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ABSTRACT 

Stock price forecasting phenomenon has been majorly made on the basis of quantitative information. Over the time, with 
the advent of technology, stock forecasting used technical analysis to get more accurate predictions. Until recently, studies 
have demonstrated that sentiment information hidden in corporate reports can be effectively incorporated to predict short-
run stock price returns. Soft computing methods, like neural networks, fuzzy models and support vector regression, have 
shown great results in the forecasting of stock price due to their ability to model complex non-linear systems. 

In this paper we propose a hybrid method for stock price predication, which is combinational feature from technical 
analysis and sentiment analysis (SA). The features of sentiment analysis are based on a Point wise Mutual Information 
(PMI) and we apply  neural network and ε-support vector regression models to predict the yearly change in the stock price. 
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INTRODUCTION 

The ability to predict stock market behavior has always had a certain appeal to researchers. Even though numerous 
attempts have been made, the difficulty has been the inability to capitalize on the behaviors of human traders. Behavioral 
patterns have not been fully defined and are constantly changing, thus making accurate predictions quite difficult. Previous 
literature has shown that the problem of stock price forecasting has to be taken as complex since stock price changes in 
time are highly nonlinear with a changing volatility and many micro and macroeconomic determinants. 

With the advent of cheap computing and the ease of gathering information, the role of computers in stock prediction has 
increased dramatically. In general, Technical 

Analysis (TA) is based on historical developed regularities in the stock exchange with an assumption that the same result 
will repeat in the future. There are many influential indicators and trading rules based on them. Technical indicators might 
provide advice to traders on whether a trend will continue, such as MACD, or whether a stock is oversold or overbought, 
such as BIAS. One of the important issues for forecasting market trend is to know sentiment of stock news, that it‟s good 
or bad trend, when the financial stock prices go through the up/down cycle. The Sentimental Analysis (SA) can be applied 
to make trading decisions where some of potentially important information affecting investor‟s decisions is the news. 
Sentimental Analysis can use text mining technique to find best information. SA has been developed and good 
performance in many researches. The sentimental analysis is a different way to mining stock information compares to 
uses the trading information to predict future stock trends. In addition, many researchers using textual information to 
improved prediction performance. However, these approaches have a problem that textual data is highly complex 
information representation, whether using dictionary or manual lexicon by analyzer may miss many of distinctive features. 
Therefore, the feature extraction can capture more effective variables as information to improved classification or 
predication problem, such as using SentiWordNet, Association Rule Mining (ARM), Pointwise Mutual Information (PMI) 
and Mutual Information (MI). 

In this paper we will demonstrate that the long run behavior of stock price can be effectively predicted employing NNs and 
ε-SVRs. To overcome the complexity of information representation, we employ PMI model in the sentimental analysis part 

of the prediction.  Therefore, we develop a hybrid model that combines quantitative input variables (mostly fundamental 
analysis indicators) with qualitative sentiment from corporate reports using PMI model. Then, NNs and ε-SVRs are used to 
perform a one year ahead stock return forecast.  

This paper is arranged as follows: 

Section 2 provides an overview of literature concerning stock market prediction, textual representations and sentiment 
analysis techniques. 

 Sections 3 and 4 describe our proposed approaches, where we first show a macroscopic view of our proposed model and 
then further expands the components of the model to explain the sequence of execution. With the methodology of PMI 
followed by NNs and ε-SVRs; explained precisely with the block diagram for the model.  

Section 5 provides an overview of our experimental design.  

Section 6 delivers our conclusions and a brief discourse on future research directions. 

LITERATURE REVIEW 

Stock market prediction is the act of trying to determine the future value of a company stock or other financial instrument 
traded on a financial exchange. The successful prediction of a stock's future price could yield significant profit. The ability 
to predict stock market behavior has always had a certain appeal to researchers [1]. Even though numerous attempts 
have been made, the difficulty has been the inability to capitalize on the behaviors of human traders. Behavioral patterns 
have not been fully defined and are constantly changing, thus making accurate predictions quite difficult. 

Sentiment analysis has several subtasks, all of them concern with tagging a given text according to expressed opinion. 
Work has been done in the field of sentiment analysis by professionals as well as students in order to understand 
emotions of people, to know about movie or any product review etc. They have mainly been implemented using either 
WordNet or SentiWordNet lexicon [2]. Lexicon is essentially a catalogue of a given language's words and grammar, a 
system of rules which allows for the combination of those words into meaningful sentences. Several research teams in 
universities around the world have focused on understanding the dynamics of sentiment in e-communities through 
sentiment analysis. 

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous 
systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information 
processing system. It is composed of a large number of highly interconnected processing elements (neurons) working in 
unison to solve specific problems. ANNs, like people, learn by example. An ANN is configured for a specific application, 
such as pattern recognition or data classification, through a learning process [3]. Learning in biological systems involves 

adjustments to the synaptic connections that exist between the neurons. Neural networks, with their remarkable ability to 
derive meaning from complicated or imprecise data, can be used to extract patterns and detect trends that are too 
complex to be noticed by either humans or other computer techniques. A trained neural network can be thought of as an 
"expert" in the category of information it has been given to analyse. This expert can then be used to provide projections 
given new situations of interest and answer "what if" questions. 

http://en.wikipedia.org/wiki/Lexeme
http://en.wikipedia.org/wiki/Grammar
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The PMI of a pair of outcomes x and y belonging to discrete random variables X and Y quantifies the discrepancy between 
the probability of their coincidence given their joint distribution and their individual distributions, assuming independence. 
Mathematically: 

 

The mutual information (MI) of the random variables X and Y is the expected value of the PMI over all possible outcomes 

(w.r.t. the joint distribution ). 

The measure is symmetric ( ). It can take positive or negative values, but is zero 
if X and Y are independent. PMI maximizes when X and Y are perfectly associated, yielding the following bounds: 

 

Finally,  will increase if  is fixed but decreases. 

PMI is a measure of association between a feature (in your case a word) and a class (category), not between a document 
(tweet) and a category [34]. In that formula, X is the random variable that models the occurrence of a word, and Y models 
the occurrence of a class. For a given word x and a given class y, you can use PMI to decide if a feature is informative or 
not, and you can do feature selection on that basis. Having less features often improves the performance of your 
classification algorithm and speeds it up considerably. The classification step, however, is separate- PMI only helps you 
select better features to feed into your learning algorithm. 

A Support Vector Machine constructs a hyperplane or set of hyperplanes in a high- or infinite-dimensional space, which 
can be used for classification, regression, or other tasks [12]. Intuitively, a good separation is achieved by the hyperplane 
that has the largest distance to the nearest training data point of any class (so-called functional margin), since in general 
the larger the margin the lower the generalization error of the classifier.Whereas the original problem may be stated in a 
finite dimensional space, it often happens that the sets to discriminate are not linearly separable in that space. For this 
reason, it was proposed that the original finite-dimensional space be mapped into a much higher-dimensional space, 
presumably making the separation easier in that space. To keep the computational load reasonable, the mappings used 
by SVM schemes are designed to ensure that dot products may be computed easily in terms of the variables in the 

original space, by defining them in terms of a kernel function  selected to suit the problem. The hyperplanes in 
the higher-dimensional space are defined as the set of points whose dot product with a vector in that space is constant. 

The vectors defining the hyperplanes can be chosen to be linear combinations with parameters  of images of feature 
vectors that occur in the data base. With this choice of a hyperplane, the points  in the feature space that are mapped 

into the hyperplane are defined by the relation:  Note that if  becomes 

small as  grows further away from , each term in the sum measures the degree of closeness of the test point  to the 

corresponding data base point . In this way, the sum of kernels above can be used to measure the relative nearness of 
each test point to the data points originating in one or the other of the sets to be discriminated. Note the fact that the set of 
points  mapped into any hyperplane can be quite convoluted as a result, allowing much more complex discrimination 
between sets which are not convex at all in the original space. 

TechnicalAnalysis (TA) is based on historical developed regularities in the stock exchange with an assumption that the 
same result will repeat in the future. There are many influential indicators and trading rules based on them. Technical 
indicators might provide advice to traders on whether a trend will continue, such as MACD, or whether a stock is oversold 
or overbought, such as BIAS. One of the important issues for forecasting market trend is to know sentiment of stock news, 
that it‟s good or bad trend, when the financial stock prices go through the up/down cycle. 

Several authors have attempted to analyze the stock market. They used quantitative and qualitative information on the net 
for predicting the movement of the stock. 

Vivek John George et. al [1] suggested a new method for automatically predicting the stock price. They have shown that 
stock prices predicted from historical prices and sentiments are significantly correlated with actual stock prices of a 
particular company. 

Caslav Bozic and Detlef Seese [2] proposed a system for quantifying text sentiment based on Neural Networks predictor. 
By using the methodology from empirical finance, they proved statistically significant relation between text sentiment of 
published news and future daily returns. 

Liang, X. [3] work used only volume of posted internet stock news to train neural network and predict changes in stock 
prices. 

Liang and Chen [4] employed natural language processing techniques and handcrafted dictionary to predict stock returns. 
They used feed forward neural network with five neurons in the input layer, 27 in the hidden layer, and one output neuron. 
Since only 500 news items was used for the analysis, no statistical significance of the results could be found. 
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Vivek   Sehgal and Charles Song [5] proposed a system learns the correlation between the sentiments and the stock 
values. The learned model can then be used to make future predictions about stock values. They showed that their 
method is able to predict the sentiment with high precision and also showed that the stock performance and its recent web 
sentiments are also closely correlated. 

Khurshid   Ahmad and Yousif Almas [6] developed a system called E-Analyst which collects two types of data, the 
financial time series and time stamp news stories .It generates trend from time series and align them with relevant news 
stories and build language models for trend type. In their work they treated the news articles as bag of words. 

Shangkun  Deng [7] proposed a stock prediction model which includes Raw Data Preprocessing (RDP) component, 
Sentiment Analysis (SA) component, Feature Extraction (FE) component, Price Prediction and Evaluation (P&E) 
component. First, the RDP component downloads data of time series, news, and comments; second, the SA component 
analyze the overall sentiment for every comments and news; third, the FE component extracts features from the three 
different kinds of data sources; then, the P&E component predicts the stock price based on a MKL regression framework 
and evaluates the prediction results based on some magnitude evaluation measures . 

Yoon and Swales [5] demonstrated the capabilities of forecasting performance of multilayer perceptron NNs (MLPs) 
compared to multivariate statistical methods. 

In a similar manner, MLPs have been employed to predict short-term stock prices or indexes on various stock markets, 
see e.g. [6,7,8]. 

Except for MLPs, other NNs‟ architectures have successfully been applied to stockprice forecasting such as generalized 
regression NNs [9], radial basis function (RBF) NNs [10, 11] and related SVR [12]. 

The non-linear character of stock price data have further been examined using other soft-computing and AI methods such 
as chaostheory [13,14], multi-agent systems [15,16], or fuzzy rule-based systems [17]. The advantages of individual soft 
computing methods have been combined in hybrid systems [18,19,20]. 

Fuzzy rule based systems [21] and NNs [22] have been also successfully applied stock market trend where the hit ratio of 
correctly predicted trends is used as a measure of forecasting performance. 

The problem of stock price forecasting becomes even more complex when performing long-run forecasts. Short-run 
forecasts are mainly based on technical indicators whilst long-run forecasts are performed using fundamental analysis. 

Campbell and Ammer [23] report that long-run stock returns of US companies are driven largely by news about future 
excess stock returns and inflation, respectively. 

Campbell and Shiller [24] demonstrated that price earnings ratios and dividend price ratios are important drivers of future 
stock price changes. 

Previous returns seem to affect future stock price returns, too (a long memory property of stock market) [25]. 

However, large variations in stock prices have not been explained adequately so far. Bak et al. [26] argue that the large 
variations may be due to a crowd effect (with agents imitating each other's behaviour). The variations were explained by 
the interplay between “rational traders” and “noisetraders”. The rational traders‟ behaviour is based on fundamental 
analysis, whereas the noise traders make decisions based on the behaviour of other traders. Then, fundamental analysis 
can be used to forecast future stock returns effectively only when the number of rational traders (arbitrageurs) is larger. 

Researchers in behavioural finance have been working with two basic assumptions[27]: 

investors are subject to sentiment; and betting against sentimental investors is costly and risky. 

(1) Investor sentiment is measured either bottom-up(investors under react or overreact to past returns or fundamentals) 

(2) Top-down (the effect of aggregate sentiment on individual stocks). 

Recently, the effect of market sentiment on stock market behaviour has been investigated in agent-based simulators [28]. 

According to [28], a high sensitivity to aggregate investor sentiment is associated with low  capitalization, younger, 
unprofitable, high volatility, non-dividend paying, growth companies, or stocks of firms in financial distress. 

Bollen et al. [29] showed that the aggregate sentiment can be extracted from the text messages on the Twitter. They 
analyzed the text content of daily Twitter feeds by measuring (1) positive vs. negative mood, and (2) mood in terms of 6 
dimensions (Calm, Alert,Sure, Vital, Kind, and Happy). The accuracy of DJIA (Dow Jones Industrial Average) daily 
predictions were signicantly improved by the inclusion of specific public mood dimensions. 

Tetlock [30] finds that sentiment in news stories determines both stock price return and volatility. Specifically, high media 
pessimism predicted downward pressure on market prices followed by a reversion to fundamentals. In addition, unusually 
high or low pessimism predicted high market trading volumes. These findings conform to noise traders‟ models. 

Demers and Vega [31] investigated the effect of sentiment in earnings announcements. 

They conclude that (1) unanticipated net optimism in managers‟ language predicts abnormal stock returns, and (2) the 
level of uncertainty in the text is associated with idiosyncratic volatility and predicts future idiosyncratic volatility. 
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Statistical approaches such as Naïve Bayes classifier, vector distance classifier, discriminant-based classifier, and 
adjective-adverb phrase classifier were used by [32] to analyze the sentiment of stock message boards. The sentiment 
analysis proves to be a significant determinant of stock index levels, trading volumes and volatility. 

Annual reports are an important vehicle for organizations to communicate with their stakeholders. In addition to 
quantitative data (accounting and financial data drawn from financial statements), annual reports contains narrative texts, 
i.e. qualitative data. Besides other things, annual reports describe company‟s managerial priorities. Kohut and Segars [33] 
noticed that communication strategies in annual reports differ in terms of the subjects emphasized when the company„s 
performance worsens. 

Sentiment analysis of text documents is carried out using either word categorization (bag of words) method or statistical 
methods. The former method requires available dictionary of terms and their categorization according to their sentiment. 

However, such a dictionary is context sensitive. 

PROPOSED MODEL  

 

Fig 1: Hybrid Stock Price Prediction Model 

SENTIMENT ANALYSIS BASED ON STOCK NEWS 

Data pre-processing and detecting the seed word set 

The textual data collect from online stock news and use part-of-speech method to tagging each word from CKIP system 
(word segmentation on English word). We select important word according to POS tagging including verb, noun and 
adjective and then generate multidimensional seed word seta according multidimensional considerations i.e. economy, 
technology. Each seed word set is detecting by specific field expert because of the reason that human can identify 
sensitively the seed word according to their background in the field expert. 

Extracting sentiment features and its weighting by PMI-based 

In features extraction, we want to use PMI method [9] to analyze word association among word and seed word set. Each 
word has PMI value from seed word set from last step. The value of PMI (word, sword) which is the word with the sword 

seed word calculates follows as: 

 

where count(word, sword) is count the co-occur frequency between words. 

From the PMI value we calculate the strength of semantic association between word and seed word set of Class (i.e. 
positive, negative). The word strength is following as: 

 

where if the value in this class1 more than another class2 is belongs to the class1, contrariwise belongs to class2. Also the 
value of strength (word) is the feature weight of word in its class. Therefore, we could know the word that how many 
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similarities with seed word set of class and each word has strength value. In addition, we can repeat the feature extraction 
processes from each seed word sets. 

Calculating sentiment intensity for each news 

In this step, we provide a function to calculate sentimental intensity which is total stock information in a stock news 
document. The value of Intensity is a balance among positive and negative. The p_strength is positive feature detecting 
information volume of positive and the n_strength is negative feature detecting 

information volume of negative 

 

Where the wordi is the word strength of ith feature in positive feature set P exist document Dk. wordj is the strength of jth 
feature in negative feature set N exist document Dk. The n and m are total number of positive and negative feature appear 
in stock news Dk. According to the intensity of stock information determination the new affect degree by our proposed 
sentimental analysis, if the Intensity value more than zero then it has positive sentiment otherwise is negative sentiment. 

Sentiment Analysis 

Sentiment analysis represents a complex problem due to the ambiguity in word categorization. The ambiguity can be 
resolved using context knowledge, for example from financial domain. The correct categorization of terms into the bags of 
words (positive, negative, etc.) is difficult because words may have different meanings and tones in individual domains. 
Therefore, there have been attempts to propose a domain-specific word categorization recently. In this study we used the 
word categorization from the financial dictionary proposed by [38] with the following categories of terms: 

• Negative (e.g. abandon, abolish, abuse, annoy, annul, assault, bad, loss, bankruptcy.    Barrier , calamity, cancel, close, 
corrupt, critical, crucial , danger decline, default, depress, diminish , disagree, imbalance, improper, problem, suffer, 
unable, weak), wf= 2349, 

• Positive (e.g. able, accomplish, achieve, advance , assure, boost, collaborate, compliment, creative, delight, easy, 
enable, effective, enjoying, excellent, gain, progress, strong, succeed), wf =354, 

• Uncertainty (e.g. ambiguity, assume, depend, crossroad, deviate, fluctuate, may, maybe, inexact, probably, random, 
reconsider, risk, unknown, variable), wf = 291, 

• Litigious (e.g. allege, amend, appeal, arbitrate, attest, attorney, bail, codified, constitution, contract, crime, court, 
defeasance, delegable, indict, judicial, legal, sue), wf = 871, 

• Modal strong (e.g. always, best, clearly, definitely, highest, must, never, strongly, undoubtedly), wf = 19, 

• Modal weak (e.g. almost, appeared, could, depend, might, nearly, possible, seldom, sometimes, suggest), wf = 27,  

Where wf is the frequency of terms in the word categories listed in the financial dictionary. The frequency of net positive 
words was determined as the positive term count minus the count for negation (positive terms can be easily qualified or 
compromised). 

The most common tf.idf (term frequency-inverse document frequency) term weighting scheme was used in this study. The 
weights can be defined as follows in the tf.idf. 

 

Where N denotes the total number of documents in the sample, dfi stands for the number of documents with at least one 
occurrence of the i-th term, tfi.j is the frequency of the i-th term in the j-th document, and a denotes the average term count 
in the document. 

Technical Analysis based on Stock Price and Volume 

Investment managers calculate different indicators from available data and plot them as charts. Observations of price, 
direction, and volume on the charts assist managers in making decisions on their investment portfolios According to 
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references that their researches shown the technical indices with stock price have high correlation coefficient. There are 
many kind of technical index in the stock market for investor decision which considers three major kinds of technical 
indices including moving average (MA), bias (BIAS) and relative strength index (RSI). 

Learning Predication Model based on Technical Indices and Sentiment Intensity 

In this section, we combine two feature set from sentiment analysis and technical analysis for prediction model. The 
sentimental analysis component can analyse the sentimental intensity of news in a day. The technical analysis component 
can generate technical indices in a day. The combinational feature set as input data is generated from SA and TA for learn 
the predication model. The target output is future stock price. Support vector regression will be applied as a machine 
learning model which can extract the hidden knowledge according to SA and TA. On the kernel function selection, we try 
to use RBF functions to generate better performance in SVR model. 

Predicting the Daily Future Stock Price 

In this part, we will calculate average sentimental intensity of stock news of each dimension of each day and combining 
the technical indices to stock price predication model. In this paper, we propose predict daily stock price based on our 
proposed predication mode. 

METHODOLOGY MODEL 

 

Fig 2: Sentiment Analysis and Evaluation Mechanism 

 

OVERVIEW OF PROPOSED MODEL 

 

Fig 3: Macroscopic view of Price Prediction Model 
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CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

Thus we have put forward a hypothesis to formulate a hybrid method for stock price prediction using sentimental analysis. 
Our future aims and research directions would be to test this hypothesis and compose a working model to implement this 
hypothesis and to calculate future stock price using technical analysis with the presence of hybrid sentimental analysis 
method in the base. 
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