
  ISSN 2277-3061 
 
 

2819 | P a g e                                                            N o v  1 7 ,  2 0 1 3  

Binary Quantum Communication using Squeezed Light: Theoretical 
and Experimental Frame Work 

Ismael S. Desher Alaskary1  and R. S. Fyath2 

1
University of Baghdad, Baghdad, Iraq 

Desher19@yahoo.com 
2
College of Engineering,  Alnahrain University, Baghdad, Iraq 

rsfyath@yahoo.com 
ABSTRACT 

The aim of this paper is to develop framework to generate squeezed light for binary quantum communication. Both 
theoretical and experimental models to generate squeezed state  using optical parametric amplifier (OPO), which is 
implemented around He-Ne laser, are described in details.  The results will be used as a guide line to investigate the 
performance of squeezed light-based quantum communication over noisy channel and this issue will be presented in 
accompanying paper [1].    
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1 INTRODUCTION 

Quantum state of light lies in the heart of quantum theory. It is represented by a vector in the complex Hilbert space and 
contained all the information about the possible results of measurement on the system. The quantum system should obey 
the Heisenberg uncertainty principle. From this point of view, intrinsic random fluctuations have been imposed by the 
uncertainty principle, which prohibits simultaneous determination of the position and the momentum. On the other hand, 
the quantum state is called a pure state if it is contained the maximum information about the system otherwise it is a mixed 
state that combined from two or more pure states [2].  

There are three fundamental types of quantum states, Fock, coherent, and squeezed states. Fock states or number states 
are purely non- classical quantum states. They are used as a basis in quantum information technology such as quantum 
communication and quantum computation [3]. There is an enormous difficulty for the generation of this type of states but 
recently many efforts are exerted to generate a source of multi-photon number states [4-6]. Instead, a fainted laser pulse 
may be, in average, considered as a single photon source according to the Poisson distribution [7]. On the other hand, the 
fainted pulse is based on a classical light. Therefore, it can generate a single photon but under the conception of classical 
(coherent) quantum state. Thus, it can not be treated as a non classical state. Coherent states or quasi-classical states 
are classical quantum states whose dynamics are most closely resembled the classical coherent light. They have the 
minimum constraint by the uncertainty principle with equally fluctuations in the position and the momentum [8]. Moreover, 
these states are Gaussian states because their Wigner functions are Gaussian. Thus, the coherent state may be fully 
described by determining the mean and the variance of the state [9]. The physical implementation of the coherent states is 
very easy that can be given by a highly stabilized laser operating well above threshold. Thus, the coherent states became 
important as a tool for connecting quantum and classical world, therefore their name quasi-classical state. Due to these 
significant properties and reliabilities, the coherent states play a key role in many applications such as quantum 
communication [10], quantum computation [11], quantum teleportation [12], and quantum repeater [13, 14]. 

Squeezed states are non-classical states having a quantum noise in one quadrature below the standard quantum limit at 
the expense of the other while keeping the uncertainty principle hold [15]. In spite of the squeezing in one quadrature, the 
quantum (squeezed) non-classical states are still having Gaussian shapes [16]. In contrast, of the quantum (coherent) 
classical state, the generation of the squeezed states is not trivial. Spontaneous parametric down conversion (SPDC) is 
the most often process used to generate the squeezed state [17]. SPDC is a second-order nonlinear process in which a 
high frequency photon spontaneously splits in two lower frequency photons, in accordance with the energy conservation 
law [18]. SPDC is applied to initiate the process in the optical-parametric oscillator (OPO) through a nonlinear crystal. 
Often, a temperature control is needed to achieve non-critical phase matching (NCPM) inside the nonlinear crystal at the 
presence of a strong pump beam [19].  There is a strong interest in the squeezed states for quantum communication [20], 
quantum cryptography [21] and gravitational interferometer [22-24]. 

Binary quantum communication may be realized using two quantum states that can carry classical information of logic 0 
and 1 [25]. Since the states are in general not orthogonal and even they are so, the orthogonality will be rapidly destroyed 
due to the noise effects that added by the channel during the transmission of the state. Therefore, unavoidable errors will 
be occurred in the receiver side because of the overlap between the received states.  Moreover, the channel is a free-
space channel. Therefore, the states are affected by the thermal noise added by the environment and the dissipation. 
Hence, there is a need to investigate the best performance of discriminating noisy non-orthogonal states [26]. The 
realization of an optimal quantum receiver with minimum measurement errors is a crucial topic for the effective 
implementation of quantum communication channel. Receivers based on homodyne detection have great advantages for 
the discrimination between states in the presence of noise [27]. Moreover, coherent and squeezed states are Gaussian 
states then homodyne receivers have been demonstrated to represent the optimum Gaussian method for the 
discrimination of the binary quantum communication [28, 29]. These issues will be addressed in details in this work. 

2 SQUEEZED STATE 

Define quadrature operators  and  which are Hermitian operators representing the real and imaginary parts of the 

annihilation operator. The variances of the quadrature operators are equal to 1/2. Thus, they are symmetric and the 
minimum uncertainty principle may be allowed for the vacuum and the coherent state after the following relation [30] 

                                                                                                                                                               (1)  

So the squeezing may be achieved by squeezing one quadrature at the expense of stretching the other keeping the 
Heisenberg relation unchanged as shown in Figure 1. 

The squeezed vacuum state of a single-mode field is defined by applying the squeezed operator  on the vacuum state  

                                                                                                                                                          (2) 

The squeezed operator is a unity operator given by [31] 

                                                                                                                          (3) 

with the annihilation and creation operators  and , respectively. Further,    is a complex parameter. r is the 

squeezed parameter varying from 0 to  representing the amplitude and  is the phase defining the squeezing 

quadrature. The action of the squeezed operator on the annihilation and creation operators can be expressed as [31] 
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                                                                                                     (4a) 

                                                                                                       (4b)  

 

Figure 1: Phase space representation of (a) Vacuum state. (b) Squeezed vacuum state. 

The action of the squeezed operator on the quadrature operators in order to evaluate the variance and the mean of a 
single mode coherent squeezed state [31] 

                                                                                                   (5a) 

                                                                                                    (5b) 

For , which is the case in this work, Eqns. (5a) and (5b) become 

                                                                                                                                             (6a) 

                                                                                                                                               (6b) 

This indicates clearly that the variance is squeezed in one quadrature by  and stretched in the other by . The 

uncertainty principle  is hold unchanged. The mean photon number is given by [32] 

                                                                                                                                    (7) 

Eqn. (7) indicates that 

(i) Increasing the squeezed amplitude r will increase the mean photon number. 

(ii) When , non squeezing, (coherent) state is obtained. 

(iii) When , the squeezed vacuum state is obtained which is characterized by an average number of photons 

depends on r. 

Finally, the Wigner function of the squeezed coherent state along the q quadrature can be evaluated as [32] 

                                                                         (8) 

The squeezed coherent state can also be obtained by shifting the squeezed vacuum state using the displacement 
operator as shown in Figure 2  

                                                                                                                                      (9) 
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Figure 2: Wigner functions for (a) Squeezed vacuum state. (b) Squeezed coherent state . 

3 GENERATION of SQUEEZED STATE USING OPO: EXPERIMENTAL  FRAME  WORK 

This section is directed to perform a setup for generating squeezed states of light using OPO. The setup consists of four 
main parts as shown in Figure 3.   

 

Figure 3: Block diagram of the squeezed setup 

(i) Nd-YAG laser is used to generate the first harmonic (1064 nm) and the second harmonic (SHG) at 532 nm. The 
fundamental laser system is built through a ring cavity.   

(ii) Squeezed cavity involves two curved mirrors and a nonlinear crystal. 

(iii) A Pound-Drever-Hall (PHD) system controls the cavity length of the OPO.  

(iv) Balanced homodyne detection (BHD) is used to detect the squeezed state of light with a strong reference as a 
local oscillator (LO). 

3.1 First and Second-Harmonic Generation 

This subsection involves two principal parts: 

(i) The setup design includes different computations: the cavity dimensions, position of the multiple devices, the spot 
size of the beam, and the expected power generated by the setup.  



  ISSN 2277-3061 
 
 

2823 | P a g e                                                            N o v  1 7 ,  2 0 1 3  

(ii) Experimental setup to generate the first and the second harmonics.   

3.1.1 Preliminary Calculations 

The first and the second harmonics are generated by a ring resonator as shown in Figure 4. It consists of four mirrors: two 
are planes and the other are curved. A periodically poled lithium niobate (PPLN) crystal is used to generate the second 
harmonic while the first harmonic is generated using an Nd-YAG rod. 

 

Figure 4: Setup to generate 1064 nm and 532 nm wavelengths. M1, M4: Plane mirrors. M2, M3: Curved mirrors. FI: 
Faraday Insulator. BP: Brewster plate. 

In Figure 4, , , , , , the Brewster plate length , 

and . The starting point is to calculate the refractive indices of the barium 

borosilicate glass (BK7)  and the Nd-YAG rod using Sellmeier equation [33, 34]  

                                                                                                       (10) 

A, B1, B2, B3, C1, C2, and C3 are the Sellmeier coefficients. λ is the wavelength related to the material in . Eqn. (10) is 

the dispersion equation describing the relation between the refractive index and the wavelength for a given material. Table 
1 displays the coefficients of Sellmeier equation for the Nd-YAG rod and the BK7.  

Table 1: Sellmeier coefficients of Nd-YAG and BK7. 

Coefficients Nd-YAG BK7 Crystal 

A   

B1   

C1    

B2   

C2    

B3   

C3    

 

From Table 1 the refractive indices are 

(i)  at 1064 nm 

(ii)  at 1064 nm.  
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Next step, calculate the free spectral range (FSR) of the cavity.  Note that the FSR depends on the effective length of the 
cavity  which related to the ring physical length  [35] 

 

                                                                                                                       (11a) 

                                                                           (11b) 

where  is the Brewster angle. The FSR is given by  

                                                                                                                                                         (12) 

The calculation yields:  hence . Thus, the frequency spacing between two modes is 102 

MHz. 

Next, it is fundamental to determine the stability of the cavity for the fundamental transversal mode. TEM00 which has a 
Gaussian transversal profile and represents a Gaussian beam. This can be derived from Gaussian beam propagation 
through the resonator under the condition of self-reproduction after one complete round trip. This requires the computing  
of the round-trip ABCD matrices along the ring resonator. Take the reference plane at the thermal lens in Figure 4 and 
going from right to left. The matrix form is either lens matrix  or free space matrix  as follow [35] 

                                                                                                                                                        (13a) 

where z represents the propagation distance and 

                                                                                                                                                     (13b) 

where f is the focal length of a thin lens. Hence, the round-trip matrix  is a product of  matrices. i refers to the 

medium in the resonator and each matrix corresponds to a medium where the beam propagates.  

      

                                                                                                                                                          (14) 

where, A, B, C and D are the matrix coefficients and  is shown in Table 2. 

Table 2: ABCD matrices for the resonator stability. 

    

 
 

  

 

    

 
 

 
 

 

    

 

  
 

 

The stability condition can be guessed from Eqn. (14) [35]  

                                                                                                                                                        (15) 
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Since the matrix coefficients are function of the focal length of the thermal lens then the stabili ty, the waist and the inverse 
radius of curvature depend also on this parameter.    

The position of the crystal used to generate the second harmonic should be given at the maximum focusing of the first 
harmonic. Therefore, there is a need to determine the propagation of the beam along the ring cavity. The start point is to 

calculate the waist  and the inverse of the radius of curvature  of the propagation at the reference plane and then in 
each point of the cavity as follow 

(i) Propagation on the thermal lens 

                                                                                                                                               (16a) 

                                                                                                                                                       (16b) 

(ii) Propagation at the end of the active medium 

                                                                                           (17a) 

                                                                                                         (17b) 

(iii) Propagation from the end of the active medium to  then to    

                                                                       (18a) 

                                                                          (18b) 

where  

(iv) Propagation up to the SHG crystal 

                                                                    (19a) 

                                                                                 (19b) 

where  

(v) Propagation from the crystal to M4 

                                                                          (20a) 

                                                                                             (20b) 

where  

(vi) Propagation up to the active medium 
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                                                                   (21a) 

                                                                                 (21b) 

where  

(vii) Propagation in the active medium 

                                                                      (22a) 

                                                                                        (22b) 

where   

3.1.2 Experimental Setup to Generate the Second Harmonic 

The experimental setup to generate the first and the second harmonics is shown in Figure 5. 

 

Figure 5: Experimental setup to generate first and second harmonics. M1, M2, M3, M4, M5, M6: Mirrors. PD1, PD2: 
Photodetectors. BP: Brewster plate. FI: Faraday insulator. HWP: Half wave plate. 

The optical devices in Figure 5 have the following specifications: 

(i) : Plane mirror with high reflectivity to the first harmonic. 

(ii) : Output coupler plane mirror with reflectivity of  to the first harmonic. 

(iii) : Curved mirror has a radius of curvature  with transmission power of  to the second    

harmonic and high reflectivity to the first harmonic. 
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(iv) : Output coupler mirror has a radius of curvature  with transmission power of  to the second                                                                                                                                                                          

harmonic and high reflectivity to the first harmonic. 

(v) : Brewster Plate to minimize the reflection of the p polarized light. It is a (BK7) plate with length of 

. 

(vi) FI: Faraday insulator of 20 mm is used to prevent the antireflection of the beam into the source. 

(vii) PPLN: Nonlinear crystal with 5% magnesium-oxide MgO doped PPLN. MgO:PPLN offers high-efficiency 
wavelength conversion. The PPLN has a length of 10 mm and 1mm thickness. The crystal is inserted in a PC10 clip then it 
is placed in a PV10 oven which is controlled by an OC1 temperature controller. 

(viii) Active medium is a Neodymium-doped Yttrium Aluminum Garnet (Nd-YAG) with chemical structure of ( 
Nd:Y3Al5O12 ). It is a rod of a length of 30 mm and 2 mm diameter as shown in Figure 2.11d. Note that during operation, 
the active medium is equivalent to a thermal lens. 

(ix) PD1 and PD2 are used to detect the optical signals by measuring their currents which are converted to voltages 
with a load resistance of 1kΩ. To prevent saturation, optical filters are used to attenuate the intensity of the light beams for 
both PDs. PD1 and PD2 are of silicon types having an efficiency of 0.4 A/W at 1064 nm and 0.23 at 532 nm. 

Figure 6 shows the Nd-YAG rod and its equipments. 

 

 

Figure 6: (a) Side pumped laser diodes arranged in slab. (b) Absorption spectrum of the Nd-YAG. (c) Control 
pupming unit. d: Nd-YAG rod. (e) Thermal lens focal length versus pump current. 
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The Nd-YAG rod is side pumped by semiconductor laser diodes at 808 nm. They provide a pump current range up to 24A 
as shown in Figure 6a and 6b. A control unit is used to control the pump current and the system cooling which is as 
important as the rest of the system as shown in Figure 6c.  

Without a sufficient cooling, the laser will break down soon. The stability and the efficiency of the laser are quite 
dependent on cooling. The cooling system is an open-loop cooling system with tap water flowing across the rod. The 
pump current determines the characteristics of the Nd-YAG laser. As the pump current increases the focal length of the 
induced thermal lens decreases as show in Figure 6e. 

 In this part of the experiment, the work involves the following steps 

(i) Determination of the temperature at which the quasi-phase matching is achieved. This is done by fixing the pump 
current and increasing the temperature applied on the crystal and marking the second-harmonic power.  

(ii) Measuring the first and the second-harmonic powers by increasing the pump current while maintaining the 
temperature on the PPLN crystal fixes. 

(iii) The measures are given by using PD1 and PD2. The photocurrent  detected at the PDi can be written as 

                                                                                                                                                         (23) 

where i = 1 and 2 which correspond to the first (1ω) and the second harmonic (2ω), respectively,  is the responsivity of 

the PDi in A/W and  is the optical power incident on the PDs. The incident power  is calculated by measuring the 

voltage Vi across the detector load resistor RL=1kΩ 

                                                                                                                                                       (24) 

where  are the filter power transmission coefficients used to reduce optical-power intensity incident on 

PD1 and PD2 respectively. 

3.2 Squeezed Cavity Design 

Two curved mirrors are used with their specifications are shown in Table 3. 

Table 3:  Specifications of MS1 and MS2. 

Mirror Roc (mm) 
R (1064 nm) R (532 nm) 

S1 S2 S1 S2 

MS1 25 AR 93% AR AR 

MS2 10 99% AR HR - 

 

These mirrors should form a squeezed cavity of length Lsq as shown in Figure 7. A lithium niobate doped with 5% 
magnesium oxide MgO (Mg-LNBO3) is placed inside the cavity. The ensemble forms an OPO to generate the squeezed 
light after pumping by the second-harmonic beam.   

 

Figure 7: Squeezed setup. Ms1, Ms2: Mirrors. L1= 20mm, L2=3mm and LS= 10mm. 
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3.2.1 Calculation of the Two Refractive Indices 

The crystal is 2×2×10 mm, X cut, θ=90
o
, φ=0 from Covesion Ltd. [36]. Its two faces are both anti-reflected coating at 1064 

nm and 532 nm. It is a nonlinear crystal with two refractive indices, extraordinary ne and ordinary no, which are calculated 
by Sellmeier equation as follow [37] 

                                                                        (25) 

where  , , , ,  and  are Sellemeier coefficients given in Table 4,  is the wavelength of the laser light in  

and  is expressed as 

                                                                                                                       (26) 

Note that there are two wavelength,  and  representing the first and the second harmonics, respectively. The refractive 

index in Eqn. (25) depends on the wavelength and the temperature because the process to achieve phase matching 
through the Mg-LNBO3 is the NCPM.    

Table 4: Sellmeier coefficents for Mg-LNBO3. 

Coefficients   

A1 4.9048 4.5820 

A2  0.11775 0.09921 

A3  0.21802 0.2109 

A4  0.027153 0.02194 

B1 (  2.2314×10
-8

 5.2716×10
-8

 

B2 ( ) -2.9671×10
-8

 -4.9143×10
-8

 

B3  2.1429×10
-8

 2.2971×10
-8

 

 

3.2.2 Free Spectral Range and  Squeezed Resonator Stability 

First, compute the effective length and then the  

                                                                                                                              (27) 

The  is computed from Eqn. (12). 

Next, In order to test the stability of the squeezed resonator, one should start to compute the  matrix of Figure 8. 

The reference plane is taken at the mirror Ms1 and using Eqns. (13a) and (13b) for the space and lens matrices, 
respectively. Thus, the round-trip matrix for the squeezed cavity may be written as a product of all matrices elements  

                                                                                                                                                (28) 

where the  matrices are described in Table 5. Thus, the stability may be calculated from Eqn. (15).   

Table 5:  matrices for the resonator stability. 

    

    

 

    

    

 

3.2.3 First-Harmonic Propagation 

The start point is to calculate the propagation at each medium 
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(i) At the reference plane 

                                                                                                                      (29a) 

                                                                                                                                      (29b) 

where , ,  and  are the coefficient of the squeezed round-trip matrix  and  is the stability 

condition for the squeezed cavity which is given by 

                                                                                                                                                    (30) 

(ii) From the reference plane to the crystal  

                                                           (31a) 

                                                                               (31b) 

(iii) Inside the crystal  

                                                       (32a) 

                                                                         (32b) 

(iv) From crystal to air 

                                              (33a) 

                                                          (33b) 

3.2.4 Second-Harmonic Propagation 

Take the reference plane at the mirror MS2, then the radius of curvature of the beam is the same as that of the mirror MS2. 

(i) At MS2, the radius of curvature  is  mm. 

(ii) From MS2 to the crystal 

                                                                    (34a) 

                                                                                          (34b) 

(iii) Propagation inside the crystal  
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            (35a) 

                                   (35b)                                                                  

(iv) Propagation towards the mirror MS1 through free space 

  (36a) 

                            (36b) 

(v) At the mirror MS1 

 MS1 is a thick mirror with radius of curvature R1=25 mm and a focal length of 

                                                                                                                                       (37) 

Then the propagation from MS1 through free space yields 

    (38a) 

                    (38b) 

The waist of the second harmonic is calculated from the waist of the first harmonic for the OPO by the formula [38] 

                                                                                                                                          (39) 

Next, calculate the threshold power required for the OPO. The threshold intensity is given by [39] 

                                                                                    (40) 

where . Since, the pump beam is a single mode Gaussian beam with waist , then, the threshold 

power for a Gaussian beam is given by [81]  

                                                                                                                                             (41) 

3.2.5 Generation of Squeezed Light 

The generation of the squeezed light is achieved inside the nonlinear crystal by SPDC. SPDC is a wave mixing process in 
which the pump decay into two beams at lower frequency namely signal and idler. The crystal is pumped by the second 
harmonic of a frequency  and some photons of the pump are converted into pairs of identical photons of frequency 

. The Hamiltonian of this process is given by [40] 

                                                                                  (42) 

where ,  and   are the annihilation and creation operators of the signal and pump fields respectively and  is the 
second-order susceptibility. The first and the second terms, in Eqn. (42), represent the energy of the signal and the pump, 
respectively. The third term represents the interaction between the states. However, the pump is a coherent strong field 
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that have the state . Thus,  and  correspond to  and  respectively. Hence, the Hamiltonian in 

Eqn. (42) becomes 

                              

                                                                                        (43) 

where . The constant term is dropped because it is irrelevant to the system. Now, transform to the interaction 

picture yields 

                                                                                     (44) 

Since the generated signal has a frequency of  then  

                                                                                                                                       (45) 

Using the associated evolution operator  yields 

 

                                                                                                                                     (46) 

Assuming  then Eqn. (46) has an identical form to the squeezed operator of Eqn. (3). 

3.2.6 Squeezed and Anti-squeezed Variance  

Spontaneous parametric down conversion (SPDC) process is used to generate a squeezed state via an OPO. The 
Hamiltonian of the OPO is given by [40] 

                                                                                                                                          (47) 

where  is a complex constant depends on the nonlinearity and the pump intensity of the OPO as in Eqn. (46). The 

equation of motion of the OPO is described by [41] 

                                                                        (48a) 

                                                               (48b) 

where , and  are the cavity decay rates due to the input and output mirrors 

reflectivities,  is the round trip time,  is the intra-cavity losses of the OPO,  is the internal loss for a single 
pass and  is the total cavity losses.  represents the signal beam, where  and  represent the 

vacuum fluctuations associated with the losses. Take the Fourier transform (FT) of Eqns. (47a) and (48b) yields  

                                             (49a) 

                                         (49b) 

where  is the detection frequency and all  and  are function of  . Re[E] and Im[E] denote the real and imaginary parts 
of the complex number E, respectively. Therefore, the spectral density of the noise quadrature components represented 
by its squeezed and anti-squeezed variances can be calculated from [40] 

                                                                                                                                 (50a) 

                                                                                                                  (50b) 

where  

                                                                                                                                 (51) 

Hence the noise variance at the OPO output is [42] 

                                                                                (52a) 
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                                                                        (52b) 

where  the efficiency of the photodetectors,  the efficiency of the homodyne detection and  is the escape 
efficiency, P and  are the pump and threshold powers.  

The most important factor in Eqns. (52a) and (52b) is the escape efficiency  because by increasing this 

factor, the losses inside the cavity is reduced. Obviously, the escape efficiency can be increased by reducing the 
reflectivity of the OPO front face. However, this is at the expense of a higher OPO threshold. Thus, a further increase in 
the escape efficiency is only feasible with a more efficient SHG source or more powerful pump laser. 

Now, for power reflectivities of 0.90 and 0.99 for MS1 and MS2, respectively, and a round trip time 

, the power spectral losses are: , ,  Hz with internal 

loss . Therefore the overall losses . Hence the escape efficiency . On the other hand, 

for high-homodyne efficiency  and detection . The threshold power Pth=1mW. 

The quadrature variance is squeezed from the vacuum noise by the subtracted term in Eqn. (52a) and stretched by the 
added term in Eqn. (52b). Moreover, Multiple parameters determine the degree of squeezing, the frequency , the pump 

power, and the escape efficiency.  

3.3 Pound-Drever-Hall (PDH) Control System 

PDH is a control system used to maintain the stability of the laser of the squeezed cavity, which is so sensitive to the 
environment and the mechanical vibration. PDH consists of an error signal that is proportional to the difference in 
frequency between the laser light and the cavity resonance. This is done by examining the light reflected from the cavity. 
Hence, a stable laser frequency may be built by this technique. Therefore, the length of the squeezed cavity can be 
adjusted through a piezoelectric mounted on the mirror MS2. The piezoelectric is controlled electrically as shown in Figure 
8.  

 

Figure 8: PDH setup. The red dotted line is the optical path while the black solid line is the electrical path. LPF: 
Low pass filter. BS: Beam splitter. PD: Photodetector. PM: Phase modulator. RF: Radio frequency generator. 

From the setup of Figure 8, the laser source is first phase modulated by a nonlinear crystal then the optical-modulated 
signal is transmitted to the optical resonator (which represents here the squeezed cavity). Next the light beam is reflected 
back by the mirror MS2 and detected by a photodetector. Radio frequency (RF) generator is mixed with the detected signal 
through an electrical mixer. The mixed signal is used to derive the piezoelectric. In fact all the process of the PDH 
technique is based on the reflected power of the laser light beam inside the squeezed resonator. 
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3.3.1 PDH Technique 

The idea of this technique is based on the reflected beam. It consists to modulate the phase of the incoming laser beam 
through a lithium niobate (LNB) crystal. It will result sidebands with a definite phase relationship to the incident and the 
reflected beam. Then interfere of these sidebands with the reflected beam yields a beat pattern at the modulation 
frequency. The phase of this pattern will be measured to give an indication on the phase of the reflected beam. 

The LNB crystal has a length  and . The voltage is applied transversally on the crystal. The phase 

modulation depth β is equal to [43] 

                                                                                                                                  (53) 

where  at  (the extraordinary index of refraction for the LNB crystal),  is the 

coefficient of the susceptibility matrix,  is the distance between the two surfaces of the crystal and  is 

the applied voltage.  

The electric field is phase modulated with a frequency of  by the electro-optical modulator [44] 

                                                                                                                       (54) 

where  is the modulation frequency. From Eqn. (53), the modulation depth  is estimated to be . Note that 

 which indicates narrow band phase modulation and therefore the high-order terms in Eqn. (55a) can be neglected    

                                                             (55a)     

                                               (55b)        

Eqn. (55b) displays the carrier at frequency  and the two sidebands at frequencies . The reflected beam 

consists of several reflected sub beams, each one with its appropriate frequency as follow 

       

                                                                                               (56) 

The power in the reflected beam is measured by the photodetector which is proportional to the square of the 

reflected electric field amplitude. If the power in the carrier is , then the power in each sideband is 

 and the reflected power will be   

 

 

 

                                                                                                   (57) 

The interesting terms in Eqn. (57) are the oscillating terms at the modulation frequency  because they sample the 

phase of the reflected carrier. Additionally,  term arises from the interference between the carrier and the sidebands, 

and  terms come from the sidebands interfering with each other. 

3.3.2 PDH Error Signal Measurement 

The reflected power in Eqn. (57) is measured by the photodetector as shown in Figure 8. Then it mixed with a sinewave 
signal at the modulation frequency  which is supposed here high frequency about 250 MHz. Hence the real part in Eqn. 

(56) will be vanished and after the LPF only the imaginary term will be remained which represents the error signal  of the 

system as indicated in Eqn. (58) [44] 

                                                          (58) 

3.4 Homodyne Detection System 

A homodyne detection scheme is proposed in Figure 9 to detect the quadrature squeezed states of the laser light beam. 
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Figure 9: Homodyne scheme to detect quadrature squeezing states of light. M: Mirror. PD1,PD2: Photodetectors. 
BS: Beam splitter. OA: Operational amplifier. Red solid line: Optical path. Black solid line: Electrical path. 

For balanced homodyne detection, the current to voltage converter circuit, V1 and V2 may be written as 

                                                                                                                                                               (59a) 

                                                                                                                                                               (59b) 

Thus, the output of the difference amplifier V0 can be expressed as 

 

                                                                                                                                                        (60) 

From Eqn. (60), V0 is proportional to  which is proportional to the difference number of photons  and  [45] 

                                                                                                                                  (61a) 

                                                                                                                                                 (61b) 

 and  are the annihilation operators of the coherent state and the LO field, respectively, which may be described by  

                                                                                                                                                             (62a)  

                                                                                                                                                             (62b) 

Here ,  and ,  are the complex amplitudes and the standard deviations of the coherent state  and the LO, 

respectively. Assuming the mode  is in the coherent state  with , Eqn. (61b) yields 

                                                                                                   (63) 

The squeezed state and the coherent field are derived from the same laser. Thus, they have the same frequency so 

. Then Eqn. (63) can be written as 

                                                      

                                                                                                                                       (64) 

The homodyne current is proportional to . Thus, a measurement to the quadrature squeezing is given and the trace of 

the homodyne measurement can be written as [46]  

                                                                           (65) 

The complete setup to generate squeezed light is shown in Figure 10. 
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Figure 10: Complete setup to generate squeezed light. 

4 CONCLUSIONS 

Mathematical and experimental frame work has been presented  for generating non-classical quantum state using an 
optical parametric oscillator via a spontaneous parametric down conversion technique. The aim is  to investigate squeezed 
states with quantum noise in one quadrature below the standard quantum limit at the expense of the other. The setup 
involves four main parts: generation of Nd-YAG second harmonic via a ring resonator, squeezed cavity with a nonlinear 
crystal inside to generate the squeezed state, Pound-Drever-Hall technique to stabilize the laser in the squeezed cavity 
and balanced homodyne receiver with high efficiency to detect the squeezed state.   
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