
ISSN 2277-3061

5779 | P a g e A p r i l 0 6 , 2 0 1 5

A Seismic Data Processing System based on Fast Distributed File
System

Jun Li1, Changsen Pan2, Menghan Lu3

1,2,3
Department of Automation,CAS Key Laboratory of Technology in Geo-spatial Information Processing and

Application System, University of Science and Technology of China, Hefei, China
1Ljun@ustc.edu.cn

2chspan@mail.ustc.edu.cn
3menghan@mail.ustc.edu.cn

ABSTRACT

Big data has attracted an increasingly number of attentions with the advent of the cloud era, and in the field of seismic
exploration, the amount of data created by seismic exploration has also experienced an incredible growth in order to
satisfy the social needs. In this case, it is necessary to build a highly-effective system of data storage and process. In our
paper, we aim at the properties of the seismic data and the requirement to the performance of IO, and establish a
distributed file system with the goal of processing seismic data based on the Fast Distributed File System (Fast DFS), then
test our system through a series of operations such as file write and read, and the results show that our file system is very
proper and effective when processing seismic data.

Keywords

Big Data, Seismic Exploration, SEGY File Format, Fast Distributed File System

Council for Innovative Research

Peer Review Research Publishing System

Journal: INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY
Vol.14, No.5

www.ijctonline.com, editorijctonline@gmail.com

http://cirworld.com/
http://www.ijctonline.com/

ISSN 2277-3061

5780 | P a g e A p r i l 0 6 , 2 0 1 5

1. INTRODUCTION

When coming into the year of 2013, the term big data[1] has been mentioned much more times than ever
before following after terms the Internet of Things, cloud computing[2]. People use this term to describe and
define the large amount of data created during this era of information explosion, and name some related
technological development and innovation. The earliest quote of term big data can date back to the open
project Nutch of the Apache Org[3]. At that time, big data[4] is described as the large amount of data which is
used to update the network searching engine, and batch processing and analyzing at the same time. With the
release of Google’s MapReduce[6] and Google File System (GFS)[5], big data can be not only used to
describe the large amount of data, but also used to cover the rate of data processing. Nowadays in this
period of huge amount of data, the range of the big data’s application has also become increasingly wider,
covering fields such as IT, astronomy, geology, biology, military, medical, E-commerce. Take IT as an
example, there are about 6 billion searching requests per day to handle in Baidu, reaching dozens of petabyte;
there are tens of millions of transactions per day in Taobao, exceeding more than 20 terabyte per day; the
records of surfing the Internet for users in China Unicom has also reached 10 terabyte per day. With the
development of information society, the significance of big data has also become increasingly prominent[2].

In our paper, we focus on processing seismic data. Seismic exploration is an important method to survey oil,
natural gas and solid resources before drilling, and is also widely used in other aspects such as exploration of
coal field and geology engineering, region geology research and crustal study[7]. As the increasingly demand
for oil and gas in modern society, the technology of seismic exploration also develops faster than ever before ,
thus resulting in huge amount of data. In this case, how to store and process these data has become a
headache in many related areas.

Besides, distributed file systems appear as early as 1970s, and gain a considerable progress in recent
years[8]. There are lots of mature file systems such as Google File System (GFS), Hadoop DFS (HDFS)[10],
FastDFS[11] ,Lustre and so on. In our work, we carry out our research on Fast DFS, and create a distributed
file system aiming at processing seismic data in order to achieve the goal of highly-effective storage and big
data read performance.

The remainder of this paper is organized as follows: Section 2 describes the format of seismic data and our
changes according to this kind of format; Section 3 details the architecture of Fast DFS and its working theory,
and then we add our work into this file system to create a new file system in order to satisfy the needs of
seismic data; Section 4 tests our new file system with a series of operations and compares the performance
with other file systems; Section 5 concludes our work.

2. INTRODUCTION TO SEISMIC DATA

2.1 Features and requirements of seismic data

Seismic exploration exploits the difference between elasticity and density of subsurface medium, through
observation and analysis of the earth response to seismic waves stimulated artificially, and then speculates
the nature and forms of underground rock[7]. Usually stimulating seismic waves by shots is the first step,
when transferring into underground and encountering the interface of rocks with different medium nature, the
seismic waves will be reflected and refracted and finally received by detectors. The received signals of
seismic waves have to do with source characteristics, the location of detection points and the nature and
structure of underground rocks where seismic waves pass through, and the nature and forms of underground
rocks can be speculated by processing and analyzing these seismic waves. It can be referred by the theory of
seismic exploration that the data collected can be small in block but large in quantity, that is, the size of data
collected by every shot and every detector can be very small, and also exists the feature of write once and
read many, but the quantity of data that is read each time can be very large, in that case, this particular
feature should be taken into account.

Besides, the data collected should satisfy the needs of different kind of customers, thus resulting in the
different kind of data forms that are obtained each time. From the theory we can see that users can obtain
data according to the number of shots and detectors, such as CSG(common shot gather), CMG(common mid-
point gather), CRG(common receiver gather) and so on, Figure 1 shows some of the common ways to obtain
data from multiple receivers.

ISSN 2277-3061

5781 | P a g e A p r i l 0 6 , 2 0 1 5

Fig.1. Some common ways to obtain data from receivers

In the paper, since seismic data can have some specific features and the requirements of many users, we should take
these elements into account when establishing our file system.

2.2 Seismic data format SEG-Y

SEG-Y format[9] is the most important data format in seismic exploration, so it is helpful for us to process seismic data to
learn something about SEG-Y format. The figure below shows the construction of SEG-Y file format.

Fig.2. Some common ways to obtain data from receivers

From the figure 2 we can see that there are three components in standard SEG-Y format: the first one is EBCDIC file
header, 3200 bytes which consists of 40 cards (80 characters each row and 40 rows), it is used to store some description
information of seismic data; the second one is binary file header, 400 bytes, it is used to store some key information of the
SEG-Y file, including SEG-Y data format, sampling points, sampling interval, measurement unit and so on, these
information are generally fixed in some location in binary file header; the third one is the actual seismic trace, each of
which consist of 240 bytes of trace header information and data. Trace header data are generally included shot number,
trace number, sampling points, coordinates of seismic trace, but some key parameters’ locations (locations of shot number
and trace number in trace header) are not fixed.

ISSN 2277-3061

5782 | P a g e A p r i l 0 6 , 2 0 1 5

3. DISTRIBUTED FILE SYSTEM Fast DFS

3.1 A brief introduction to Fast DFS

Fast DFS[11] is a open-source distributed file system which is similar to GFS, it is accomplished by pure C language,
supporting many UNIX operation systems such as Linux, FreeBSD, AIX and so on, it can only be accessed by proprietary
API. Fast DFS is a distributed file system that is suited to Internet, which can manage files including file storage, file
synchronization, file access (file upload, file download), and take many mechanism into account such as redundancy, load
balance and linear expansion. Besides, it also focuses on highly-available, highly-efficiency and solve the problems such
as high capacity and load balance.

3.2 Fast DFS architecture

Compared to existing popular distributed file systems such as GFS and HDFS, Fast DFS has some unique features in
architecture and designation, which is reflected in lightweight, grouping and peer-to-peer structure. The figure below
shows the architecture of Fast DFS[13]

Fig.3. Fast DFS Architecture

From the figure 3 we can see the features of Fast DFS architecture. 1 lightweight: there are only two roles in the whole
Fast DFS----Tracker Server and Storage Server. Tracker Server is a central node, it is responsible for load balance and
schedule; Storage Server uses OS’s file system to storage files. When a client uploads a file, the file’s ID is not assigned
by the client but created by Storage Server and then returned to the client. There are group names, file’s relative path and
filename in the file ID, Storage Server can locate the file according to the file ID. In that case, it is not necessary for Fast
DFS to store the file index information. 2 grouping: Fast DFS uses packet storage pattern, there are one or more groups in
one cluster, and one or more storage servers in one group, and the relationship between many storage servers in the
same group is redundant by each other, that is, the files of the same storage servers are all the same. File upload,
download and delete can be operated on any one of the storage servers, which is very flexible and of high controllability.
For example, when uploading files, client can directly assign which groups to upload. When there are much pressure on
storage servers of one group, new storage servers can be added into this group to increase the ability to serve (vertical
expansion); when there are not many capacities in the system, new groups can be added into the system to increase the
ability to serve (horizontal expansion). 3 peer-to-peer structure: there can be many Tracker Servers in Fast DFS, and there
doesn’t exist single point failure. The relationship between tracker servers and storage servers in one group are all equal.
However, in traditional Master-Slave structure, Master is the single point and it can only support write operation. If Master
doesn’t work, then one of the Slave should become Master, in that case, the logic that should be accomplished will
become very complicated. On the other hand, compared with Master-Slave structure, in peer-to-peer structure, all the
nodes’ status are the same, every node can be Master, so single point of failure[10][14] will not exist.

3.3 Fast DFS working principle

When Fast DFS is working, generally clients and Storage Server have a connection to Tracker Server, Storage Server
reports to the Tracker Server of its state information, including remaining disk space, file synchronization situation and the
number of file upload and download[13]. Storage servers in different groups will not communicate with each other while

ISSN 2277-3061

5783 | P a g e A p r i l 0 6 , 2 0 1 5

storage servers in the same group will connect with each other and synchronize files at the same time. However, when a
new storage server is added, one of these storage servers will synchronize all the existing data (including source data and
backup data) to this new server.

4. DESIGN OF SEISMIC DATA FILE OPERATION SYSTEM BASED ON FAST DFS

4.1 Optimization of seismic data format

We have already learned about that the format of seismic data is SEG-Y from section 2, that is, header data of 3600 bytes
added with the following data body and there also exists 240 bytes of header data in every data body structure. Header
data defines some related information about seismic exploration, since this paper only focuses on the storage of seismic
data and its highly-efficient performance, so we ignore most of the information stored in SEG-Y format and only take into
account some related information such as shot number, begin detector number and final detector number. Since these
information stand for some location information of the stored data, and have a close connection with the following
operations (download parameters, index), so it is very appropriate to only consider these as key information; on the other
hand, owing to the insignificance of other information, we only set these values to 0 in our work.

In SEG-Y format, data are generally stored together with header data, clients have to read this unrelated header data
when get useful data, it is very time-consuming when there exists too many seismic traces, thus resulting in low-efficiency.
So we do some optimization based on SEG-Y format, and separate header data and data body, then add index
information between them. In that case, we can read data according to the index information and completely avoid reading
header data, and the efficiency can be greatly improved.

We test our optimized data format, and take the simplest array structure as index, and compared with the original SEG-Y
format. In the experiment, we assume that all the data are one-dimensional (in a straight line), 1000 shots multiple 2000
traces’ data, 3600 bytes of header data, 240 bytes of trace header and 30KB in each trace. We get the results as follows:

Table 1. Time results between original and optimized data format

Common-shot data extraction tests Common-detector data extraction tests

Coordinates SEG-Y format(s) Optimized format(s) Coordinates SEG-Y format(s) Optimized format(s)

（0,0） 0.224142 0.187487 （8,0） 11.62846 10.854803

（10,0） 0.238612 0.197799 （200,0） 11.60726 10.806037

（100,0） 0.215936 0.18243 （900,0） 11.70377 10.671067

（500,0） 0.277212 0.197988 （1200,0） 11.68548 10.64334

（998,0） 0.203376 0.185533 （2000,0） 11.60835 10.717666

From the charts we can see that the time consumed in the optimized data format is relatively shorter. In that case, the
results can be more prominent when the amount of data is larger than before.

4.2 Distributed file system focuses on seismic data

1) Advantages of Fast DFS on seismic data process

Fast DFS is a dedicated file system that has the advantages of lightweight, supporting high-concurrent access, load
balance and scalable, while other file systems such as GFS, HDFS, Luster are all universal Distributed file systems. The
highlight of Fast DFS is that it can support small files’ storage with very high efficiency. As we claimed before, one of the
seismic data’s features is that it is small in size but large in quantity[12], that is, the size of data can be very small (only
dozens of KB in each shot and each trace), but the amount of data will be read each time (maybe hundreds of MB or
several GB). This feature can be very well suited to the advantages of Fast DFS, so it can achieve very high efficiency
when designed by Fast DFS. Meanwhile, the code of open-source Fast DFS is written by C language, which is high-
efficient and easy to revise.

2) Architecture of seismic data file system based on Fast DFS

Inspired by the architecture of Fast DFS, the architecture we have adopted is similar to it. The figure below is the basic
cluster architecture.

ISSN 2277-3061

5784 | P a g e A p r i l 0 6 , 2 0 1 5

Fig.4. Basic cluster architecture

In the figure 4 , there are two major components: Cluster Manager (CM) and Data Node (DN). CM is responsible for
managing cluster, managing storage, accessing and delivering tasks, level-one data index and load balance; DN is
responsible for storing data, reading data, level-two data index and data aggregation and computation. They are similar to
Fast DFS and our system is based on these two structures.

Fig.5. The system’s working principle

The figure 5 shows how this system works: first APP send data requirement to CM, CM decomposes the tasks and
assigns them to many DNs, then APP directly interact with these DNs, DNs read data and return them to APP.

When client uploads file to DN, the data that will be uploaded should include shot number, begin trace number, end trace
number and size of data, for the convenience of DN to establish level-two index. CM queries which DN can store the new
file, and in the process of querying, CM should make sure that data of the same shot number but different blocks should
be delivered in different groups in order to achieve the goal of load balance. When upload finishes, DN reports to CM that
new file has been created, the content of the report should include file’s shot number, begin and end trace number, CM
will establish level-one index according to these information. Meanwhile, DNs in the same group should synchronize the
new file with the same information for the target DN to build level-two index. When client downloads file from DN, the
command of download operation should also include shot number, begin and end trace number. DN will query the related
data through level-two index based on these information and then return to the client to finish download operation. We
take Trie structure to form level-one index, Trie is a tree-like structure, a mutation of hash tree. Its efficiency is higher than
hash since it reduces many unnecessary comparisons. We also take RB tree to form level-two index, it is a highly
balanced binary search tree, it can guarantee the time needed when the circumstance is at the worst level. When
downloading files, due to the variety of needs of customers, the system may download file in blocks according to the shot
number, begin and end trace number that is required, so we add multithread to make the procedure much faster than ever
before.

3) Communication protocols

There must be communication problems in order to achieve the whole distributed file system. In our work, these problems
can exist between CM and DN, DN and DN. The communication protocols in Fast DFS are concentrated in some
important files, we should add or revise some of the commands in them based on the needs of actual seismic data, and
finally establish our file system.

According to the description that has been discussed before, we add or revise the following commands:

ISSN 2277-3061

5785 | P a g e A p r i l 0 6 , 2 0 1 5

1. DN to CM

Tracker_Proto_Cmd_Storage_Report_New_File:

DN reports to CM that new files have been created: when Client successfully uploads files to DN, DN should
report to CM of the information about the new files’ properties, such as shot numbers, trace numbers, group
numbers, so that CM can establish level-one index.

2. Client to CM

Tracker_Proto_Cmd_Service_Query_Store:

CM queries which DN to store data: since we should take load balance into account, so data in the same
shot but in different blocks should be stored in different groups.

Tracker_Proto_Cmd_Service_Query_Fetch:

CM queries which DN has the data to download: we should query this according to some information such
as shot number, begin and end trace number.

3. DN and DN

Storage_Proto_Cmd_Sync_Create_File:

Synchronize files between DNs when uploading files finishes: when synchronizing, some important
information are needed so that target DN can build level-two index.

4. Client to DN

Storage_Proto_Cmd_Upload_File:

Upload files: when uploading data, shot number, range of the trace of data are needed so that DN can build
level-two index.

Storage_Proto_Cmd_Download_File:

Download files: when downloading data, shot number, range of the trace of data are also needed, in that
case, DN can query level-two index and return the required data. On the other hand, the data downloaded
may not only be the whole file, but some trace data as well.

4.3 Read and Write working principle

In seismic data, the most commonly used operations are write data and read data[7]. To facilitate identification, we define
the form of the filename as ``shotNumber_beginRecvNumber_endRecvNumber''. In our Distributed file system (we call
BDSS for short), the level-one index will be established in the tracker and the level-two index will be in the storage.

1) File write

When file system starts, we can operate file write, and data have been created as the form of our optimized structure
(header data and data body are separated rather than stored together like SEG-Y), and we should also specify the shot
number, begin trace number, end trace number of data. Write command is assigned as: command <config filename>
<local filename> <shot_number> <begin_recv_number> <end_recv_number>. From the form of our command we can see
that since we have signified shot number, begin and end trace number when writing files, clients can write their important
data to the file system more conveniently, thus more flexible and humane.

The figure 6 shows how BDSS write the file. first, the client requires to the tracker server about which storage server can
write the file; second, tracker server accepts the requirement and return the related IP address and port number of the
storage server that is available; third, the client use these information to establish connect with this server and write the file,
and then the storage server should report information about the written file to the tracker server, the tracker server will add
it to level-one index; finally, the storage server will return the file ID to the client when it report the new file successfully,
and the file operation finishes.

Fig.6. Write operation

ISSN 2277-3061

5786 | P a g e A p r i l 0 6 , 2 0 1 5

2) File read

Similar with file write, reading files should also specify the file's shot number, begin and end trace number, while DNs
query related data through level-two index according to these information to performance reading. Meanwhile, to improve
efficiency, we limit the range of trace number, that is, we can read 100 traces of data at most (this value can be assigned
randomly, but should take everything into account), however, the client's requirements can be random, so when the range
of traces that are required is too large, it is necessary to separate data, and take multithread methods to improve the
efficiency. reading command is assigned as: command <config filename> <filename>, the form of the filename is signified
as “data_shotNumber_beginRecvNumber_endRecvNumber’’.

The figure 7 shows how BDSS read the file. first, the client requires to the tracker server about which the storage server
can read the file with a require parameter file ID number; second, the tracker server queries which storage server has this
file, and return the related IP address and port number to the client; finally, the client uses these information to have a
connection with this storage, and then gets the file.

Fig.7. Read operation

As we have fully considered the advantages of the system architecture and different clients’ requirements. Besides, similar
to write operation, clients can assign the location information of files that are to be read, thus more flexible, high-efficient
and humane.

4.4 Compatison of the effciency

As for the evaluation for random reading, we test this read performance among BDSS, the original Fast DFS and Hadoop
DFS based on the same cluster.

1) Cluster configurations

The specific configurations for our cluster are as shown in table 2:

Table 2. Cluster contigurations

IP address Nodes Memory CPU
Operating
Systems

Ethernet HDs

10.1.0.100 CM 4G
E5410 @ 2.33GHz

2(8)
Centos6.4 Gigabit

WD1600BEKT
160G

10.1.0.5 DN 4G
E5506 @ 2.13GHz

1(4)
Centos6.4 Gigabit

ST3300656SS
300G

10.1.0.7 DN 4G
E5506 @ 2.13GHz

2(8)
Centos6.4 Gigabit MBA3147RC 160G

10.1.0.9 DN 4G
E5520 @ 2.27GHz

2(16)
Centos6.4 Gigabit

ST3300656SS
300G

10.1.0.11 DN 4G
E5506 @ 2.13GHz

1(4)
Centos6.4 Gigabit

ST3300656SS
300G

10.1.0.13 DN 4G
E5506 @ 2.13GHz

1(4)
Centos6.4 Gigabit

ST3300656SS
300G

10.1.0.15 DN 4G
E5504 @ 2.00GHz

2(8)
Centos6.4 Gigabit

ST3300656SS
300G

ISSN 2277-3061

5787 | P a g e A p r i l 0 6 , 2 0 1 5

2) Performance evaluation and results analysis

The version for our Fast DFS is v3.06 while the Hadoop DFS is v1.02. We use 11 different groups of data to perform our
research, the specific data are as shown in table 3:

Table 3. Specific data configurations

File size 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m 32m

File
Number

100000 50000 50000 50000 20000 20000 20000 10000 5000 2000 1000

Read
Number

8192 8192 8192 8192 4096 4096 4096 2048 2048 1024 512

The method for our research is to write all the data listed in the table above to every distributed file system in order to
make sure that each system has the same amount of data, and then reading the data from these systems randomly to the
client`s memory. For example, there are four clients to read the files of 32KB, after the files have been written, each client
will read 8192 files randomly out of 100000 files. Next, we test the performance for simultaneously random reading for one
client, two clients, three clients and four clients respectively. We continue our testing by repeating the above process with
file size ranging from 32KB to 32MB. Each testing will be repeated three times, and then record their average value.
Finally, we get the figures, as shown in figure 8:

Fig.8. Performances comparison among three systems with 1,2,3,4 clients

From the four figures we can see that, the reading performance of the three distributed file systems has a positive
relationship with the file size until it has reached to 16MB due to the gigabit ethernet and the own limitations of the hard
disk, in that case, the overall speed cannot improve and the stability becomes worse either.

Basically, the performance of FDFS and BDSS is better than HDFS, especially when the file size is small. For example,
the speed for BDSS, FDFS and HDFS is 5.94MB/s, 4.96MB/s and 3.22MB/s when reading the file of 32KB, the speed of
BDSS is twice as fast as HDFS. The reason is that FDFS and BDSS is a light-weight distributed file system and is very
good at handling small files. But as for HDFS, numerous number of small files will cost large quantity of memory usage in
CM node, thus resulting in worse performance.

We can also see that, compared to FDFS, the performance of BDSS has also improved, especially when the file size is
small, which can up to 19.8%, owing to the two-level index structures we have added in it. While in FDFS, it is necessary
for clients to know the information returned when writing files, and then analyze this information to get the specific DN.
What is more, the overall system should also check this filename. Our system has already ignored all this trivial operations,
thus improving the whole performance.

There still remains one thing we should focus on: the number of client. When the client number increases, it is obvious that
the performance of reading has also increased greatly. Through all the results presented by the clients, we can find that

ISSN 2277-3061

5788 | P a g e A p r i l 0 6 , 2 0 1 5

the performance of the whole system has not been fully developed when there is only one client. In this case, we should
use more clients to improve the overall performance.

5. CONCLUSION

This paper focuses on properties of seismic data, through breaking the head data and data body apart and store them
separately, the overall reading performance has been improved. Besides, according to the `small in size, large in
quantity[12]’ property for seismic data, we have developed a new distributed file system aiming at seismic exploration data
based on the fast distributed file system. We add our own details to improve the overall performance as well as avoiding
some drawbacks existed in the original system. The experimental results show that our system can perform better than
the original fast distributed file system and Hadoop file system.

Our future work will focus on further improve our file system. Since there still exists some performance issues even though
the overall speed has been improved, we should make a step further to concentrate on small file problems and some other
implementation details, such as file merging, file mapping, prefetching methods and so on.

ACKNOWLEDGMENTS

The work was supported by National Natural Science Foundation of China (Grant No:61331017).

REFERENCES

[1] Patel A B, Birla M, Nair U. Addressing big data problem using Hadoop and Map Reduce [C]//Engineering (NUiCONE),
2012 Nirma University International Conference on. IEEE, 2012: 1-5.

[2] Rajaraman A, Ullman J D. Mining of massive datasets [M]. Cambridge University Press, 2012.

[3] https://nutch.apache.org/

[4] Sagiroglu S, Sinanc D. Big data: A review[C]//Collaboration Technologies and Systems (CTS), 2013 International
Conference on. IEEE, 2013: 42-47.

[5] Ghemawat S, Gobioff H, Leung S T. The Google file system [C]//ACM SIGOPS Operating Systems Review. ACM,
2003, 37(5): 29-43.

[6] Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters [J]. Communications of the ACM,
2008, 51(1): 107-113.

[7] Claerbout J F. Fundamentals of geophysical data processing [J]. 1985.

[8] Howard J H, Kazar M L, Menees S G, et al. Scale and performance in a distributed file system [J]. ACM Transactions
on Computer Systems (TOCS), 1988, 6(1): 51-81.

[9] Zhou H W. Practical Seismic Data Analysis[M]. Cambridge University Press, 2014.

[10] Shvachko K, Kuang H, Radia S, et al. The hadoop distributed file system [C]//Mass Storage Systems and
Technologies (MSST), 2010 IEEE 26th Symposium on. IEEE, 2010: 1-10.

[11] http://code.google.com/p/fastdfs/

[12] Jia B, Wlodarczyk T W, Rong C. Performance considerations of data acquisition in hadoop system [C]//Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference on. IEEE, 2010: 545-
549.

[13] http://bbs.chinaunix.net/forum-240-1.html

[14] Borthakur D, Gray J, Sarma J S, et al. Apache Hadoop goes realtime at Facebook [C]//Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data. ACM, 2011: 1071-1080.

