momeni@yahoo.com
ABSTRACT

Electro-discharge machining (EDM) is increasingly being used in many industries for producing molds and dies, and
machining complex shapes with material such as steel, cemented carbide, and engineering ceramics. The stochastic
nature of EDM process has frustrated number of attempts to model it physically. Artificial neural networks (ANNS), as
one of the most attractive branches in Atrtificial Intelligence (Al), has the potentiality to handle problems such as
prediction of design and manufacturing cost, material removal rate (MRR), diagnosis, modeling, and adaptive control in
a complex design and manufacturing systems. This paper uses Back Propagation Neural Network (BP) and Radial
Basis Function (RBF) approach for prediction of material removal rate and surface roughness and presents the results
of the experimental investigation. Charmilles Technology (EDM-ROBOFORM200) in he mechanical engineering
department is used for machining parts. The networks have four inputs of current (I), voltage (V), Period of pulse on
(Ton) and period of pulse off (Tof) as the input processes variables. Two outputs results of material removal rate (MRR)
and surface roughness (Ra) as performance characteristics. In order to train the network, and capabilities of the models
in predicting material removal rate and surface roughness, experimental data are employed. Then the output of MRR
and Ra obtained from neural net compare with experimental results, and amount of relative error is calculated.
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INTRODUCTION

Electro-discharge machining (EDM) is non-conventional, process, which erodes material from the work piece by a series
of discrete sparks between a work-piece and tool electrode immersed in a liquid dielectric medium. These sparks are
generated between two closely spaced electrodes and will melt and vaporize tiny amounts of the work-piece, which are
then ejected and flushed away by the dielectric [1]. EDM has

been used effectively in machining hard, high-strength, and temperature-resistant metals, and since there is no physical
contact between the two electrodes, slender and fragile tasks can be machined conveniently, making the process more
versatile. Comprehensive qualitative and quantitative analysis of the material removal mechanism and subsequently the
development of model(s) of material removal are not only necessary for a better understanding of the process but also
are very useful in parametric optimization, process simulation. Operation and process planning, parametric analysis (i.e.
understanding the influence of various process parameters on the process performance measures), verification of the
experimental results, and improving the process performance by implementing/incorporating some of the theoretical
findings [2]. A systematic study of the phenomenon of the electrical discharge in a liquid dielectric has proven to be very
difficult due to its complexity. The erosion by an electric discharge involves phenomena such as heat conduction,
melting, evaporation» ionization, formation, and collapse of gas bubbles and energy distribution in the discharge
channel. These complicated phenomena coupled with surface irregularities of electrodes, interactions between two
successive discharges, and the presence of debris particles make the process too abstruse, so that complete and
accurate physical modeling of the process has not been established yet [3,4]. There are a lot of theoretical studies
concerned with microscopic metal removal arising from a single spark, the effects being modeled from heat conduction
theory [5,6,7and 8]. Recent established models for EDM are mainly based on empirical data or basically data driven
models. Ghoreishi and Atkinson [9, 10] employed statistical modeling and process optimization for the case of EDM
drilling and milling. Wang and Tsai [11, 12] proposed semi-empirical models of the material removal rate, surface finish
and tool wear on the work and the tool for various materials in EDM, employing dimensional equations based on
relevant process parameters for the screening experiments and the dimensional analysis. Artificial neural networks
(ANNSs), as one of the most attractive branches in artificial intelligence, has the potentiality to handle problems such as
modeling, estimating, prediction, diagnosis, and adaptive control in complex non-linear systems [13]. The capabilities of
ANNSs in capturing the mathematical mapping between input variables and output features are of primary significance for

modeling machining processes. The use of neural networks in both EDM and wire-EDM (WEDM) processes has also
been reported. Kao and Tamg [14]. Liu and Tamg [15] have employed feed forward neural networks with hyperbolic
tangent functions and abductive networks for the classification and on-line recognition of pulse-types. Based on their
results, discharge pulses have been identified and then used for controlling the EDM machine. Indurkhya and Rajurkar
[16] developed a 9-9-2-size back propagation neural network for orbital EDM modeling. Spedding and Wang [17, 18],
and Tamg et al. [19] have developed BP neural networks for modeling of WEDM. Experimental results have shown that
the cutting performance of WEDM can be greatly enhanced using the neural model. Tsai and Wang [20,21] have been
presented seven models for predictions of surface finish and material removal rate of work in EDM process and then
compared based upon six neural networks and a neuro-fuzzy network with pertinent machine process parameters given
by the DOE method. The networks, namely the LOGMLP, the TANMLP, the RBFN, the Error TANMLP, the Adaptive
TANMLP, the Adaptive RBFN and the ANFIS have been trained and compared by the same experimental data together
with the change of electrode polarity condition. Neural networks have become a very useful tool in the modeling of
complicated systems. This is because neural networks have an excellent ability to learn and to generalize (interpolate)
the complicated relationships between input and output variables. Also, the ANN behaves as model free estimators, i.e.,
they can capture and model complex input-output relations without the help of mathematical model.

ARTIFICIAL NURAL NETWORK MODELS OF EDM PROCESS

In the current work, three supervised neural networks for modeling the EDM process are compared. The first one is a
Logistic Sigmoid Multi-layer Perceptron (LOGMLP); the Second is a Hyperbolic Tangent sigmoid Multi-layer Perceptron
(TANMLP) and third is a Radial Basis Network (RBN) with Gaussian activation functions. The LOGMLP and TANMLP
are two different BP neural networks. The LOGMLP is a Back propagation neural network with log-sigmoid transfer
function in hidden layer and output layer, but the TANMLP is a Back propagation neural network with tangent-sigmoid
transfer function in hidden layer and output layer. The BP Neural Network is very popular, especially in the area of
manufacturing modeling, as its design and operation are relatively simple. The radial basis network has some additional
advantages such as rapid convergence and less error. In particular, most commonly used RBNs involve fixed basis
functions with linearly appearing unknown parameters in the output layer. Radial Basis networks may require more
neuron than standard feed-forward back propagation networks, but often they can be designed in a fraction of the time it
takes to train standard feed-forward networks. They work best when many training vectors are available. In contrast,
multi-layer BP ANNs involve adjustable basis functions. That result in nonlinearly appearing unknown parameters. It is
commonly known that linearity in parameters in RBN allow the use of least squares error based updating schemes that
have faster convergence than the gradient-descent methods used to update the nonlinear parameters of multi-layer BP
ANN. On the other hand, it is also known that the use of fixed basis functions in RBN results in exponential complexity in
terms of the number of parameters, while adjustable basis functions of BP ANN can lead to much less complexity in
terms of the number of parameters or network size [22]. However, in practice, the number of parameters in RBN starts
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becoming unmanageably large only when the number of input features increases beyond about 10 or 20, which is not
the case in our study. Hence, the use of RBN was practically possible for our problem. The general network topology for
BPNN is shown in fig.1. A typical RBF network is shown in fig.2. MATLAB [ Neural Network Tool Box was used as a
platform to create the networks.
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Figure2:Architecture of the RBFN.
EXPERIMENTAL DETAILS

In order to obtain different machining process parameters and output features for training and testing of neural networks,
a series of experiments was performed on a ROBOFORM 200 machine. At first, some preliminary tests were carried out
to determine the stable domain of the machine parameters and also the different ranges of process variables. Based on
preliminary tests results and working characteristics of the EDM machine, discharge current (), period pulse on (Ti),
Period of pulses off (To) and source voltage (V) were chosen as independent input parameters. During these
experiments, by altering the values of the input parameters in different levels, stable states of the machining conditions
have also been specified. Accordingly, the experiments were conducted with three levels of discharge current, three
levels of period of pulses on, three levels of period of pulses off and three levels of source voltage. Table 1 shows the
input process variables and their levels in the experiments. Throughout the experiments, SPK steel and commercial
copper were used as work-piece and tool electrode materials. Also, the dielectric fluid used was elf oil. Particular
attention was paid to ensuring that operating conditions permitted. Effective flushing of machining debris from the
working region. Thus, the experiments were done in the planning process mode in which the bottom surface of the
electrode is flat and parallel to the work-piece surface. Also, the diameter of cylindrical electrode was equal to the
diameter of the round bar work-piece and was chosen to be 12 mm. The total data obtained from machining
experiments (3*3*3*3) is 81 and these forms the neural networks' training and testing sets. To achieve validity and
accuracy, each test was repeated three times. Material removal rate (MRR) and surface roughness (Ra) were assigned
as performance characteristics or process outputs, since the performance of any machining process is evaluated in
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terms of these two measures. Then, the mean values of the three response measurements (MRR and Ra) were used as
output at each set of parameters. The machining time considered for each test was dependent on the discharge current
and much time was allocated to the tests with lower current. The material removal rate (MRR) was estimated by
weighing the work-piece on a digital single pan balance before and after the experiments and was reported in gr/hr unit.
The surface roughness (Ra) was measured by means of a Mahr with Ra value in microns at a cut-off length of 0.8 mm.

Table 1. Pertinent process parameters and their levels for machining experiments

Process parameters Operating conditions
Source voltage V (v) 80,160,200
Discharge current | (A) 6,16,48

Period of pulses on Ti ( 4 sec) 6.4,100,800

Period of pulses off To ( 1 sec) 12.8,50,400

For normalization of input and output variable, the following linear mapping formula is used:

. * A
N — (R Rmin) (Nmax Nmin) L Nmin
(Rmax _Rmin)

Modeling of EDM process with BP neural networks and RBF network are composed of two stages: training and testing of
the networks with experimental machining data. The training data consisted of values for current (I), period of pulses on
(Ti), period of pulses off (To), and source voltage (V), and the corresponding material removal rate (MRR) and surface
roughness (Ra). In all, 81 such data sets were used, of which 66 data sets were selected at random and used for
training purposes while the remaining 15 data sets were presented to the trained networks as new application data for
verification (testing) purposes. Thus, the networks were evaluated using data that had not been used for training. The
size of hidden layer(s) is one of the most important considerations when solving actual problems using multi-layer feed
forward network. In RBF neural network, two parameters need to be defined. Spread factor and goal factor. The spread
factor S, has to be specified depending on the particular case in hand. It has to be smaller than the highest limit of the
input data and larger than the lowest limit [20-22]. Based on this, and assuming that all the training data is mapped
between -1 and 1. The goal factor value is set to zero, since error is a decisive factor in this study. However, it has been
shown that BP neural network with one hidden layer can uniformly approximate any continuous function to any desired
degree of accuracy given an adequate number of neurons in the hidden layer and the correct interconnection weights
Therefore; one hidden layer was adopted for the BP model. For determining the number of neurons in the hidden layer, a
procedure of try and error approach needs to be done. That is, attempts have been made to study the network
performance with a different number of hidden neurons. Hence, a number of candidate networks are constructed, each
of them is trained separately, and the "best" network is selected based on the accuracy of the predictions in the testing
phase. It should be noted that if the number of hidden neurons is too large, the ANN might be over-trained giving
spurious values in the testing phase. If too few neurons are selected, the function mapping may not be accomplished
due to under-training. Back-Propagation neural network model with one hidden layer is developed. The model is
demonstrated in figure 1. Table 2 shows the 15 experimental data sets, which are used for verifying or testing network
capabilities in modeling the process. Therefore, the general network structure is supposed to be 4-n-2, which implies 4
neurons in the input layer, n neurons in the hidden layer, and 2 neurons in the output layer. Then, by varying the number
of hidden neurons and spread factor, different network configurations are trained, and their performances are checked.
The results are shown in table 3.1, 3.2 and 3.3.

TRAINING RESULTS

Each experimental set (except the validation set) is used to train each network. This training is repeated for each
topology. The performance is measured by the linear regression (R) of each output (fig.3-8). With this analysis it is
possible to determine the response of the network with respect to the targets. A value of 1 indicates that the network is
perfectly simulating the training set while 0 means the opposite. For all the cases in this study, the value of R (for all
output sets) is shown in Table 5. The case of RBN showed a good fitting pattern for all the cases) as expected since the
goal error factor is set to zero.
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VALIDATION RESULTS OF THE LOGMLP, TANMLP & RBF MODELS

As a result, from table 3.1, the best network structure of BP model is picked to have 10 neurons in the hidden layer with
the average verification errors of 20.31% and 5.13% in predicting MRR and Ra, respectively, for TANMLP. Thus, it has a
total average error of 12.72% over the 15 experimental verification data sets. And from table 3.2, the best network
structure of BP model is picked to have 11 neurons in the hidden layer with the average verification errors of 32.02%
and 12.91% in predicting MRR and Ra, respectively, for LOGMLP. Thus, it has a total average error of 22.47% over the
15 experimental verification data sets. As a result, from table 3.3, the best network of RBF model is picked to have 66
neurons in hidden layer, while spread factor is 0.07.The average verification errors of 17.54% and 7.84% in predicting
MRR and Ra, respectively. Thus it has a total error of 12.69% over the 15 experimental verification data test. Table
4.1,4.2 and 4.3 shows the comparison of experimental and predicted values for MRR and Ra in verification cases by
three neural network models.

CONCLUSION

In this paper, three types of supervised neural networks LOGMLP, TANMLP and RBF have been used to successfully
model EDM process. An effort was made to include as many different machining conditions as possible that influence
the process. Based on the results of testing each network with some data set which was different from those used in the
training phase, it was shown that RBF neural model has superior performance than TANMLP and LOGMLP network
model. In summary, the following items can also be mentioned as the general findings of the present research:

Conclusion 1

The TANMLP, LOGMLP and RBF neural networks are capable of constructing models using only experimental data
describing proper machining behavior. This is the main attraction of neural networks, which make them suitable for the
problem at hand.

Conclusion 2

Modeling accuracy with RBF neural networks is better than TANMLP and LOGMLP. As a result, from table 5, the
difference between correlation coefficients (R) for TANMLP and RBF is negligible, because of small difference between
their average errors.

Conclusion 3

Discharge current is the dominant factor among the other input parameters, so that, increasing current in a constant
level of pulse period and gap voltage, increases MRR and Ra steadily. A high discharge energy associated with high
current is capable of removing a chunk of material leading to the formation of a deep and wide crater, and hence,
worsening the machined surface quality.

Conclusion 4

For the effect of pulse period, initially, it is observed that for all values of gap voltage and a constant current, material
removal rate and surface roughness increase with increasing pulse period, but these trends continue until about 400
M sec of pulse period in which MRR gains its maximum value. Although, it is generally understood that increasing pulse

period, and hence, pulse-on time, results in greater discharge energy, but with too long pulse durations, the results
become reverse. This is mainly because of undesirable heat

Conclusion 5

In normal EDM, the discharge voltage (V), influenced primarily by the electrode and workpiece materials, is somehow
constant so that an increase in source voltage will have little effect on the discharge energy for a given pair of electrode-
workpiece  materials. Hence, increasing source voltage alone, does not necessarily confirms the availability of high
discharge voltage, which directly affects MRR and Ra.

Conclusion 6
5.6. High material removal rate and low surface roughness are conflicting goals, which cannot be achieved
simultaneously with a particular combination of control setting. To achieve the optimum machining conditions, the goals

have to be taken separately in different phases of work with dissipation phenomena of the thermal energy liberated
during discharge, which in turn lessens the erosive effects of sparks.
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Table 2. Machining conditions for verification experiments.

Test V (v) I (A) Ti (U sec) To( U sec) MRR (gr/hr) Ra( ¢ m)
No.
1 80 6 6.4 400 0.2 2.62
2 80 6 800 12.8 0.3 2.87
3 80 16 6.4 400 0.3 3.05
4 80 16 800 12.8 10.0 7.63
5 80 48 100 12.8 63.0 9.75
6 160 6 800 12.8 0.2 2.68
7 160 16 100 12.8 20.4 8.32
8 160 16 800 50 12.8 7.85
9 160 48 100 12.8 55.1 9.31
10 160 48 800 400 44.0 10.61
11 200 6 6.4 400 0.3 2.05
12 200 6 800 50 0.3 2.69
13 200 16 100 12.8 21.6 8.32
14 200 48 6.4 12.8 7.6 4.27
15 200 48 800 50 54 10.43

Table3.1.The effects of different number of hidden neurons on the TANMLP.

(No. Of hidden Epoch Average error Average error in | Total average error
neuron in MRR (%) Ra (%) (%)
8 1529 43.59 6.47 25.03
9 1042 28.44 7.22 17.83
10 1137 20.31 5.13 12.72
11 2076 35.47 8.44 21.96

Table3.2.The effects of different number of hidden neurons on the LOGMLP.
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No. Of hidden Epoch Average Average Total
neuron Error in Error in Ra (%) Average
MRR (%) Error (%)

6 7437 36.42 10.45 23.44

7 1244 42.28 9.23 25.76

8 334 48.72 10.60 29.66

9 572 37.61 14.48 26.05

10 311 75.14 12.18 43.66

11 848 32.83 12.91 22.87

15 542 67.54 9.31 38.43
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Table 3.3. The effects of different spread factor on the RBF model (Radial Basis Network)

Spread factor Average Average Total
Error in MRR (%) Error in Ra (%) AverageError (%)
0.01 21.00 7.41 14.21
0.03 20.81 7.17 13.99
0.05 20.54 7.23 13.89
0.06 19.48 7.41 13.45
0.07 17.54 7.84 12.69
0.08 20.87 9.02 14.95
0.09 24.98 10.28 17.63
0.1 28.17 11.51 19.84
0.12 35.85 13.66 24.76
0.15 46.04 16.01 31.03

Table4.1. Comparison of MRR and Ra measured and predicted by the TANMLP neural network.

MRR (gr/hr) Ra (4 m) Error (%)
Test i
oy Experimental TAREF Experimental | Errorin | Error in
model model MRR Ra
1 0.2 0.15 2.62 2.38 25.00 9.16
2 0.3 0.31 2.87 2.85 3.33 0.7
3 0.3 0.19 3.05 2.88 36.67 5.57
4 10.0 8.96 7.63 7.79 10.4 2.1
5 63.0 63.69 9.75 9.24 1.11 5.23
6 0.2 0.4 2.68 2.80 100.00 | 4.48
7 20.4 20.79 8.32 8.12 1.91 2.40
8 12.8 12.45 7.85 7.72 2.73 1.66
9 55.1 62.61 9.31 8.85 13.63 4.94
10 44.0 43.00 10.61 10.54 2.27 0.66
11 0.3 0.18 2.05 2.38 40.00 16.10
12 0.3 0.41 2.69 2.80 36.67 4.09
13 21.6 16.40 8.32 8.37 20.07 0.60
14 7.6 7.85 4.27 3.45 3.29 19.20
15 54 55.90 10.43 10.44 3.52 0.10
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Table4.2. Comparison of MRR and Ra measured and predicted by the LOGMLP neural network.
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MRR (gr/hr)
Ra (4 m) Error (%)
No. of
Experi LOG _ _
ments | Experimen Experiment LOG Error in Error in
tal MLP al MLP model MRR Ra
model
1 0.2 0.14 2.62 241 30.00 8.02
2 0.3 0.20 2.87 2.89 33.33 0.70
3 0.3 0.17 3.05 3.05 43.33 0.00
4 10.0 11.98 7.63 7.62 19.80 0.13
5 63.0 54.27 9.75 9.36 13.86 0.40
6 0.2 0.18 2.68 3.48 10.00 29.85
7 20.4 0.12 8.32 8.13 99.41 2.28
8 12.8 12.86 7.85 7.70 0.47 1.91
9 55.1 55.70 9.31 8.23 1.09 11.60
10 44.0 45.86 10.61 10.96 4.23 3.30
11 0.3 0.21 2.05 2.10 36.67 2.44
12 0.3 0.17 2.69 2.76 43.33 7.00
13 21.6 0.12 8.32 6.98 99.44 16.11
14 7.6 11.56 4.27 4.01 52.11 6.09
15 54 56.89 10.43 10.80 5.35 3.55

Table4.3. Comparison of MRR and Ra measured and predicted by the RBF neural network model.
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exl;gi.r:;m MRR (gr/hr) Ra (4 m) Error (%)
Experimental RBF Experimental RBF Error in Error in
model model MRR Ra
1 0.2 0.3 2.62 2.74 50.00 4.58
2 0.3 0.1 2.87 2.59 66.67 9.76
3 0.3 0.3 3.05 2.74 0.00 10.16
4 10.0 9.3 7.63 7.56 7.00 0.92
5 63.0 54.41 9.75 9.14 13.63 6.26
6 0.2 0.2 2.68 2.99 0.00 11.57
7 20.4 14.58 8.32 7.90 28.53 5.05
8 12.8 13.2 7.85 7.18 3.13 8.54
9 55.1 54.71 9.31 8.63 0.71 7.30
10 44.0 52.0 10.61 10.21 18.18 3.77
11 0.3 0.3 2.05 2.86 0.00 39.51
12 0.3 0.4 2.69 2.66 33.33 1.12
13 21.6 14.21 8.32 7.65 34.26 8.05
14 7.6 7.3 4.27 4.29 3.95 0.47
15 54.0 56.0 10.43 10.37 3.70 0.58
March 21,

2015



ISSN 2277-3061

Table 5. Different value of Correlation Coefficient (R)

(R) Coefficient RBF model TANMLP model LOGMLP model
R coefficient for MRR 0.996 0.993 0.963
R coefficient for Ra 0.993 0.996 0.988
Best Linear Fit: A= (0.992) T + (0.0207) O Data Points Best Linear Fit: A= (0.975) T + (0.145) O Data Points
70 //Q —— Best Linear Fit 12 i —— Best Linear Fit
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Fig3:.Linear regression analysis between RBF network
outputs and experimental values for MRR.

Fig4:.Linear regression analysis between RBF network
outputs and experimental values for Ra.
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Fig.5:.Linear regression analysis between TANMLP
network outputs and experimental values for MRR.

Fig6: Linear regression analysis between TANMLP
network outputs and experimental values for Ra.
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