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Abstract - In the present study, onset of stationary Rayleigh-Benard convective instability in a fluid layer, with internal 

heating and thermally dependent viscosity has been investigated by means of linear stability analysis. The dependence of 
viscosity is assumed to be exponential. The resulting eigen value problem is solved using a regular perturbation technique 
with wave number a as a perturbation parameter. The viscosity parameter and the presence of internal heat source play a 
decisive role on the stability characteristics of the system.  It is observed that both stabilizing and destabilizing factors can 
be enhanced because of the simultaneous presence of a volumetric heat source and variable viscosity so that a more 
precise control (suppress or augment) of thermal convective instability in a fluid layer is possible. 
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1. Introduction 
 
Convective flow in a thin layer of fluid, free at the upper surface and heated from below, is of fundamental 

importance and becomes a prototype to a more complex configuration in experiments and industrial processes. The 
convective flows in a liquid layer are driven by buoyancy (Benard) forces due to temperature gradients and thermo 
capillary (Marangoni) forces caused by surface tension gradients and have long been studied extensively since the 
pioneering experimental and theoretical works of Benard (1900), Rayleigh(1916), and Pearson (1958). 

 
The mechanism of internal heating in a flowing fluid is relevant to the thermal processing of liquid foods through 

ohmic heating, where the internal heat generation serves for the pasteurization/sterilization of the food Ruan et al. (2004). 
Other important applications of flows with internal heat generation are relative to nuclear reactors, as well as to the 
geophysics of the earth’s mantle. In both cases, the internal heating is due to the radioactive decay. For nuclear reactors, 
processes of natural convection with internal heating are extremely important in the analysis of severe accident conditions. 
As pointed out by Generalis and Busse (2008), flows with volumetric heating are relevant for the physics of the 
atmosphere, in connection with the absorption of solar radiation. Due to the wide range of industrial and geophysical 
applications, extensive literature has been recently produced on this subject; see e.g. (Carr 2004, Carr and Putter 2003, 
Hill 2004, Straughan 2008, Straughan and Walker 1996, Tse and Chasnov 1998, and Zhang and Schubert 20020). 

 
Physically, all fluids posses a temperature-dependent viscosity, whose effects are important on the onset of 

Rayleigh-Benard convection.(Torrance and Turcotte 1971, Booker 1976, Booker and Stengel 1978, Richter 1978. Stengel 
et al. 1982  and Richter et al1983).  Experimentally, an increase of the viscosity ratio would result in a decrease in the heat 
transfer (Booker 1976, Booker and Stengel 1978) and hexagonal patterns are solely distinguishable Richter (1978). For 
the variations of viscosity with exponential or super- exponential temperature, the critical Rayleigh number is nearly 
constant at small values of the viscosity ratio, then increases at moderate values of the viscosity ratio, increases at 
moderate values of the viscosity ratio to reach a maximum at a critical viscosity ratio of 2981, and finally decreases in the 
large viscosity ratio regime above this critical viscosity ratio, the onset of convection is governed by a sub layer that is 
more unstable than the full layer (see Stengel et al. 1982).  Richter et al. (1983) studied the range of viscosity ratio, 10-10

5
 

and showed that the Nusselt number of the variable- viscosity fluid normalized by  that for the constant- viscosity fluid of at 
same Rayleigh number varies by less than 20%. Lam and Bayazitoglu (1987) examined the destabilizing effects of surface 
tension, linear viscosity variation and internal heat generation and found that viscosity variation plays a more pronounced 
role in destabilizing the liquid layer. 

  
 In this paper, the stationary Rayleigh-Benard instability in a variable viscosity fluid layer with internal heat 

generation will be studied using linear stability analysis. The boundaries are considered to be insulated to temperature 

perturbations. A regular perturbation technique with wave number a  as a perturbation parameter is used to solve the 

eigen value problem in a closed form. The influences of temperature-dependent viscosity and internal heating on the 
stability limit will be analyzed by developing explicit solution. 

 

2. Mathematical Formulation 

We consider penetrative convection via internal heating in a system consisting of an infinite horizontal fluid layer 
of thickness d and the z-axis pointing vertically upwards opposing the direction of gravity. The temperatures of the lower 

and upper boundaries are taken to be uniform and equal to lT and  uT respectively, with l uT T . The governing 

equations for the fluid layer are: 
 

0V


                   (1) 
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where 

0 0exp A T T                  (4) 
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and 0  is the dynamic viscosity corresponding to a temperature equal to the mean of temperature at the boundaries. In 

the above equations, ( , , )V u v w


 is the velocity vector, p is the pressure, T is the temperature, q  is the heat source 

in the fluid layer, is the thermal diffusivity, is the thermal expansion coefficient and 0  is the reference fluid density.  

The basic state is quiescent and is of the form  
 

0, , , , 0,0, , ,b bu v w p T W p z T z                (5) 

 
The basic steady state is assumed to be quiescent and temperature distributions are found to be  

0 2

0
2 2

u

b

T T q d q
T z T z z

d
               (6) 

where 0T is the interface temperature. In order to investigate the stability of the basic solution, infinitesimal disturbances 

are introduced in the form 

, , , ,b b b bV V T T T p p p
 

            (7) 

where the primed quantities are the perturbations and assumed to be small. Eq.(7)is substituted in Eqs. (1)-( 3) and 
linearized in the usual manner. The pressure term is eliminated from Eq. (2)by taking curl twice on these two equations 

and only the vertical component is retained. The variables are then nondimensionalized using 
2, / , /d d d and

0 uT T  as the units of length, time, velocity, and temperature in the fluid layer and the non-dimensional disturbance 

equations are now given by 
 

2
2 4 2 2 2 2

2

1
2 2 h h

f w f
w f w w w R T

pr t z z z

 
                           (8) 

2 1 (1 2 )T w Ns z
t

                (9) 

Where 
3

0 /uR g T T d  is the Rayleigh number,
2

0/ 2 uNs q d T T is the dimensionless heat source 

strength and 
2 2 2 2/h z   is the Laplacian operator with 

2 2 2 2 2/ / .h x y The function f

representing the temperature dependence of viscosity, is defined as 

max

min

1
exp , .

2
f B z B                                          (10) 

The boundaries are assumed to be either to be either rigid or free and insulated to temperature perturbation. Thus the 
appropriate boundary conditions are 
 
For rigid boundary 

0w Dw DT                 (11) 

for free boundary 
2 0.w D w DT                 (12) 

Since the principle of exchange instabilities holds for thermal convection either in fluid layer or a porous layer. It is 
reasonable to assume that it holds good even for the present configuration as well.  Hence, the time derivatives will be 
dropped conveniently from Eqs. (8)and(9).Then performing a normal mode expansion of the dependent variables as 

, , expw T W z z i lx my
 

                         (13) 

and substituting them in Eqs. (8) and(9)(with 0t ), we obtain the following ordinary differential equations  

2
2 2 2 2 2 2 2 22f D a W Df D a DW D f D a W Ra  

   
                    (14) 
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                                                     (15)  
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3. Method of  Solution  
 

Since the critical wave number is exceedingly small for the assumed temperature boundary conditions (Nield and 

Bejan 2006) the eigen value problem is solved using a regular perturbation technique with wave number a as a 

perturbation parameter. Accordingly, the dependent variables are expanded in powers of 
2a in the form 

2

0

, ,
N

i

i i

i

W a W

  

             (16) 

4 3 2 2

0 0 02 0f D W Df D W D f D W                 (17) 

2

0 0( )D f z W                 (18) 

where 

( ) 1 1 2f z Ns z                (19) 

The boundary conditions are  

2

0 0 0 0W D W D                (20) 

on the stress-free boundary and  

0 0 0W DW                 (21) 

on the rigid boundary.  

Then solutions to above equations are 
 

0 00 and 1W
               

(22) 

First- order equations  are 
 

4 3 2 2

1 1 12 [ 1 2 ]D W B D W B D W R Exp B z             (23) 

2

1 11 ( ) .D f z W                 (24) 

The general solution of (23)  is 

2
1 2

1 1 2 3 4 22

B zBz Bz z
W R C C z C e C ze e

B
            (25) 

where 1 2 3 4, , andC C C C  are constants and they have to determined using the appropriate boundary conditions. 

Case (i) Both Boundaries are Rigid 

The boundary conditions are; 

1 1 0 0,1W DW at z               (26) 

The differential Equation (24) involving 
2

1D  provide the solvability requirement which is given by 

1

1

0

( ) 1f z W dz                 (27) 
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The expressions for 1W  is back substituted into Eq. (27) and integrated to yield an expression for the critical Rayleigh 

number ,cR which is given by 
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        (28) 
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From Eqs. (28), we note that in the absence of internal heating (i.e., 0Ns ) and constant viscosity (i.e., 0B ),

720cR    which is the known exact value (Nield 1987]). 

   

Case (ii) Both Boundaries are Free 

The boundary condition are; 
2

1 1 0 0,1W D W at z                 (29) 

The expression for the critical Rayleigh number cR , which is given by 
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From Eqs. (30), we note that in the absence of internal heating (i.e., 0Ns ) and constant viscosity (i.e., 0B ), 

120cR    which is the known exact value (Nield 1987). 

 

Case (iii) Lower Boundary is Rigid and Upper Boundary is Free 

The boundary condition are; 

1 1 0 0W DW at z                             (31) 

2

1 1 0 1.W D W at z                (32) 

The expression for the critical Rayleigh number cR , which is given by 
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From Eqs. (33), we note that in the absence of internal heating (i.e., 0Ns ) and constant viscosity (i.e., 0B ), 

320cR    which is the known exact value (Nield 1987).    

 

 

 
4. Results and Discussion 
 

The effect of internal heat generation on the criterion for the onset of Rayleigh-Benard instability in a variable 
viscosity fluid layer is investigated theoretically. The resulting eigen value problem is solved using a regular perturbation 
technique with wave number a as a perturbation parameter. The following three different types of boundary conditions are 
considered for discussion namely, 

 
      Case (i):   Both boundaries are rigid 

 
      Case (ii): Both boundaries are free 
      Case (iii): Lower boundary is   rigid and upper boundary is free. 
 

Figure 1 shows the variation of critical Rayleigh number cR   with the viscosity parameter B for different values of Ns for 

the boundaries of case(i), it is observed that in the absence of internal heating( 0Ns ) the  critical Rayleigh number cR   

increases initially,  with ,B reaches maximum and then decreases with further increase in  the value of B and thus three 

regions are distinguished as observed in the case of isothermal boundary (see Stengel et al. 1982) cR increases only 

negligibly with B for small values of ;B increases significantly for B up to  about 8 or 9, at which maximum values cR  are 

reached; rapidly decreasing trends are found for  values  of B above 9. Figure 2 depicts the perturbed vertical velocity 

eigen functions W  for different values of the viscosity parameter B  for 0Ns . It is noted that the appearance of newly 

formed sub layer, which first occurs at the maximum critical Rayleigh number cR   with associated viscosity parameter, 

continues to manifest itself after then, becoming dominant at the critical state. As B  is further increased, the viscously 

suppressive effects of main fluid layer above shorten the depth of sub layer and cR  then decreases with .B For the larger 

values of viscosity parameter B the vertical velocity vanishes at the lower part of fluid layer. Further, in the Fig.4.1 with an 

increase of internal heating in the fluid layer the critical Rayleigh number cR   decreases with increases the value of .B

Figure 4.3 depicts the perturbed vertical velocity eigen functions W  for different values of Ns  for 3B . It is noted that 

the convection is closer to upper boundary with an increase of internal heating, thereby the effect internal heating  in the 
fluid layer is todestabilize the system. 
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Fig.1 Critical Rayleigh number versus B   for different values of  Ns for    rigid-rigid 

boundaries. 
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Fig.2 Perturbed velocity eigen functions W  for different values of B with 0Ns for 

 rigid-rigid boundaries.  
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Fig.3  Perturbed velocity eigen functions W  for different values of Ns  with 3B  for rigid-rigid  boundaries.  

 

 

 
 

Fig. 4 Critical Rayleigh number versus B   for different values of  Ns for free-free boundaries. 
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Figure 4 shows the variation of critical Rayleigh number cR   with the viscosity parameter B for different values of 

Ns for the boundaries of case(ii), it is observed that in the absence and presence of  internal heating the critical Rayleigh 

number cR shown to decrease monotonically with ,B  showing important  thermal effects from both above and below and 

also the comparatively negligible viscous effects in the lower part of the fluid layer. As shown in the Fig.5, the onset of 

convection is governed by the full layer rather than sub layer. Figure 6 depicts the perturbed vertical velocity eigen 

functions W  for different values of Ns  for 3.B  It is noted that the convection is closer to upper boundary with an 

increase of internal heating. 

 Figure 7shows the variation of critical Rayleigh number cR   with the viscosity parameter B for different values 

of Ns for the boundaries of case(iii),It is observed that in the absence of internal heating( 0Ns ) and small value of 

1Ns ,  the  critical Rayleigh number cR   increases initially, then decreases rapidly. The higher values of Ns , cR

decreases monotonically as the value of B  increases. Figure 8 depicts the perturbed vertical velocity eigen functions W  

for different values of the viscosity parameter B  for 0Ns . It is noted that the critical state does not vanish throughout 

the entire fluid layer, except at its boundaries.  Further, convection is closer to upper boundary with an increase of internal 

heating (Fig. 9). 
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Fig.5 Perturbed velocity eigen functions W  for different values of B with 0Ns for free-free boundaries.  
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Fig. 6 Perturbed velocity eigen functions W  for different values of Ns with 3B  for free-free boundaries.  

 

 

 

 

Fig. 7 Critical Rayleigh number versus B   for different values of  Ns for rigid-free boundaries 
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Fig.8 Perturbed velocity eigen functions W  for different values of B  with 0Ns for  rigid-free  boundaries.  
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Fig.9 Perturbed velocity eigen functions W  for different values of Ns with 3B  for rigid-free  boundaries.  

 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0

 

 

Z

W

B =7

5

3

1

0



    ISSN 22773061 
   
 

211 | P a g e                                                        M a y 1 5 ,  2 0 1 3  
 

 
 

Fig. 10 Critical Rayleigh number versus B   for different values of  Ns for all three boundaries. 

 

Figure 10 shows the variation of critical Rayleigh number cR   with the viscosity parameter B for different values 

of Ns  for all three different types of boundary conditions.  The curves of cR for different Ns  for case (i) lie above case 

(iii), while those of case (ii) lie below case (iii) boundaries. Hence the case (i) boundary combination is the most stable 
configuration, compared to case(ii) and case(iii) boundaries in the both absence and presence of internal heating the fluid 
layer. 

5. Conclusions 

The onset of penetrative convection via internal heating in a fluid layer is studied with an exponential viscosity 
variation. The resulting eigen value problem is solved using a regular perturbation technique with wave number a as a 
perturbation parameter.  The effect of internal heating in a fluid layer is to hasten the onset of convection irrespective of 

boundaries considered. For the boundaries of case(i), the critical Rayleigh number cR increases initially,  with ,B reaches 

maximum and then decreases with further increases the value of  B  in the absence of internal heating( 0Ns ). While 

in the presence of internal heating cR  decreases with increases of the value  .B For the boundaries of case(ii),  the 

critical Rayleigh number cR    decrease monotonically with ,B in  both absence and presence of internal heating in the 

fluid layer. For  the boundaries of case(iii), in the absence of internal heating( 0Ns ) and small value of 1Ns ,  the  

critical Rayleigh number cR   increases initially, then decreases rapidly. At the higher values of Ns , cR decreases 

monotonically as the value of B  increases. The case (i) boundary combination is the most stable configuration, compared 
to case(ii) and case(iii) boundaries in the absence and presence of internal heating in the fluid layer. Thus it is possible to 
either augment or suppress the onset of Rayleigh-Benard convection by suitably choosing the parametric values. 
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