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ABSTRACT 

In this paper, the squeezed quantum state is generated using an optical parametric oscillator via a spontaneous 
parametric down conversion technique to investigate squeezed states with quantum noise in one quadrature below the 
standard quantum limit at the expense of the other. The setup involves four main parts: generation of Nd-YAG second 
harmonic via a ring resonator, squeezed cavity with a nonlinear crystal inside to generate the squeezed state, Pound-
Drever-Hall technique to stabilize the laser in the squeezed cavity and balanced homodyne receiver with high efficiency to 
detect the squeezed state. A comparison in error probability is addressed between the quantum coherent classical and the 
quantum squeezed non-classical state in the presence of thermal noise and the dissipation. It is found that with extremely 
low number of photons, the squeezed state is robust against channel noise. 
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1 SIMULATION WORK 

This section simulates the generation of squeezed state and its application in binary quantum communication. The error 
probability is theoretically computed and compared with the error probability of the simulation results. The simulation work 
is based on MATLAB R2012a, MATHCAD 15, KaleidaGraph, and LABVIEW. The program involves three parts: 
transmitter, channel, and receiver.  

(i) The transmitter 

The sender generates randomly two real coherent states  and , encoded in two digits 0 and 1, respectively, and 

then transmits the state to the receiver through a noisy channel with the following parameters at time  

1. The average number of photons 

                                                                                             

2. The variance 

                                                                   

(ii) The channel 

The signal during transmission is affected by the following parameters  

1. The thermal noise from the environment represented by the thermal photons number  which is taken as a varying 
parameter during simulation. 

2.  The attenuation represented by . Note that when t varies    from 0 to , G varies from 1 to 0. 

(iii) The receiver 

The state after time t becomes noisy and has a new parameters 

1. The average number of photons 

                                                                                           

2.     The variance 

                        

Note that the last equation has a physical meaning when . Here  and the variance equals to 1/2. Therefore, it 

specifies the initial coherent state. When t approaches ,  thus the coherent state is evolved to the thermal state 

after infinite time. 

Binary phase shift keying (PSK) digital modulation is usually used in binary quantum communication in order to modulate 
the quantum states So two coherent states   and   are encoded in 0 and 1, respectively, then 

transmitted through a noisy channel. These two signals, in the absence of all noise, are separated in the phase-space 

representation by  where  is a real amplitude. The average number of photons is given by . In addition, these 

coherent states are not orthogonal therefore; a correlation between them will be occurred. In order to compute the 
probability of error, the receiver needs to take a decision to distinguish whether the incoming state is  or . The two 

signals are received by homodyne detection, which provides the advantage of amplifying the weak signal by mixing it with 
a strong local oscillator (LO) field.  

Starting with the squeezed vacuum state at t=0, squeezed vacuum state is a Gaussian state with average mean number 
of photons  and two different variances according to the phase quadrature   

                                                                                                                                    (1)   

                                                                                                                       (2) 

where r is the squeezed parameter and  ,  are the squeezing and anti-squeezing variances, respectively.  

Next, after time t the state evolves during transmission and will be exposed by environment represented by Nth and 
dissipation G. Thus, the average number of photons and the variance can be expressed as  

                                                                                                                       (3) 

                                                                                         (4) 
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Now, adding   to Eqn. (4) then arranging the expression to get 

                                                                    (5) 

Eqn. (5) represents the variance of the evolved state in time t. Thus, the state at the detection can be fully represented by 
the density matrix operator  which is a convolution of the thermal state with the squeezed coherent state 

                                                                                                (6) 

where  is the variance of the thermal state which can be written as  

                                                                                                 (7) 

Therefore, the generated state is a squeezed coherent state  affected by Nth and dissipation G 

                                                                (8) 

where  and  are the amplitude and the phase of the transmitted state respectively. Hence these parameters can be 

expressed as 

                                                                 (9)   

where αsq is real and the angle  is between –π and π. 

1.1 Generation of Squeezed Vacuum State 

The squeezed vacuum state is different from the vacuum state in the sense of the number of photons because the last has 
no photons while the first has a number of photons equals to  as shown in Figure 1. The squeezed parameter r is 

fixed at 0.8 in all the following results. 

 

 

 

Figure 1: Squeezed vacuum state. Simulation results for , Nth=0 and G=1. (a) Phase-space representation. 
(b) Amplitude scan. (c) Probability distribution of the amplitude. (d) Probability distribution of the phase. The blue 

curve is the fitted Gaussian shape. 
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In Figure 1a, the squeezed state is not centered. It is tilted by . In addition, the trace of the homodyne detection in 

Figure 1b is a strong indication to the number of photons because the fitted curve is a sine wave. Lastly, Figures 1c and 
1d show the histograms of the marginal probability of the squeezed amplitude and the stretched phase, respectively. They 
have Gaussian distribution with 0.89 mean and standard deviation of 0.32 and 1.57, respectively. 

1.2  Binary Quantum Communication Based on Squeezed State 

1.2.1 Dissipation Effect 

The dissipation effects are studied for G=0.8, 0.5, 0.2, and 0 with  and Nth=2. Three results are represented: phase-
space diagram, amplitude scan, and histogram for marginal probability distribution of the amplitude as shown in Figures 2-
4, respectively.  

 

 

Figure 2: Phase-space simulation results for , Nth=2 and (a) G=0.8.  (b) G=0.5. (c) G=0.2. (d) G=0. 

Figure 2 represents the evolution of the state during transmission when G evolves from 0.8 to 0. There is a strong overlap 
occurring in the cases of G=0.5 and 0.2 and the state is entirely disappeared when G=0 where a new thermal state is 
obtained.  
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Figure 3: Amplitude scan simulation results for , Nth=2 and (a) G=0.8.  (b) G=0.5. (c) G=0.2. (d) G=0. 

The homodyne traces of Figure 3 shows the destruction of the squeezed coherent state due the dissipation effect. 
Moreover, the fixed number of the thermal noise plays a sophisticated role when the two states interfere thus the 
amplitude of the sine wave fitted curve decays more and more when G increases and becomes a line when G=0.    

 

 

Figure 4: Probability simulation results for , Nth=2 and (a) G=0.8. (b) G=0.5. (c) G=0.2. (d) G=0. 

The marginal probability distributions of the amplitude indicate that as the dissipation increases the amplitude of the state 
decreases as shown in Figure 4. They have Gaussian shapes with means 2.46, 1.94, 123 and 0 and standard deviations 
of 0.76, 1.14, 1.42, and 1.58, respectively. 
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1.2.2 Thermal Noise Effect 

In this simulation, the parameters  and G = 0.5 are used while Nth is taken as independent parameter, Nth = 3, 4, 5 

and 6. The effects are shown in Figures 5-7 representing the phase-space diagram, amplitude scan, and the probability of 
the amplitude, respectively.  

The phase-space quadrature in Figure 5 explains that the increase of the thermal noise with constant G degrades the 
performance of the system and the receiver will be unable to discriminate the states. Increasing the thermal noise will 
increase the variance of the state as shown in Figure 5 by the blue ellipse that enlarges as Nth increases. 

 

 

Figure 5: Phase-space simulation results for , G = 0.5 and (a) Nth=3.  (b) Nth=4. (c) Nth=5. (d) Nth=6. 

The blue line in Figure 6 is still unchanged as Nth increases due to the fact that the expectation of the state is constant for 
all cases. This is due to the fact that the evolved amplitude is independent on Nth and only depends on G. On the other 
hand, the fluctuations due to thermal noise increases by increasing Nth and the new state is a mixed state from the 
squeezed coherent state and the thermal state. The mixed state is a Gaussian state completely defined by its mean and 
variance.   
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Figure 6: Amplitude scan simulation results for , G = 0.5 and (a) Nth=3.  (b) Nth=4. (c) Nth=5. (d) Nth=6. 

The marginal probability of the squeezed amplitude decreases by increasing Nth and the shape of the Gaussian profile 
becomes more and more stretch due the increase in the standard deviation of the state as N th increases as shown in 
Figure 7. On the other hand, the mean remains constant for all the cases at 1.38 while the standard deviation has the 
values 1.34, 1.52, 1.67, and 1.82 for Nth = 3, 4, 5, and 6, respectively. 

 

 

Figure 7: Probability simulation results for , G = 0.5 and (a) Nth=3. (b) Nth=4. (c) Nth=5. (d) Nth=6. 
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1.3 Error Probability 

The performance of the system can be evaluated by computing the error probability of the transmitted state in the 
presence of dissipation and thermal noise. The error probability to discriminate between the two states at the receiver for 
Nth =0, 1, 2, 3, and 4 with varying G is shown in Figure 8. 

 

Figure 8: Error probability versus dissipation for  and different values of Nth. The circles are the simulation 
results and the solid lines represent the theoretical results. 

The error probability increases as the dissipation increases as displayed in Figure 8. At Nth=0, the error probability is 

 for G=0.7 while for G=0.5,  as represented by the red curve. The error increases with 

increasing the dissipation until G=0 where the error becomes maximum and the state is evolved to the thermal state.  

Figure 9 explains the effects of increasing the number of photons  at Nth =2, when G varies from 0 to 1.  has a crucial 

impact on the channel transmission. For  photons, the error probability is remarkable  for a 

dissipation of 50%. Moreover,  slightly decreases at G increases. For example, when G=0.3,  while for 

a small average number of photons,  saturates after certain value of G.  

 

Figure 9: Error probability versus dissipation for  and different values of . The circles are the simulation 
results and the solid lines represent the theoretical results. 
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Finally, Figure 10 illustrates the error probability to receive 0 while sending 1 in a binary quantum communication channel. 

In this figure at  and Nth is varied, four curves are given representing the error probability for G=0.8, 0.5, 0.2 and 0. 

If the channel is considered with little dissipation as for G=0.8, then the error probability for the squeezed state is 

remarkable and equals to ,  and  for Nth=0, 1 and 2, respectively. For G=0.5 and 0.2, the 

error probabilities are  and 2.8  when Nth=0, , and 0.13 when Nth=1, and  and 0.19 

when Nth=2. Moreover, the error probability is 0.5 for all Nth when G=0. 

 

Figure 10: Error probability versus thermal noise for  and different values of G. The circles are the 
simulation results; the solid lines represent the theoretical results. 

2 NUMERICAL and EXPERIMENTAL RESULTS 

1.1 Numerical Results 

The stability of the ring resonator m is not constant. It changes according to the focal length of the thermal lens fth that 
varies with the pump current as shown in Figure 11a. In fact, all the characteristics of the resonator change with fth 
involving the waist inside the active medium as illustrated in Figure 11b. 

 

Figure 11: Ring resonator characteristics. (a) Stability as a function of the thermal lens. (b) Waist inside the active 
medium. 
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As shown in Figure 11a, the resonator is considered very stable because . For the thermal focal length range 

between 500 and 950 mm, m is between 0.224 and 0.551. Moreover, the waist varies from  to  as fth varies 

from 500 to 950 mm, respectively. 

Next, the PPLN crystal needs to be placed at the focusing place where the waist is minimum as shown in Figure 12. 

 

Figure 12: Propagation of the beam through the cavity. (a) Waist of the beam. (b) Inverse radius of curvature of 
the beam. 

The maximum focusing is obtained at  where the spot size  as shown in Figure 12a. This position 

corresponds to the middle distance between mirrors M3 and M4. The wave travelling between M3 and M4 is a plane wave. 

The inverse radius of curvature is in the range of  and  for , and , 

respectively, as indicated in Figure 12b.  

1.2 Experimental Results 

2.2.1 Determination of the Quasi-Phase Matching Temperature 

First, the temperature at which the QPM is achieved through the PPLN crystal is determined in order to obtain the 
maximum optical power for generating the second harmonic (532 nm). Table 1 shows the measured voltages and powers 
of the second-harmonic wave at different temperature and fixed-pump current of 19A.  

Table 1: Second harmonic output power at different temperature. 

Temperature (
o
C) Vout (mV) Pout (mW) 

68.250 125.00 7.8125 

68.500 140.00 8.7500 

68.750 140.00 8.7500 

69.000 160.00 10.000 

69.250 160.00 10.000 

69.500 150.00 9.3750 

69.750 150.00 9.3750 

70.000 150.00 9.3750 

70.250 150.00 9.3750 

70.500 125.00 7.8125 

70.750 120.00 7.5000 
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71.000 120.00 7.5000 

 
Second, a graph representation of these results is shown in Figure 13. Using KaleidaGraph program to plot the 
characteristics of the output power of the second harmonic versus the temperature using the measurement data given in 
Table 1.  
The curve shown in Figure 13 is approximately a quadrature one with a maximum temperature of  achieving at the 

center of the curve. Thus, QPM is achieved at  for a pump current of 19A. The maximum second-harmonic power is 

obtained at this temperature. From now, the temperature of the PPLN will be fixed at . 

 

 

Figure 13: Second-harmonic optical power versus temperature at a pump current of 19A. 

2.2.2 First and Second Harmonic Output Powers  

The pump current is varied from the threshold level 16.3A (when the lasing is initiated) to 22A. At each pumping current, 
the output powers of the first and second harmonic wavelengths (Pout (1ω) and Pout (2ω)) are measured via PD1 and PD2, 
respectively. Additionally, the power inside the resonator is also measured. Table 2 contains the output voltages that 
measured by PD1 and PD2 and their corresponding incident optical powers Pin. The graphical representation is shown in 
Figure 14 with the two vertical axes representing the powers of the second-harmonic and the power inside the resonator. 

Table 2: Voltages and Powers of 1ω and 2ω. 

Pump (A) Vout (1ω) (V) Vout (2ω) (V) Pout (1ω) (mW) Pout (2ω) (mW) Pin (W) 

16.30 0.00 0.00 0.00 0.00 0.00 

16.50 0.10 0.01 27.03 0.63 1.00 

17.00 0.25 0.15 67.57 9.38 2.50 
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18.00 0.63 0.73 170.27 45.63 6.31 

19.00 0.90 1.40 243.24 87.50 9.01 

20.00 1.16 2.25 313.51 140.63 11.61 

20.50 1.30 2.90 351.35 181.25 13.01 

21.00 1.45 3.70 391.89 231.25 14.52 

21.50 1.60 4.50 432.43 281.25 16.02 

22.00 1.70 5.20 459.46 325.00 17.02 

 

Figure 14 illustrates how the first and second harmonic powers increase as increasing the pump current. From this graph, 
one can see that the optical power of the first harmonic varies approximately linearly with the pumping current as well as 
the power inside the cavity, which is normally a consequence of the characteristics of the laser operating above threshold. 
However, this is not the case for the second harmonic where the power changes approximately in a quadratic manner 
against pumping current. In addition, the curve in Figure 14 gives a wide reliability to choose the suitable power required to 
generate the squeezed light. One can observe that when the current increases from 16 to 22A, the second harmonic 
power increases from 0 to 325 mW.        

 

Figure 14: First harmonic, second harmonic, and cavity powers versus pumping current. 

2.3 Squeezed Cavity: Numerical Results 

2.3.1 Refractive Indices Representation 

To achieve NCPM in the LNB crystal, one has to determine the temperature at which the extraordinary and the ordinary 
refractive indices are matching. The refractive indices as a function of the temperature and the wavelength are 
represented in Figures 15a and 15b.  
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Figure 15: Refractive indices representations. (a) As a function of the temperature. (b) As a function of the 
wavelength. 

The extraordinary and the ordinary refractive indices curves are intersected at  for  as 

shown in Figure 15a. At , the NCPM is investigated and Figure 15b confirms this results (i.e.,  for the 

wavelengths 532 nm and 1064 nm, respectively).  
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2.3.2 FSR and Stability Results 

The effective length of the squeezed resonator  and the free spectral range . The stability 

of the resonator  which indicates that the resonator is stable. 

2.3.3 First Harmonic Propagation Results  

Figure 16 shows the propagation of the beam waist along the cavity length. It is found that the waist of the first harmonic 
varies from  at MS1 to  at MS2. The region with the more interest is between 20 and 30 mm where the 

crystal is located. The waist in this region of length LS varies from  to  with a value of  at the 

center of the crystal. Thus, the beam exhibits fluctuation through propagation inside the crystal. 

 

Figure 16: Propagation of the beam along the axis z.  

The inverse radius of curvature is represented in Figure 17. Note that the radius of curvature varies between the -25 mm 
and 10 mm that correspond to the radii of curvature of MS1 and MS2, respectively. Inside the crystal, the wave is not plane 
and the radius of curvature fluctuates between -9.57 mm at z=20 mm to 133.8 mm at z=30 mm with minimum value 

 mm at z=29.1 mm.    

 

Figure 17: Inverse radius of curvature propagation through the cavity. 

2.3.4 Second Harmonic Propagation Results 

The second harmonic beam should be well inside the first harmonic beam in order to generate the squeezed light as 
shown in Figure 18.  
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Figure 18: Waist propagation through the squeezed cavity. 

The waist of the second harmonic varies from  at the mirror MS1 to  at the mirror MS2 with variation inside 

the crystal from  at  to  at . The fluctuation of the second harmonic inside the 

crystal is about  which is not significant and this is so important in the generation of the squeezed light. The waist of 

the pump beam should have an optimum value of  in order to be well inside the seeded beam. The threshold 

intensity of the pumping beam in the OPO is  . Thus, the minimum threshold power required is 
157 mW.    

2.3.5 Squeezed Light Generation Results  

First, one has to determine the frequency Ω at which the variance of the squeezed state is optimum. The squeezed 
variance as a function of Ω is shown in Figure 19. The curve has a quadrature shape at which the optimum squeezing -
10.016 dB is obtained for Ω=0.  

 

Figure 19: Squeezed variance as a function of the frequency. 

Figure 20 illustrates the variation of the squeezed variance with the escape efficiency. The squeezing varies linearly with 
the variance. Therefore, it has a crucial effect on the generation of the squeezed state. For a zero frequency and a pump 
power of 0.5 W, the squeezed variance varies from  at  to  at . Note that the 

quantum limit of the vacuum corresponds to a variance with zero escape efficiency.   



  ISSN 2277-3061 
 

2854 | P a g e                                                            N o v  1 7 ,  2 0 1 3  

 

Figure 20: Squeezed variance as a function of the escape efficiency. 

Finally, a representation of the squeezed and anti-squeezed variances as a function of the pump power is represented in 
Figure 21. 

 

Figure 21: Squeezed and anti-squeezed quadrature versus pump power. 

Figure 21 indicates that squeezing increases with increasing the power. Furthermore, the squeezed quadrature saturates 
below the threshold. Therefore, it is not necessary to increase the pump power up to the threshold. At an escape efficiency 
of 79.5%, the degree of squeezing for different values of the power is shown in Table 3. 
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Table 3: Squeezed and anti-squeezed quadrature versus pump power. 

Pump power (mW) Squeezed quadrature (dB) Anti-squeezed quadrature (dB) 

0 -3.01 -3.01 

20 -4.10 5.71 

40 -5.26 8.74 

50 -5.63 10.15 

60 -5.91 11.57 

70 -6.13 13.02 

80 -6.29 14.55 

100 -6.53 17.97 

120 -6.65 22.46 

 

Table 3 indicates that the maximum squeezing below the quantum limit is obtained  at a pump power of 80 

mW. The reduction of the squeezing for the pump power above 50 mW has a slowly variation due to the fact that the 
squeezed quadrature saturates below the threshold.  

2.3.6 Pound-Drever-Haul Results 

The error signal is fed to the piezoelectric in order to control the cavity length as shown in Figure 22 which displays two 
regions, one is above the resonance when the error is positive and the other is below the resonance when the error is 
negative. When the length of the resonator increases, the error increases hence more voltage is needed to be applied at 
the piezoelectric in order to return the cavity back to the resonance position and vice versa.  

  

Figure 22: Pound Drever Haul Error signal. 

2.3.7 Balance Homodyne Results 

The homodyne trace represents the phase quadrature over the LO phase  which varies from 0 to  as shown in Figure 

23. At a pump power of 50 mW, the squeezed variance is -9.31 dB while the anti-squeezed is 11, 32 dB, which means that 
there is a noise reduction of  dB below the standard quantum limit versus a 14.54 dB above. This value is expected 
due the small value of the escape efficiency (79.5%) which depends on the apparatus involved in the setup such as the 
reflectivity of the output coupler and the internal losses.  
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Figure 23: Homodyne trace for P=80 mW. 

2 ERROR PROBABILITY COMPARISON  

Here, a comparison is given from error probability point of view between the coherent and the squeezed states in the 
binary quantum communication system as shown in Figures 24-26. 

 

Figure 24: Simulation error probability comparison for  and Nth=1 and 2 with varying G. The circles are the 
simulation results; the solid lines represent the theoretical results. 

Figure 24 shows a comparison between the squeezed and the coherent states for  and Nth=1 and 2 with varying G. 
Investigating this figure reveals that the error probability for both squeezed and coherent states has the same value  

when G=0. This is true because the two states will be evolved to the thermal state when t approaches infinity and hence 
the maximum error is obtained. For G=1 (i.e., without dissipation), the coherent state has an error probability of 



  ISSN 2277-3061 
 

2857 | P a g e                                                            N o v  1 7 ,  2 0 1 3  

 for both Nth=1 and 2. The squeezed state has almost the same error,  for G=0.6, Nth=1 and  
for G=0.7, Nth=2. Thus, the squeezed state overcomes the effect of dissipation imposed by the channel during 
transmission. Furthermore, the squeezed state with 3 photons and for a light dissipation may have an excellent error 
probability in the order of less than . 

 

Figure 25: Simulation error probability comparison for  3 and Nth=2 with varying G. The circles are the 
simulation results; the solid lines represent the theoretical results. 

Figure 25 illustrates the error probability for two values of number of photons,  and 3. Here Nth=2 where G is varied 

between 0 and 1. For G=0.7, the error probabilities for the coherent state are 0.025 and 0.13 for  and 1, 

respectively. For the squeezed state, Pe is  and 0.04 for  and 1, respectively. Thus, the squeezed state 

enhances significantly the channel transmission performance and overcomes the environment effects and the dissipation. 

 

Figure 26: Simulation error probability comparison for  and G=0.6, 0.8 with varying Nth. The circles are the 
simulation results; the solid lines represent the theoretical results. 

Figure 26 represents a comparison from thermal noise point of view with  and for two values of G, 0.6 and 0.8. It is 

found that the error probabilities for a dissipation of 0.8 are  and for the coherent state and the squeezed 

state, respectively. The squeezed state is better than the coherent state by about four order of magnitude, t. Even a 
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squeezed state with high dissipation of G=0.6 gives less error probability compared with a coherent state with less 
dissipation G=0.8. Furthermore, the error probabilities for the squeezed state at G=0.6 and the coherent state at G=0.8 
have the following important notes 

(i) From Nth=0 to 1, the error due to the squeezing dominates because Nth is low and the number of photons is 

higher than that of the coherent state. On the other hand the ratio . Thus, 

. 

(ii) At Nth=1, . Hence the two error probabilities are equal . 

(iii) For , . Therefore,  .   

(iv) Thus, there is a trade-off between the number of photons and the dissipation when Nth increases to get the same 
value of Pe. 

3 CONCLUSIONS 

The following concluding remarks are drawn from the experimental and computational investigations: 

1. Experimentally, it is convenient to choose the He-Ne laser to generate the quantum squeezed  states because it 
offers low noise, high power stability, and long life operation. Moreover, it is very easy to calibrate the light between 
the two arms of the interferometer due the visibility and the safety of the laser. 

2. The homodyne receiver offers an excellent detection because it is successfully able to discriminate between the 
incoming states. This can be seen by the error probability curves which demonstrate a perfect matching between 
theoretically and experimentally results. 

3. The squeezed state is less sensitive to the environment noise and to the dissipation during transmission as compared 
with coherent state.  

4. The preliminary calculations to design the squeezed light using OPO gives the regularities and the requirements of 
specific devices to generate such state. The first and the second harmonics are successfully generated using an Nd-
YAG laser. The required powers are sufficient to generate the beat the nonlinear crystal inside the squeezed cavity.   

5. Pound-Drever-Hall technique is successfully implemented to stabilize the squeezed cavity. 

6. The maximum obtained squeezing is -6.30 dB below the quantum noise limit which is sufficient to be implemented in 
quantum communication  to enhance system performance of coherent state counterpart. 

7.  The error probability of binary communication system employing squeezed state is better than the coherent state by 
about four order of magnitude. Even a squeezed state with high dissipation of G=0.6 gives less error probability 
compared with a coherent state with less dissipation G=0.8.  
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