
 ISSN 22773061

343 P a g e M a y 2 0 , 2 0 1 3

IDENTIFICATION AND IMPLEMENTATION OF DESIGN

PATTERNS IN MOBILE BANKING

M.Hemalatha , A.Vikneshraj, N. Adithya Prasanna

Assistant Professor, Sri Manakula Vinayagar Engineering College Pondicherry

hemalatha.smvec@gmail.com

Student, Department of IT, Sri Manakula Vinayagar Engineering College

vikneshrj005@gmail.com

Student, Department of IT, Sri Manakula Vinayagar Engineering College

n.adithyaprasanna@gmail.com

ABSTRACT

 The aim of this paper is to develop a mobile banking system using design patters that provides customers with the facility

to check their accounts and to do online transactions using mobile phones. There are various number of software design

patterns that have been identified and used by software developers in various domains such as navigation systems, e-

commerce, data mining, construction of operating systems, e-business, games and website designing and development

purpose. In order to achieve our aim we are going to follow three steps. First step is the identification process, in this

process we are going to study the various design patterns and the existing architecture of several mobile banking systems

and will identify the design patterns based on the cross cutting concerns that occur in flow of the banking process. The

second step is to implement the identified design patterns using the patterns skeleton code. We need to improve the

reusability using object oriented programming. Finally we are going to implement the identified patterns and evaluate the

patterns using already available methods such as SAAM, ATAM, ALAM (Architecture-Level Maintainability Analysis).

Keywords: Identification, Implementation, Evaluation, SAAM, ALAM.

Council for Innovative Research

Peer Review Research Publishing System

Journal: INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY

Vol 6, No 2

editor@cirworld.com
www.cirworld.com, member.cirworld.com

mailto:hemalatha.smvec@gmail.com
mailto:vikneshrj005@gmail.com
http://member.cirworld.com/
http://www.cirworld.com/
http://www.cirworld.com/

 ISSN 22773061

344 P a g e M a y 2 0 , 2 0 1 3

1.0 INTRODUCTION

The process of designing reusable object oriented software is very difficult as it involves steps like finding the
related objects, grouping them into several classes at right granularity, defining the class interfaces and the hierarchies
and establishing key relationship among them.The design should be specific to the problem to be solved and must
address the future problem and requirements. Making a reusable and flexible design is difficult for the experienced object
oriented designers. The designers will not try to solve every problem from its first principles rather than using solution from
the past. Whenever a designer finds a good solution, he will use it again and again. Hence the designer will find the
recurring patterns of classes and communicating object in several object oriented systems. These patterns are used to
solve specific design problems on creating flexible, stylish and reusable object oriented designs. When a designer is
familiar with such patterns, then the designer can apply them immediately to the design problems without having to
rediscover them. Once the designer knows the patterns, then automatically a lot of design decisions occur. A design
records the experiences in designing object oriented software has design patterns. Each design pattern consistently
names, explains and evaluates a recurring design in object oriented systems. A design pattern helps to reuse designs and
architectures and to select the design alternatives that construct a reusable system. Design patterns also improve the
documentation and maintenance of existing systems by providing a specification of class and object interaction explicitly.
The design patterns are not a new one, but the tracing is given in a new way. There are no application or domain specific
design patterns .Hence the patterns have been used in applications such as reservation systems, e-commerce, navigation
systems, operating system constructions, gaming and website development etc. Though patterns have been implemented
in various domains but there are no identified patterns for the mobile banking system. The existing mobile banking system
does not make use of design patterns and so if we use patterns, the reusability of the mobile banking system can be
improved.

2.0 REASONS FOR USING MOBILE BANKING SYSTEM

The main reason for choosing the mobile banking system to implement the design patterns is that mobile banking
is a real time application which is being used by millions of people all over the world. Mobile banking provides many
advantages, such as good security, easy access and plentiful applications for smart phones. Another advantage is that

there is more control of user‟s money. Each and every real time application strives hard to provide services to its users.
The banking is one such system which involves several complex processes and these processes are confined and
compacted into a mobile application which in turn simplifies the banking process and therefore providing services to fulfil
the requirements of the customer. Thus it increases the customer satisfaction and his privacy. Hence we go for mobile
banking in order to implement design patterns.

3.0 PATTERN ORIENTED SOFTWARE ARCHITECTURE

Pattern-Oriented Software Architecture is a methodology or technique which is used for the construction of software
architecture. Pattern oriented software architecture is a system of patterns. It is software architecture study based on the
usage of patterns. It shows us not only to group individual patterns into various kinds of structures but also to provide an
effective environment for the construction of interactive and adaptable real time systems.

Table 1. Related Works

Paper Title
Description Of the

paper
Solution inferred Technique

Patterns
used

Design
Patterns for
Games

It designs an OO
model for a two-
person game that can
be used to identify a
game model to work
out the finest moves
and also enables us
to convey all
dimensions of the
games at the highest
level of notion.

The OO design process
involves identifying the
variant behaviours of the
system, encapsulating them into
abstract subsystems and
decoupling them from the
Invariant core. Design patterns
are used extensively to
achieve the proper abstractions
and decoupling.

Min-max algorithm
and mvc patterns
are used to
decompose the
overall
architecture of the
program.

State ,Visitor
and Strategy

Patterns for E-
commerce
applications

It provides a
conceptual framework
for reasoning on
design reuse in Web
Applications. It deals
with applications that
have an object model,
a navigational view
and an interface.
E-commerce
applications will

These patterns
focus mainly on ways to solve
usual problem where customers
have to find and buy products in
the shop. They provide
solutions to the Web
application designer in order to
make these applications
more usable and effective both
from the point of customers and
owners of the store. By

Pattern mining and
Pattern advising

Opportunistic
Linking,
Advising,
Explicit
Process,
Easy Undo
and Push
Communicati
on.

http://www.bankrate.com/finance/personal-finance/is-mobile-banking-safe-1.aspx

 ISSN 22773061

345 P a g e M a y 2 0 , 2 0 1 3

engage particular
problems at the object
level

showing non-trivial extension of
the basic Web model (based on
nodes and links) these
patterns help to improve the
navigation topology and some
aspects of the customer-store
communication „styles.

A Navigation
Pattern
for Scalable
Internet
Management

This paper introduces
the echo pattern, a
scheme for
distributing
management
operations, which
addresses some
difficulties.
Management
operations based on
this pattern do not
need knowledge of
the network topology,
they can dynamically
adapt to changes in
the topology, and they
scale well in very
large networks.

As the pattern dynamically
adapts to changes in the
network topology, it does not
require global network
information .

Wave-propagation
algorithms,
traversal
algorithms

Echo pattern,
navigation
patterns, star
pattern

4.0 PATTERN

Pattern in software architecture is the way of extracting architectural design ideas as predictable and reusable
descriptions. A pattern is a solution to the problem that arises within a specific context. Pattern falls into the family of
similar problems. It is the process of distilling common factors from the system. Pattern is said to be as the relation
between the context, problem and solution. A pattern has four essential elements namely Pattern Name, Problem,
Solution, Consequences
Pattern name is used to describe a design problem, its solutions and consequences in a word or two. It makes us easier
to think about design patterns and to communicate them and their trade-offs to others.
Problem describes when and how to apply the design patterns at any situation. It includes a list of constraints that must
be satisfied before it makes sense to apply patterns.
Solution describes the elements that frame the design, their
relationships, responsibilities and collaborations. Consequences are the results and trade-offs applying the patterns.

5.0 Types of Patterns

Figure 1. Different types of patterns

5.1 Architectural Pattern

It is highest level of patterns which helps us to define the basic structure of an application by specifying the
responsibilities. It also includes the rules and guidelines.

5.2 Design Patterns

It is the medium level Patterns refining the subsystem or components. It is the blue print of the particular solution.

http://en.wikipedia.org/wiki/Design
http://en.wikipedia.org/wiki/Design
http://en.wikipedia.org/wiki/Design

 ISSN 22773061

346 P a g e M a y 2 0 , 2 0 1 3

Figure 2. Categories of design patterns

5.3 Idioms

An idiom is a low level pattern that is specific to a programming language. An idiom describes how to implement
particular aspects of components or the relationship between them using features of the given language. It addresses
both design and implementation.

5.2.1 Types of Creational Patterns

Design Pattern is a general reusable solution to a commonly occurring problem within a given context in software
design. A design pattern is not a finished design that can be transformed directly into code. It is a description or template
for how to solve a problem that can be used in many different situations

Figure 3.Kinds of creational patterns

5.2.1.1 Factory Method

Define an interface for creating an object, but let subclasses decide which class to instantiate. Factory Method lets a class
defer instantiation to subclasses. (Gamma et al., 1994)

5.2.1.2 Abstract Factory

Provide an interface for creating families of related or dependent objects without specifying their concrete classes. .
(Gamma et al., 1994)

5.2.1.3 Builder

Separate the construction of a complex object from its representation so that the same construction process can create
different representations. (Gamma et al., 1994)

5.2.1.4 Prototype

Specify the kinds of objects to create using a prototypical instance, and create new objects by copying this prototype.
(Gamma et al., 1994)

5.2.1.5 Singleton

Ensure a class only has one instance, and provide a global point of access to it. . (Gamma et al., 1994)

5.2.2 Types of Structural Patterns Structural Pattern

Structural patterns deal with the composition of several classes and objects in forming larger software architectures. They
make use of the concept of inheritance in order to combine the interfaces and the implementations. So that the properties
of the main class or parent class can be combined to form the resultant class.

Figure 4. Kinds of structural patterns

5.2.2.1 Adapter Pattern

Convert the interface of a class into another interface clients expect. Adapter lets classes work together that couldn't
otherwise because of incompatible interfaces. (Gamma et al., 1994)

5.2.2.2 Bridge Pattern

Decouple an abstraction from its implementation so that the two can vary independently. (Gamma et al., 1994)

5.2.2.3 Composite Pattern

Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients treat individual objects
and compositions of objects uniformly. (Gamma et al., 1994)

5.2.2.4 Decorator Pattern

http://en.wikipedia.org/wiki/Software_design
http://en.wikipedia.org/wiki/Software_design
http://en.wikipedia.org/wiki/Software_design
http://en.wikipedia.org/wiki/Code_%28computer_programming%29

 ISSN 22773061

347 P a g e M a y 2 0 , 2 0 1 3

Attach additional responsibilities to an object dynamically. Decorators provide a flexible alternative to sub classing for
extending functionality. (Gamma et al., 1994)

5.2.2.5 Facade Pattern

Provide a unified interface to a set of interfaces in a subsystem. Facade defines a higher-level interface that makes the
subsystem easier to use. (Gamma et al., 1994)

5.2.2.6 Flyweight Pattern

Use sharing to support large numbers of fine-grained objects efficiently. (Gamma et al., 1994)

5.2.2.7 Proxy Pattern

Provide a surrogate or placeholder for another object to control access to it. (Gamma et al., 1994)

5.2.3 Types of Behavioural Patterns

Behavioural patterns are design patterns that recognize familiar communication patterns between objects and

comprehend these patterns. Thus by performing so, these patterns boost flexibility in transmitting out this communication.

Figure 5. Kinds of behavioural patterns

5.2.3.1 Chain of responsibility

Avoid coupling the sender of a request to its receiver by giving more than one object a chance to handle. (Gamma et al.,
1994)

5.2.3.2 Command

Encapsulate a request as an object, thereby letting you parameterize clients with different requests, queue or log requests,
and support undoable operations. (Gamma et al., 1994)

5.2.3.3 Interpreter

Given a language, define a representation for its grammar along with an interpreter that uses the representation to
interpret sentences in the language. (Gamma et al., 1994)

5.2.3.4 Iterator

Provide a way to access the elements of an aggregate object sequentially without exposing its underlying representation.
(Gamma et al., 1994)

5.2.3.5 Mediator

Define an object that encapsulates how a set of objects interact. Mediator promotes loose coupling by keeping objects
from referring to each other explicitly, and it lets you vary their interaction independently. (Gamma et al., 1994)

5.2.3.6 Memento

Without violating encapsulation, capture and externalize an object's internal state so that the object can be restored to this
state later. (Gamma et al., 1994)

5.2.3.7 Observer

Define a one-to-many dependency between objects so that when one object changes state, all its dependents are notified
and updated automatically. (Gamma et al., 1994)

5.2.3.8 State

Allow an object to alter its behaviour when its internal state changes. The object will appear to change its class. (Gamma
et al., 1994)

5.2.3.9 Strategy

Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it. (Gamma et al., 1994)

5.2.3.10 Template method

 ISSN 22773061

348 P a g e M a y 2 0 , 2 0 1 3

Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. Template Method lets subclasses
redefine certain steps of an algorithm without changing the algorithm's structure. (Gamma et al., 1994)

5.2.3.11 Visitor

Represent an operation to be performed on the elements of an object structure. Visitor lets you define a new operation
without changing the classes of the elements on which it operates. (Gamma et al., 1994)

6.0 IDENTIFIED PATTERNS FOR MOBILE BANKING

In mobile banking various operations is similar so the similar operations are created as the patterns.

 Proxy pattern

 Composite pattern

 Singleton pattern

 Decorator pattern

 Façade pattern

6.1 Proxy Pattern

The proxy pattern is used in situations where one object is used instead of another object, by acting as a placeholder for
that object to control references to it. While reserving online tickets using mobile banking, money is debited directly from
the user account. Invoking unsought objects is a burden on the utilisation of resources. Therefore we do not want to
instantiate the objects unless they are requested by the client. In this scenario, we are using EJB interfaces and there are
only going to interact with the client side. Hence the objects will be instantiated upon the client‟s request.

Figure 6.Proxy in online ticket reservation

6.2 Composite Pattern

Composite pattern allows the clients to treat individual objects and compositions of objects homogeneously. It arranges
objects into tree structures to symbolize entire hierarchy in general. The below figure shows us an example of an enquiry
operation, which is a composition of several sub processes and are represented in the form of a tree. A banking
application needs to manipulate this hierarchical collection of operations in enquiry into “primitive” and “complex” objects.
Processing of a simple FD enquiry operation object is handled one way, and processing of a loan enquiry is handled
differently, since there are so many classifications of loan enquiries. Hence we use this composite pattern whenever we
use operations that contain more sub operations or components, each of which could be a composite.

Figure 7. Visitor pattern used in Enquiry operations

6.3 Singleton Pattern

A bank must ensure that an account is accessed by only one customer at a particular duration and the customer must be
able to access the account from anywhere around the globe. A banking application may not be able to provide access to
an account, when two customers trying to access the same account and for this lazy initialization and global access are

 ISSN 22773061

349 P a g e M a y 2 0 , 2 0 1 3

necessary. To provide high level security for a user account and to provide a global point of access a bank must facilitate
the customer with a single user name and password and only that authorized user can access the account at any time (No
other person can access the same account at that time). For this purpose we make use of the singleton pattern.

Figure 8. Singleton pattern using point of access

6.4 Decorator Pattern

Mobile banking must provide additional facilities such as SMS alerts and advertisement. Decorator pattern provide a
flexible alternative to sub operations for extending functionality. Inheritance of additional functionalities is not feasible
because it is possible only for static features and changes made in any feature affects the entire working. We are adding
so many services to the existing system such as SMS alerts to the user to indicate the transaction (withdrawal and
deposit), purchase alerts for M-Shopping. To give these additional services for the user we make use of decorator pattern.

Figure 9. Decorator pattern used in mobile alerts

6.5 Façade Pattern

In a bank, services to the customer are provided through a customer service representative for each area or zone. The
customer service representative acts as a mediator between the customer and the bank. We need to use only a subset of
a complex system and not the entire system and each user wants to interact with the system in a particular way. The bank
manager cannot able to provide the service directly instead of manager; a customer service representative is employed to
provide the service. The Facade presents a new interface for the user of the existing system to use. We use a facade
pattern which hides the complex database access interface behind a few easy to understand and maintainable interface.

Figure 10. Facade pattern used in customer service interface

7.0 IMPROVING REUSABILITY USING DESIGN PATTERNS

After the identified patterns are implemented in mobile banking, we are going to prove that the proposed mobile banking
using design patterns is more reusable than the existing banking systems (Without usage of patterns). In order to
measure the reusability, we make use of the existing reusability formula for object oriented programming.

8.0 CONCLUSION

Although patterns are available for various real time applications so far there are no patterns identified for mobile banking
applications. Banking is a huge application consisting of many tedious operations that are branched one below another.
So it consumes more time for the developer to develop a banking application from the beginning. In order to overcome
this issue we use design patterns, which provides more reusability to the developer. Our proposal will support the
software developers to develop a more reusable mobile banking application in future. We also plan to evaluate our
architecture using patterns with the existing architecture.

 ISSN 22773061

350 P a g e M a y 2 0 , 2 0 1 3

REFERENCES

[1] , Andrés Neyema,, Sergio F. Ochoa, José A. Pinob, Rubén Darío Franco ,A reusable structural design for mobile
collaborative applications.The Journal of Systems and Software 85 (2012) 511– 524.
[2] Erik G. Nilsson, Design patterns for user interface for mobile applications. Advances in Engineering Software 40 (2009)
1318–1328.
[3] Saifullah M Dewan, Issues in M-Banking: Challenges and Opportunities. Proceedings of 13th International Conference
on Computer and Information Technology (ICCIT 2010)23-25 December, 2010, Dhaka, Bangladesh.
[4] Parul Gandhi & Pradeep Kumar Bhatia, Reusability Metrics for Object-Oriented System: An Alternative Approach.
[3] Identifying, Relating, and Evaluating Design Patterns for the Design of Software for Synchronous Collaboration
Claudia Iacob University of Milan Via Comelico, 39/41Milan, Italy.
[4] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra, Software Reuse Metrics for Object-Oriented Systems.
[5] Mr.A.Meiappane, Ms.J.Prabavadhi, r.V.Prasanavenkatesan “STARTEGY PATTERN: PAYMENT PATTERN FOR
INTERNET BANKING” International Journal of Information Technology and Engineering (IJITE), ISSN 2229-7367, March
2012.
 [6]. Adaptive framework of the internet banking services based on customer classification”, A.Meiappane,
K.Gideon and Dr.V.Prasanna Venkatesan ,International Conference on Advances in Engg and Tech, (ICAET-2011).
[7]. Fundamental Banking Patterns Lubor Sesera SOFTEC & FIIT STU Slovakia.
[8]. A Navigation Pattern for Scalable Internet Management, K.-S. Lim, R. Stadler, 2001 IEEE.
[9]. Patterns for E-commerce applications, Gustavo Rossi , Fernando Lyardet , Daniel Schwabe, LIFIA Facultad de
Informática.
[10]. Architectural Design Patterns for Flight Software, Julie Street Fant, Hassan Gomaa, Robert G. Pettit, 2011 14th
IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops.
Author‟s biography with Photo

 M.Hemalatha

 Assistant Professor,

 Sri Manakula Vinayagar Engineering College,

 Pondicherry,

 India

 A.Vikneshraj,

 Department of Information Technology,

 Sri Manakula Vinayagar Engineering College,

 Pondicherry,

 India

 N. Adithya Prasanna

 Department of Information Technology,

 Sri Manakula Vinayagar Engineering College,

 Pondicherry,

 India

