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 Abstract 

This paper deals with a multi-objective linear programming problem with an inexact rough interval fuzzy coefficients 
IRFMOLP. This problem is considered by incorporating an inexact rough interval fuzzy number in both the objective 
function and constrains. The concept of "Rough interval" is introduced in the modeling framework to represent dual-
uncertain parameters. A suggested solution procedure is given to obtain rough interval solution for IRFLP(w) problem. 
Finally,two numerical example is given to clarify the obtained results in this paper.  
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1  Introduction 

 The theory of rough sets proposed by Pawlak (1982) [16], can be regarded as an effective mathematical vehicle 
for dealing with imprecise and ambiguous data analyses, which can be subsequently applied to pattern recognition, 
machine learning, and knowledge discovery [[1]-[7]]. The equivalence relation is a key notion in Pawlak’s rough set model. 
All equivalence classes form a partition of a universe of discourse. Using equivalence classes, an arbitrary subset can be 
approximated by two subsets called the lower approximation and the upper approximation. However, the equivalence 
relation is a stringent condition that may limit the applications of rough sets in practical problems. Hence, various 
extensions of Pawlak’s rough set were developed from an equivalence relation into a more general mathematical concept, 
e.g., binary relations by Slowinski (2000) [18]. The theory of rough set deals with approximation of an arbitrary subset of 
universe by two definable or observable subsets called lower and upper approximation. Dubois and Prade (1990) [5] 
pointedly that the rough fuzzy set is a special case of the fuzzy rough set. The notion of interval-valued fuzzy set was 
suggested for the first time by Turksan (1986) [19] and Gorse (1986) [9]. They are applied to the fields of the approximate 
inference gave Miyamoto (2004)[14] fuzzy sets and  -level sets .Shaocheng (1994)[17] introduced two kinds of linear 

programming with fuzzy numbers. They are called interval number and fuzzy number linear programming. Guijun and 
Xiapong (1998)[10] define interval-valued fuzzy number and interval distribution numbers and gave their extended 
operations. Zhong et al. (1994)[23] study fuzzy random linear programming having fuzzy random variable coefficients and 
the decision vector of fuzzy random variable. It is generally accepted that these two theories are related, but a listing and 
complementary, to each other ( Miyamoto (2004) [14], XU (2012) [20] and Yao (1996) [21]). establishes a rough multiple 
objective programming model for a solid transportation problem. Gong et al., (2008) [8]and Li et al., (2007) [12], introduce 
an interval-valued fuzzy information system by means of iterating the classical Pawlak’s rough set theory with the interval-
valued fuzzy set theory and oles cusses the basic rough set theory for the interval-valued fuzzy information system. There 
are at least two approaches for the development of the fuzzy rough sets theory: The constructive and axiomatic 
approaches (Yao (1998) [22]). In the constructive approach, the relation to the universe is the primitive notion. The lower 
and upper approximation operator are contracted by means of this notion. On the other hand, the axiomatic approach 
takes the lower and upper approximation operator as primitive notion. In this approaches, a set of axioms is used to 
characterize approximation operators. Zhang (2012) [24] presents a general framework for the study of interval type-2 
rough fuzzy sets by using both constructive and axiomatic approaches. In this paper, multi-objective linear programming 
problem with an inexact rough interval fuzzy coefficients IRFMOL is introduced.The problem is transformed into the 
corresponding IRFLP problem using the weighting method, A solution procedure is given to obtain the rough interval 
solution for the IRFLP(w) problem. 

The paper is organized as in the following sections: In section 2, some preliminaries are introduced. In section 3, 
problem formulation is introduced as specific definition and properties. In section 4, a solution procedure is given to obtain 
a rough interval solution for the IRFMOLP problem in section 3. In section 5, numerical example is given to clarify the 
obtained results. Finally, some concluding remarks are reported in section 6.  

2  Preliminaries 

 In this section, we introduce some notions related to the IRFMOLP problem. The following concepts can be 
found in [11], [15] and [24]. Number of  -cuts, leading to a series of dual intervals being generated. Among these 

intervals, the internal has two limits (i.e. ))(~  )(~  L

N

L

N aanda 
 reflect the conservative feature of fuzzy information, 

while the external ones (i.e. )(~  )(~  U

N

U

N aanda 
 ) correspond to the optimistic characteristics. Let )(RF R

N  denote 

the set of all compact rough fuzzy numbers on real line (R), that is, )(~ RFa R

N

R  . It is 
La~  lower bounded membership 

grades consist of a membership function located inside the other one formed by the upper bounded grades 
Ua~ , 

Ra~  

Satisfies:   

    1.  
Ra~  is normal 

( i.e (0,1]}   ,~~ ,~ , ~:{ = ~   
ULULR aaaaxax ) such that 1.=)(xaR

  

    2.  For any  ])(,)([:)](,)([= , (0,1]   LLUUR aaaaa     is a rough interval number on R  

such that ].,[],[ UULL aaaa      

 Definition 1 Suppose that  

  ,)](),([:)](),([= 
LLUUR aaaaa 

 

 

  .)](),([:)](),([= 
LLUUR bbbbb   

we define   
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    1.   ,)]()(),()([:)]()( ),()([= 
LLLLUUUURR bababababa    

 

    2.   ,)]()(),()([:)]()( ),()([= 
LLLLUUUURR bababababa    

 

    3.   ,)]()(),()([:)]()(),()([= 
LLLLUUUURR bababababa    

 

    4.  The order relation ""  is defined by  

 ).()(    )()(    
UULLRR baandbaiffba    

 

    5.  Let   }   ,)](),([:)](),([ { Iiaaaa i

L

i

L

i

U

i

U      I  is the index set and 

 

 >)(  

U

IiIi a  , then  

 

                     =)](),([:)](),([ i

L

i

L

i

U

i

U

Ii aaaa  

  

 

  ,)]( ),( [:)]( ),( [  i

L

Iii

L

Iii

U

Iii

U

Ii aaaa  













   

 

    6.  let   }   ,)](),([:)](),([ { Iiaaaa i

L

i

L

i

U

i

U      I  is the index set and 

 

 <)(  

U

IiIi a  , then  

                        =)](),([:)](),([ i

L

i

L

i

U

i

U

Ii aaaa  

  

 

  .)]( ),( [:)]( ),( [  i

L

Iii

L

Iii

U

Iii

U

Ii aaaa  













   

Definition 2 Let )(RFN  denote the set of all compact fuzzy numbers, that is, for any )(~ RFa N , satisfies:   

    1.  a~  is normal ( i.e (0,1]}   , )(~:{ =     xaxax ) such that 1,=)(~ xa   

    2.  For any  )(),(= , (0,1]    
UL aaa  is closed interval number on . , UL aaR     

 Suppose that,    )(),([= ,)(),(=  
ULUL bbbaaa , we define   

    1.  )],()(),()([=)](),([)](),([= 
UULLULUL bababbaaba   (1) 

  

    2.  )],()(),()([=)](),([)](),([= 
LUULULUL bababbaaba   (2) 

  

    3.  )()()()()()([=)](),([)](),([= 
ULLULLULUL babababbaaba   

 

 )],()()()()()()()(),()(  UULUULLLUU bababababa   (3) 
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    4.  The order relation ""  is defined by  

 ),()(),()(  )](),([)](),([  UULLULUL babaiffbbaa   

 

    5.  Let IRIiaa i

U

i

L  ,} )],(),({[   is the index set and   >)(  

L

IiIi a  , then  

 )],(),([=)](),([ i

U

i
i

L

i
i

U

i

L

i

aaaa     (4) 

  

    6.  Let IRIiaa i

U

i

L  ,} )],(),({[  is the index set and   <)(  

U

IiIi a  , then  

 )].(),([=)](),([ i

U

i
i

L

i
i

U

i

L

i

aaaa     (5) 

Lemma 1 Let  )(
~

 ,~ RFba N , then for any (0,1]  , we have  

  baba    =) (  (6) 

   is any operation defined in (1)-(6).  

3  Problem formulation  

 Consider the rough fuzzy multiobjective linear programming problem (IRFMOLP), as in the following form:   

    • Model 1  

  RRRRR

RMRx

XDXDfIRFMOLP
~~

=)
~

,
~

(
~

min        
~

 

 (7) 

              Subject to: 

 0}~  ,
~

 
~

 
~

 :~{=)
~

,
~

(
~

  RRRRRR xBXAxBAM  

where  ),...,,(=    ),
~

 ,...,
~

 ,
~

 (=
~

   ,]~ [=
~

   ,]
~

 [=
~

 2121

TR

n

RRRR

m

RRR

nm

R

ji

R

nk

R

li

R xxxXbbbBaAdD  , and 

 
~

  ;
~

  ;
~

 RRR BAD  are compact rough fuzzy numbers. The above problem can be reformulated by use the weighting 

method as in the following form:  

    • Model 2   

  RRRRR

RMRx

XCXCfwIRFLP
~

 
~

=)
~

,
~

(
~

min      )(
~

  ~ 

 (8) 

              Subject to: 

 0}  ,
~

  
~

 :{=
~

  RRRRRR xBXAxM  

where 
R

nkk

R

n DWC  ]
~

[][=]
~

[ 1 , 1}=  ,1,2,...,=, 0{=
1= i

k

ii wkiww  , 

 ),...,,(=    ),
~

 ,...,
~

 ,
~

 (=
~

   ,]~ [=
~

   ,]
~

 [=
~

 2121

TR

n

RRRR

m

RRR

nm

R

ji

R

nk

R

li

R xxxXbbbBaAdD  , and  
~

  ;
~

  ;
~

 RRR BAC  

are compact rough fuzzy numbers.  

Definition 3 The rough fuzzy vector )
~

,
~

( RRR
BAx 

 which satisfies the conditions in model (2), is said to be a 

rough fuzzy optimal solution of mode (2) IRFLP(w) if  

 )~,
~

(
~

)~,
~

(
~ RRRRRR xCfxCf    

for each )
~

,
~

(
~~ RRRR BAMx 

, furthermore if 
R

x
 is a rough fuzzy vector. then it is said to be a rough fuzzy optimal 

solution of model 2: for any (0,1]  the  level cuts of 
RR

j

R

ji

R

i xbac 

 ,  ,  ,  are rough intervals, furthermore, if 
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R
x

 is a rough fuzzy vector, then it is said to be a rough fuzzy optimal solution of model 2: for any (0,1]  the  

level cuts of 
RR

j

R

ji

R

i xbac 

 ,  ,  ,  are rough intervals denote them by:  

  ,)](),([:)](),([=)( 
L

i

L

i

U

i

U

i

R

i Ccccc 
 

 

  ,)](),([:)](),([=)( 
L

ji

L

ji

U

ji

U

ji

R

ji aaaaa 
 

 

  ,)](),([:)](),([=)( 
L

j

L

j

U

j

U

j

R

j bbbbb 
 

 

  ,)](),([:)](),([=)( 
L

i

L

i

U

i

U

i

R

i xxxxx 
 

  1,2,...,=   1,2,...,= mjni   

 Definition 4 (Rough fuzzy efficient solution) The rough fuzzy vector )
~

,
~

( RRR BAx 
 which satisfies the 

condition in model 1 IRFMOLP, is called a rough fuzzy efficient solution of mode 1 IRFMOLP if and only if there does not 

exist another 
RRRR MBAx

~
)

~
,

~
( 

 such that  

 )~,
~

(
~

)~,
~

(
~ RR

i

RR

i xCfxCf    

for all i  and )()( R

i

R

i xfxf   for at least one ki 1,2,...,=   

 Remark 1 For any *w , any rough fuzzy optimal solution of modle 2 is an rough fuzzy efficient solution of 

problem modle 1  

 Also, for any (0,1]  we transfer model 2 to two boundary models, an upper approximation fuzzy interval 

programming problem 
U

UP
~

 and lower approximation fuzzy interval programming problem 
L

LP
~

 as follows:  

  UUU

UMx

U

U XCfP
~

 
~

=
~

min                   :
~

~
 

 (9) 

     Subject to: 

 0}  ,
~

 
~

: {=)
~

,
~

(
~

 xBXAxBAM UUUUU
 

 

  LLL

LMx

L

L XCfP
~~

=
~

min                    :
~

~


 (10) 

     Subject to: 

 0}   ,
~

 
~

: {=)
~

,
~

(
~

 xBXAxBAM LLLLL
 

4  Solution procedure 

          (a) Convert model (2) to two boundary corresponding to submodels 
U

UP , 
L

LP , respectively, if the objective is to be 

minimized, then 
U

UP  is desired.  

        (b) Convert each boundary model to two corresponding to submodels the upper and lower approximation intervals, 
respectively.  

        (c) Solve the first desired upper bounded submodel and obtain solution of 
Ux

 and 
U

UP
.  

        (d) Add constraint 
UL xx    to the second upper bounded submodel, solve it and obtain solution of 

Lx
 and 

L

LP

.  

        (e) Add constraint 
LL xx    to the first first lower bounded submodel, solve it and obtain solution of 

Lx
 and 

L

LP

.  
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        (f) Add constraint 
LU xx    to the first second lower bounded submodel, solve it and obtain solution of 

Ux
 and 

U

UP
.  

        (g) Incorporate the solution of all submodel to the obtain optimal solution as following :  

    ],[:],[=         ],[:],[= LLUURLLUUR fffffxxxxx 

  

 After deduce the following programming problems for a upper approximation interval and lower approximation 
interval 

    • Model 3:    

        (a)  

                                min             :
 





XCP U

UMx

U

U







  

        (b)  

                                min             :
 





XCP L

LMx

L

L







   

    • Model 4:   

        (a)  

                                min            :
 





XCP U

UMx

U

U







  

        (b)  

                                min            :
 





XCP L

LMx

L

L







  

    • Model 5:   

        (a)  

                                min            :
 





XCP U

UMx

U

U







  

        (b)  

                                min            :
 





XCP L

LMx

L

L







  

    • Model 6:   

        (a)  

                                min           :
 





XCP U

UMx

U

U







  

        (b)  

                                min          :
 





XCP L

LMx

L

L







  

                   • Model7:   

        (a) 
U

UP

  and 
U

UP

   

 







XCandXC U

UU
Mx

U

UU
Mx











min          min
),(),(

 

        (b) 
L

LP

  and 
L

LP

   
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 







XCandXC L

LL
Mx

L

LL
Mx

 min           min
),(

 
),(











 

    • Model 8:   

        (a)  

                                min            :
),(

 





XCP U

UU
Mx

U

U








  

        (b)  

                                min            :
),(

 





XCP L

LL
Mx

L

L








  

 It is clear that for any (0,1]  Models (3-8) are linear programming problem with rough interval numbers 

solved them by simplex method .  

Lemma 2  Suppose that 0)
~

( LA  (i.e 0  0   L

ji

L

ji aanda  ) for any (0,1]  if Mx
~~ , then 

LL Mx     and 
LL Mx     . Similarly, when 0

~
UA  and 

UMx
~~  then 

UU Mx     and 
UU Mx     .  

Lemma 3  Suppose that 0)
~

( LA  (i.e 0  0   L

ji

L

ji aanda  ) for any (0,1]  if 
LL Mx

~~  , then 

LL Mx     and 
LL Mx     . Similarly, when 0

~
UA  and 

UU Mx
~~   then 

UU Mx     and 
UU Mx    .  

Lemma 4  Suppose that  0LA  and 0LA  (i.e 0  0   L

ji

L

ji aanda  ) for any (0,1]in  if 

),(~~ LLMx  , then 
),( LLL Mx     . Similarly, when 0UA  and 

),(~~  0; UUU MxA   , then 

),( UUU Mx      

5  Basic results 

 In the following we shall prove some theorems which point out that a rough fuzzy optimal solution of models 
U

UP
~

 

and 
L

LP
~

 may by resolved into a class of optimal solution of modules (model 3-8)  

Theorem 1 Suppose that 0
~

UA  and 0
~

UC  if 
Ux ~

 is upper approximation (rough) fuzzy optimal solution of 

models 
U

UP
~

, then for any (0,1] , we have   

    1.   

 
UU

UMUx

UUU

UMUx

U XCXC 







    min=            ,  min=
  










 

    2.   

 ),(=~             ,
~

 
~

 min=~
~

 ~

UUUUU

UMx

U XC 






  (11) 

    3.  
UU xx  )( ,)(  are upper approximation (rough) optimal solution of models ( 5) (problems ), L

L

U

U PP 





  

and (6)(problems ), L

L

U

U PP 





 , respectively.  

  Proof Suppose that 
Ux ~

 is upper approximation fuzzy solution of model 
)(UP , that is,  

 
UTUUTUUU xCMinxCandMx  )

~
( =~ )

~
(      

~~    (12) 

 Since 0
~

UA , by lemma(1), we have 
UUUU MxMx    )( , )( ,  
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 }
~~ :{=      }

~~ :{= MxxMandMxxM UUUU  

  

from eqs (1) (3), (6) and since 0
~

UC , then the the first side of eqn12  

 ]))()(,)()( [=]))((,)()[(
1=1=

U

j

U

j

n

j

U

j

U

j

n

j

UUUU xcxcxCxC     

 ])()( ,)()[( =
1=

U

j

U

j

U

j

U

j

n

j

xcxc    

 ])( ,))][()( ,)[( =
1=

U

j

U

j

U

j

U

j

n

j

xxcc    

 
U

j

U

j

n

j

xc  )~()~( =
1=

  

 ]
~

 
~

[= UU XC 
 (13) 

 From eqs (1),(3),(4),(5) and (6), then the second side of eqn(12)  

  


UTU

UMUx

UTU

UMUx

xCxC ~ )
~

(min=~ )
~

(min
~~~~ 









 

 
















U

j

U

j

n

j
UMUx

xc 



)~()~( min=
1=

~~

 

 
















 ])( ,))][()( ,)[( min=
1=

~~

U

j

U

j

U

j

U

j

n

j
UMUx

xxcc 



 

 
















 ])( ))( ,)()[( min=
1=

~~

U

j

U

j

U

j

U

j

n

j
UMUx

xcxc 



 

 ])( ))( ,)()[( min=
~~

UUUU

UMUx

xcxc 






 

 ])( ))( min ,)()( min[ =
~~~~

UU

UMUX

UU

UMUX

XCXC 














 (14) 

 From eqs (13) and (14) there followes (11), we also obtain, for any (0,1]   

 



 XCXC U

UMX

UU )( min=)()( 




 (15) 

 



 XCXC U

UMX

UU )( min=)()( 




 (16) 

 eqs (15) and (16) show that the part of the theorem is correct, too the proof is compleat.  

Theorem 2 Suppose that 0
~

UA  and 0
~

UC  if 

}
~~:{

~
      }

~~:{
~ UUUUUUUU MxxMandMxxM  

  
Ux ~

 is upper approximation (rough) fuzzy optimal 

solution of models 
U

UP
~

, then for any (0,1] , we have   
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    1.                                  







  XCXC U

UMx

UU

UMx

U   min=            min=
  










 

    2.   

 ),(=~           
~

 
~

 min=~
~

 ~

UUUUU

UMUx

U XC 






  (17) 

    3.  
UU xx   ,  are upper approximation (rough) optimal solution of models ( 5) (problems )( )(  L

L

U

U PP 







) and (6) (problems )( ),(  L

L

U

U PP 





 ), respectively;  

  Proof Suppose that 
Ux ~

 is upper approximation fuzzy optimal solution of model 
U

UP
~

 (problem ?? ), that is  

 
UTUUTUUU xCxCandMx  )

~
(min= )

~
(        

~~    (18) 

 Since 0
~

UA  by lemma 1, we have }
~~ :{= ,)( , )( UUUUUUUU MxxMMxMx  

  and

}
~~ :{= UUUU MxxM 

   

From eqs (1) (3), (6) and since 0
~

UC , then the the first side of eqn18  

 ]))()(,)()( [=]))((,)()[(
1=1=

U

j

U

j

n

j

U

j

U

j

n

j

UUUU xcxcxCxC     

 ]))()( ,)()[( =
1=

U

j

U

j

U

j

U

j

n

j

xcxc    

 ])( ,))][()( ,)[( =
1=

U

j

U

j

U

j

U

j

n

j

xxcc    

 
U

j

U

j

n

j

xc  )()~( =
1=

  

 ]
~

 
~

[= UU XC 
 (19) 

 From eqs (1),(3),(4),(5) and (6), then the second side of eqn(18)  

  


UTU

UMUx

UTU

UMUx

xCxC  )
~

(min= )
~

(min
~~~~ 









 

 















 U

j

U

j

n

j

UMUx
xcmin 



)()~( =
1=

~~
 

 
















 ])( ,))][()( ,)[( min=
1=

~~

U

j

U

j

U

j

U

j

n

j
UMUx

xxcc 



 

 
















 ])( ))( ,)()[( min=
1=

~~

U

j

U

j

U

j

U

j

n

j
UMUx

xcxc 



 

  ])( ))( ,)()[( min=
~~

UUUU

UMUx

xCxC 





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 ])( ))( min,)()( min[ =
~~~~

UU

UMUx

UU

UMUx

xCxC 














 (20) 

 From eqs (19) and (20) there followes (17), also obtain, for any (0,1]   

 


 XCMinXC U

UMX

UU )( =)()( 




 (21) 

 
UU

UMX

UU XCXC 



 )()( min=)()( 




 (22) 

 eqs (21) and (22) show that the part of the theorem is correct, too the proof is compleat.  

Corollary 1 Suppose that 0  0, , 0,   UUUU CandCAA   let 

} 
~~:{),( UUUUU MxxM  

 , where (0,1]  if 
Ux ~

 is upper approximation (rough) fuzzy optimal solution of 

model 
U

UP
~

, then for any 
Ux  (0,1],  is upper approximation (rough) fuzzy optimal solution of model 8.  

Example 1 : Consider the following rough fuzzy linear programming problem:  

1)(IRFMOLP   

 

































R

R

RR

RR

x

x
~

~

2
~

3
~

2
~

1
~

 max  

Subject to :  

 0~

~

       ,
51

~
54

~
72

~

~

~

1
~

3
~

6
~

8
~

6
~

2
~

                      2

1

2

1











































































R

R

R

R

R

R

R

RR

RR

RR

x

x

x

x

 

 Suppose for 0.5=  the   Cut of the rough fuzzy numbers in the above can be write as:  

 

   
   
































R

R

x

x

2

1

[1.5,2.5]:[1,3][2.5,3.5]:[2,4]

[1.5,2.5]:[1,3][0.5,1.5]:[0,2]

 max  

subject to :  

 

   
   
   

 
 
 


























































][14.5,15.5:[14,16]

][44.5,45.5:[44,46]

][26.5,27.5:[26,28]

[0.5,1.5]:[0,2][2.5,3.5]:[2,4]

[5.5,6.5]:[5,7][7.5,8.5]:[7,9]

[5.5,6.5]:[5,7][1.5,2.5]:[1,3]

2

1

R

R

x

x

 

where  

 

 

 








































],[:],[

],[:],[

=
2222

1111

2

1

UULL

UULL

R

R

xxxx

xxxx

x

x

 



ISSN 2277-3061                                                           

5752 | P a g e                                                      M a r c h  2 3 ,  2 0 1 5  

 

Convert the 1)(IRFMOLP  linear programming problem to single objective by weighting method 

0.5==    ,=)( 212211 wwatfwfwxf  , follows: 

)(1 wIRFLP   

 
   
























 R

R

x

x

2

1
[1.5,2.5]:[1,3][1.5,2.5]:[1,3]

max  

Subject to :  

 

   
   
   

 
 
 


























































][14.5,15.5:[14,16]

][44.5,45.5:[44,46]

][26.5,27.5:[26,28]

[0.5,1.5]:[0,2][2.5,3.5]:[2,4]

[5.5,6.5]:[5,7][7.5,8.5]:[7,9]

[5.5,6.5]:[5,7][1.5,2.5]:[1,3]

2

1

R

R

x

x

 

Now, we divided a problem above to a problems upper approximation problem )(U

UP  and lower approximation problem 

)(L

LP  follows 

     :)(L

LP  

 

 

 
































LL

LL

xx

xx

Max




22

11

,

,

[1.5,2.5][1.5,2.5]
  

Subject to :  

 

   
   
   

 

 

 
 
 



































































14.5,15.5

44.5,45.5

26.5,27.5

,

,

0.5,1.52.5,3.5

5.5,6.57.5,8.5

5.5,6.51.5,2.5

                  
22

11

LL

LL

xx

xx





 

:)(U

UP   

 

 

 
































UU

UU

xx

xx





22

11

,

,

[1,3][1,3]
max  

Subject to :  

 

   
   
   

 

 

 
 
 



































































14,16

44,46

26,28

,

,

0,22,4

5,77,9

5,71,3

                  
22

11

UU

UU

xx

xx





 

Since 0UC , 0UA  and 0.5=  of )(U

UP , then the )(U

UP  problem corresponds to the following model in the 

model 6 
U

UP

  as:  
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

































 U

U

U

U
x

x

P




2

1

33
 max                   

Subject to :  

 .
14

44

26

02

57

51

                      
2

1



































































U

U

x

x





 

Follows the upper approximation (rough) solution of problem 
U

UP

 , 4.6=  3,= 21

UU xx 

 . Since 0LC , 0LA  and 

0.5=  of )(L

LP

 , then the )(L

LP  problem with add constraints 31 Lx   and 4.62 Lx   corresponds to the 

following model in the (model 6) 
L

LP

  as:  

 



































 L

L

L

L
x

x

P




2

1

2.52.5
max            

Subject to :  

 















































































4.6

3

14.5

44.5

26.5

10

01

0.52.5

5.57.5

5.51.5

                     
2

1

L

L

x

x





 

follows the lower approximation (rough) solution 4=  3,= 21

LL xx 

 . 

Now, from the )(L

LP  problem, we have 0LC  and 0LA , then )(L

LP  with add 31 Lx   and 

42 Lx   corresponds to the following model in the model 5 
L

LP

  as:  

 



































 L

L

L

L
x

x

P




2

1

1.51.5
max       

Subject to :  

 















































































4

3

15.5

45.5

27.5

10

01

1.53.5

6.58.5

6.52.5

2

1

L

L

x

x





 

follows the lower approximation (rough) solution 3.076=  3,= 21

LL xx 

  
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Now, from the ))(( U

UP  problem, we have 0C  and 0A  , then a problem )(U

UP  with add 31 Ux   

and 3.0762 Ux   corresponds to the following in model 5 WP U

U




 as: 

 



































 U

U

U

U
x

x

P




2

1

11
 max      

Subject to :  

 















































































3.076

3

16

46

28

10

01

24

79

73

2

1

U

U

x

x





 

follows the upper approximation (rough) solution 2.90=  2.54,= 21

UU xx 

 . then for 0.5== 21 ww  and for 0.5=  

the rough fuzzy optimal solution of )(1 wRFLP  is  

 [3.076,4]]:[[2.9,4.6][3,3]],:[[2.5,3]=),(= 21

RRR xxx  

with rough fuzzy objective value is  

 ]][9,11,17.5:8][[5.44,22.=Rf  

Example 2  

 





































R

R

RR

RR

x

x

~

~

3
~

2
~

2
~

4
~

min  

Subject to :  

 






























































R

R

R

R

RR

RR

x

x

3
~
4
~

~

~

2
~

3
~

3
~

2
~

2

1

 

 Suppose for 0.5=  the   Cut of the rough fuzzy linear multiobjective problem are as: 

2IRFMOLP   

 

   
   





































R

R

x

x

2

1

[2.5,3.5]:[2,4][1.5,2.5]:[1,3]

[1.5,2.5]:[1,3][3.5,4.5]:[3,5]

 min  

subject to :  
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   
   

 
 































































[2.5,3.5]:[2,4]

[3.5,4.5]:[3,5]

[1.5,2.5]:[1,3][2.5,3.5]:[2,4]

[2.5,3.5]:[3,4][1.5,2.5]:[1,3]

2

1

R

R

x

x

 

Subject to  

 

 

 
.

],[:],[

],[:],[

=
2222

1111

2

1













































UULL

UULL

R

R

xxxx

xxxx

x

x

 

Convert the 2IRFMOLP  to single objective by weighting method   0.5,==    ,=)( 212211 wwatfwfwxf  , 

follows: 

)(2 wIRFLP   

 
   





























R

R

x

x

2

1

[2,3]:[1.5,3.5][2.5,3.5]:[2,4]
 min  

Subject to :  

 

   
   

 
 































































[2.5,3.5]:[2,4]

[3.5,4.5]:[3,5]

[1.5,2.5]:[1,3][2.5,3.5]:[2,4]

[2.5,3.5]:[3,4][1.5,2.5]:[1,3]

2

1

R

R

x

x

 

Now, we divided a problem above to a problems upper approximation problem )(U

UP  and lower approximation problem 

)(L

LP  follows 

 

 

 
































LL

LL

L

L
xx

xx

P





22

11

,

,

[2,3][2.5,3.5]
 min        )(  

Subject to :  

 

   
   

 

 

 
 



































































2.5,3.5

3.5,4.5

,

,

1.5,2.52.5,3.5

2.5,3.51.5,2.5

                  
22

11

LL

LL

xx

xx





 

 

 

 

 
































UU

UU

U

U
xx

xx

P





22

11

,

,

[1.5,3.5][2,4]
 min           )(  
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Subject to :  

 

   
   

 

 

 
 



































































2,4

3,5

,

,

1,32,4

2,41,3

                  
22

11

UU

UU

xx

xx





 

Since 0UC , 0UA  and 0.5=  of )(U

UP , then the )(U

UP  problem corresponds to the following (in model 6) 

U

UP

  as: 

 



































 U

U

U

U
x

x

P




2

1

3.54
min      

subject to :  

 .2

3

12

21

2

1



































































U

U

x

x





 

Follows the upper approximation (rough) solution of problem 
U

UP

  1.333=  0.333,= 21

UU xx 

  since, 0LC  and 

0LA  of )(L

LP , then the )(L

LP  problem with add constraints 0.3331 Lx   and 1.3332 Lx   corresponds to 

the following in model 6 
L

LP

  as:  

 



































 L

L

L

L
x

x

P




2

1

33.5
min      

subject to :  

 















































































1.333

0.333

2.5

3.5

10

01

1.52.5

2.51.5

2

1

L

L

x

x





 

have the lower approximation (rough) solution of problem 
L

LP

  1.25=  0.25,= 21

LL xx 

  

Now, from the )(L

LP  problem, we have 0LC  and 0LA  , then )(L

LP  with add 0.251 Lx   and 

1.252 Lx   corresponds to the following (in model 5) 
L

LP

  as:  

 



































 L

L

L

L
x

x

P




2

1

22.5
min     
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subject to :  

 















































































1.25

0.25

3.5

4.5

10

01

2.53.5

3.52.5

2

1

L

L

x

x





 

follows the lower approximation (rough) solution of problem 
L

LP

  1.1667=  0.1667,= 21

LL xx 

  

Now, from the )(U

UP  problem, we have 0LC  and 0LA  , then a problem )(L

LP  with add 

0.16671 Ux   and 1.16672 Ux   corresponds to the following (in model 5) 
U

UP

  as:  

 



































 U

U

U

U
x

x

P




2

1

1.52
min      

Subject to :  

 .

1.1667

0.1667

4

5

10

01

34

43

2

1















































































U

U

x

x





 

Follows the upper approximation (rough) solution of problem 
U

U
P

 1.1429=  0.1429,= 21

UU xx 

 , then for 

0.5== 21 ww  and 0.5=  the rough fuzzy optimal solution of )(2 wIRFLP  is  

 25]][1.1667,1.:.333][[1.1429,125]],[0.1667,0.:.333][[0.1429,0=),(= 21

RRR xxx  

with rough fuzzy objective value is  

 25]][2.750,4.6:[[2,6]=Rf  

6   Conclusion 

 In this paper, we have obtained an the efficient solutions of multi-objective linear programming problem with 
inexact rough interval fuzzy coefficients in both objective and constraints. The problem IRFMOLP is transformed into the 
single objective linear programming problem with an inexact rough interval fuzzy coefficients by using the weighting 
method IRFLP(w). The new arithmetic operations based convert each an inexact rough fuzzy problem to two problems 
corresponding to the upper and lower approximation fuzzy set, respectively. Solve all the problems and incorporate the 
solution of all problems to the obtain optimal solution as follows rough interval.  
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