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ABSTRACT 

Computational grids have a huge number of diverse and scattered resources that are used in handling complex problems. 

A decent load balancing methodology is needed to utilize grid resource by efficiently distributing tasks, for execution, on 

available computing nodes.  

Ant colony is a major and popular method for approximate optimization. It works by simulating the actual ant‟s demeanor 

in detecting the best path for the resources of food. This research paper employs ant colony optimization in proposing a 

load balancing technique for computational grids. The performance of the suggested technique is computed, evaluated 

and compared with that of a Random Distributed Load Balancing technique using simulation. The achieved results reveal 

that the suggested technique enhances the task average response time. It reveals also that the enhancement ratio 

progressively rises up as the system‟s load rises up till the load come to be mild where the best enhancement ratio is 

achieved. Immediately after that, the enhancement ratio declines steadily as the system‟s load rises up till the system 

becomes saturated. 

Keywords: 

Computational Grids; Load Balancing; Ant Colony; Performance Optimization. 

1. INTRODUCTION 

Computational grid is an integrated environment of software and hardware that supports users by consistent, dependable, 
pervasive and cheap access to a huge set of computing resources. Such resources may include but not limited to 
computers, storage space, software applications and data [1].  These resources can be shared and coordinated by grid 
users without taking into account their type and location in the virtual organizations (VOs) to solve intensive computing 
tasks. VOs are composed of individuals, foundations and resources. In grid computing, a joint interface is utilized for 
linking LANs and clusters together. Any user or VOs can share the computing clusters. For reliability and authentications 
issues, each cluster applies a local security policy which identifies the access rights for every user.  This policy is applied 
through a local resource management system. Fig.1. demonstrates the clustering process of grid resources. 

Grid computing is mainly motivated by providing its users and applications with a widespread and smooth access to a 
huge set of advanced computing resources. To do this task, an illusion of a single system image is created. Consequently, 
such computational environments are implemented in a way so that their clients should not have to worry about where 
their tasks are executed [2-6,15]. 

 

Fig. 1: Clustered distribution of Grid resources 
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Various services are offered by grid computing systems to their users like application, computation, information, 
knowledge and data services. Such services are conducted by the available servers and computing resources in grid 
system. The computing resources and servers are diverse by their nature as they have dissimilar storage space, memory 
sizes, CPU speeds and I/O bandwidths [2,3,7].  

The diversity of the grid resources connected with the unequal task arrival forms could result in a situation that some 
computing resources in a cluster come to be over-loaded while others in another cluster are under-loaded or even idle. 
Consequently, there is a desire to shift some jobs from overloaded computing nodes to be processed on the under loaded 
ones targeting to improve utilization of existing resources. Redistributing system‟s workload is recognized as load 
balancing [8-13]. 

To efficiently utilize the huge set of available computing resources in grid, the grid infrastructure service level should utilize 
efficient load balancing and scheduling algorithms [1-8]. Such algorithms tend to minimize the task response time by 
maximizing utilization of existing resources. Their core objective is to avoid the possibility of having some burdened 
processing nodes and others under-loaded or idle at the same time [2-13]. 

Ant colony optimization (ACO) [16] is a major and recent technique among approximate optimization methodologies.  The 
rousing origin of ACO techniques is the actual colonies of Ants. To be more precisely, ACO is originated mainly by the 
foraging demeanor of ants. The ant puts a definite quantity of pheromone during its walk. Ants tend to select a path 
positively correlated to the density of pheromone of found trials. Over time, the effect of pheromone trail vanishes. When 
several ants select a definite path and put their pheromones, this leads to increasing trail density.  Therefore, such trail 
entices other ants; this manner leads to a highway of ants using shortest path. Ants are also able to dynamically adjust 
their behavior based on changes in the environment. For example, they are able to discover a new path when the old path 
is not valid anymore as a result of appearing a new barrier. In the essence of their demeanor, ants are able to 
communicate indirectly by using chemical pheromone trails which gives them the ability to discover the shortest paths 
between the ant's nest and a food source. Such fabulous features of actual ant‟s societies are utilized in ACO techniques 
for solving various scientific problems. Recently, ACO techniques are used for balancing workload of tasks in 
computational grids [18- 20]. 

This research utilizes ACO technology in developing a load balancing algorithm for computational grids. It considers the 
diversity of existing computing resource in grid. The proposed algorithm selects a resource to execute a task according to 
the assessed task transfer time and anticipated task processing time when it is allocated to such resource. It balances the 
grid workload using a local, and global pheromone update procedures. The local pheromone update process updates the 
status of the designated resource directly after assigning a task to it. On the other hand, the status of every resource is 
updated for all tasks directly after finishing any task by using global pheromone update process. This procedure gives grid 
scheduler the latest information about all resources to be utilized in the next task allocation round which lead to effectively 
utilizing the existing grid resources.  

This policy leads to maximizing system utilization and improving load balancing level. Hence the mean job response time 
is minimized. A simulation model is built for assessing the performance of the suggested algorithm. The results reveal that 
the suggested technique enhances the average job response time compared to random distribution load balancing 
algorithm (RDLBA) in all studied cases. The enhancement ratio rises up steadily as the system traffic intensity rises up till 
the system load come to be moderate at this point the highest enhancement ratio is attained. After that, the enhancement 
ratio declines steadily as the grid load rises up reaching to the system saturation point. 

The remainder of the paper is structured as follows: Related work is introduced in section II. Studied computational grid 
system is presented in section III. Section IV gives the suggested ant colony load balancing algorithm. Section V 
discusses the simulated model and explains results. At the end, section VI concludes this research paper and gives some 
of our future research directions. 

2. RELATED WORK 

Lately, the problems in all sciences become very difficult and complicated. They require enormous processing power and 
large storing space. The old systems like parallel or cluster computing ones are improper for solving such complicated 
problems. At the same time, the increasing popularity of the Internet connected with the availability of low-cost advanced 
computers and very high-speed networks altered the method we utilize computers systems today. These technological 
chances enable user from using scattered and multi-owner resources in solving various large-scale and complicated 
scientific problems. Latest research on these areas resulted in developing a new computing technology called grid 
computing [1].  

Effectively utilizing the huge and diverse grid resources is a big challenge to grid designers and software implementers. To 
achieve this goal, the service level of the grid infrastructure should utilize efficient and effective load balancing and 
resource management algorithms [1-8].  These algorithms can be categorized into static and dynamic ones. For more 
information about such categorization and the features of each category, the reader is directed to [10-12]. 

A large number of load balancing algorithms for traditional distributed and parallel systems have been developed [8-13]. 
Unfortunately, the load balancing algorithms designed for traditional parallel and distributed systems which usually run on 
heterogeneous and dedicated resources cannot work directly in grid environments. Therefore, it is essential to consider 
the impact of various dynamic characteristics of grid in designing and analyzing load balancing algorithms [1-3]. 

Lately, a number of scholars have utilized ACO technology for studying load balancing problem in computational grids [18-
21]. In [18], the authors explained the basic ideas of ACO and their applications in general. They gave some illustrative 
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examples. In [19], the authors presented an ACO policy for computational grids. The scheduler in their policy assigns the 
task to the best match processing node selected form the existing processing nodes group. The authors of this study have 
performed a variety of exhaustive experiments using different simulation settings. Their results revealed that the 
suggested technique can certainly be applied practically and its performance is much better than that of other three earlier 
techniques. In [20], the authors introduced an ACO policy for balancing load in computational grids. Their algorithm utilizes 
the capacity of the existing resources in selecting the best processing node to execute a task and it balances the workload 
for all of the existing processing resources. The major goal for this algorithm is to enhance the system throughput and 
consequently the total grid performance will be improved. The authors in [21], developed a heuristic approach to obtain 
optimal solution for resource allocation problem in grid computing. They conducted many experiments using various data 
sets and settings. The attained results reveal that the performance of their technique is better than some of existing ant 
techniques. Also in [22], the authors introduced an ACO algorithm for load balancing in grid computing. Their main 
contributions are balancing the entire system load while trying to minimize the mean response time of a given set of jobs. 
Compared with the other job scheduling algorithms, according to the experimental results, the algorithm can outperform 
them. In [23], the authors presented a new security constraint model by formulating the scheduling problem for work-flow 
requests in the scattered and data-intensive systems. They introduced various meta-heuristic modifications to the main 
techniques of swarm optimization for treating effective schedules formulation and they introduced an adaptable 
neighborhood swarm optimization technique. The performance of their technique is computed and compared with that of 
multi-start genetic and multi-start swarm optimization techniques.  The results reveal that their proposed meta-heuristic 
techniques always give analogous results for scheduling work-flow requests. 

3. GRID COMPTING MODEL 

The grid computing model considered in this paper is shown in Fig. 2. It has six main components: User, Portal, Grid 
Information Server (GIS), Domains, Grid Scheduler (GS) and Processing Nodes (PNs). 

1. User is a person or program that submits jobs for execution to the grid.  

2. Portal provides grid applications to grid users.  

3. GIS is responsible for collecting grid information such as grid workload, network traffic,.. etc. periodically.  

4. Domain is an independent object consisting of one or more computing nodes, and a Domain Manager (DM). 

5. GS receives jobs, selects feasible domain for executing them based on the acquired information from the GIS 

and finally generates job-to-domain mappings according to the proposed load balancing algorithm.  

6. PNs machines responsible for executing user jobs. 

 Every DM has unlimited storage capacity to hold all of the coming jobs from both exterior grid users and domain‟s local 
users. The processing nodes don't have capacity to hold any jobs (i.e., zero buffer capacity). They are only for execution. 
The dynamic nature and heterogeneity of the Grid resources makes the status information about available computing 

resources essential for GS in taking the scheduling decisions properly. The main function of GIS is to provide this 

information to GS. It collects the state information from all domains, such as entire domain processing capacities (equals 
summation of all CPUs capacities of processing nodes in the domain), network bandwidth, memory size, software 
accessibilities and burden of a domain in a certain period for every DM. Every DM is in charge of: 

1. Supervising a dynamically changing group of computing nodes that is any member can join or leave the group at 
any time. 

2. Recording newly joining computing nodes to its domain. 

3. Gathering all needed information about active computing nodes in its domain and periodically updates GIS with 
such information. This information may include but not limited to computing node‟s processing capacities, 
available memory size, hardware specifications and existing software. 

4. Taking in domain local scheduling decisions for all tasks submitted from domain‟s local users and external grid 
users to be executed in its domain. 

5. Sending back the execution results to corresponding users. 
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Fig. 2. Grid computing model architecture: dotted lines show information flow and solid lines show job or job 
scheduling command flow. 

It is known that the most common factor affecting on the job response time in net computing is the communication time. 
For this reason the proposed load balancing algorithm concentrates on selecting the fastest available DM to execute the 
job based on the available state information about every domain. This information includes total domain processing 
capacities, available memory size, hardware specifications, network bandwidth, software availabilities and current load 
information of the domain. It is collected by the GIS periodically about every DM and is used to estimate job transfer time 
and expected processing time if it is allocated to that DM.    

4. PROPOSED ANT COLONY LOAD BALANCING ALGORITHM (PACLBA) 

The proposed ant colony load balancing algorithm (PACLBA) utilizes the main concepts of ACO techniques to minimize 
the response times of tasks in computational grids. This policy takes into consideration the current load information of 
each DM in taking load distribution decisions. In PACLBA the density of pheromone is updated based on the DM status 
information. The pheromone update process is conducted by executing a local and a global pheromone update functions. 
It aims to achieve minimum response time for every task by redistributing the workload in a way that efficiently utilizes all 
of the available grid resources. It is known that, the FCFS scheduling policy guarantees an assured fairness level, it does 
not need any information about task processing time in advance, its overhead is low and it can be implemented easily.  
Therefore, each DM utilizes such policy as a local scheduling one. With the FCFS policy, every DM in its local scheduling 
policy utilizes the fastest available processing node technique in case of having various free processing nodes at the time 
of selecting a processing node to execute a job. 

In order to map the proposed ant colony model to the grid computing one, their relationships are explained as below: 

1. An ant:  Tasks in grid computing model are represented by ants in the ant colony model. 

2. Pheromone: The weight of a DM in the grid computing model is represented by the value of the pheromone on a 

path in ant colony model. The GS computes the weight value for every DM using its corresponding data collected 
by GIS. Using this method, a DM having best computing power is realized by having the smallest weight value. 
The computed weight value for every DM is kept by GS and the GS employs it in the PACLBA as a major 
scheduling parameter in taking load balancing decisions. 

Every job is assigned the initial weight (pheromone value) for each DM as a pheromone measure. This measure is 
computed by summing assessed transfer time and expected processing time of the job when it is allocated to a DM for 
execution. The expected transfer time is computed by Mj/bandwidthi where Mj is the j

th
 job size and bandwidthi is the 

bandwidth of available communication link between the GS and the i
th

 DM. The job processing time is hard to predict. 
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Depending on the type of programs many methods can be used in estimating the program processing time [27]. With that, 
the pheromone indicator is defined by: 

Pheromone indicator:  

)1(
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Where Phij is the pheromone measure for the j
th
 job which is assigned to the i

th
 DM, Mj is the j

th
 job size, Tj is the requested 

CPU time for processing j
th

 job, loadi ,CPU_speedi and bandwidthi are the current status information of i
th
 DM.  

Based on equation (1), when a job is assigned to a DM, the DM status, the size of jobs and the anticipated program 
execution time are considered by the GS in the process of selecting the DM for execution. The smaller the value of Phij is, 
the more efficient it is for the i

th
 DM to execute job j. Assume there are m DMs and n jobs, hence the Pheromone (Ph) 

matrix is defined as follows: 
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In each round, the smallest value in the Ph matrix is selected. Assuming Phij is the selected value then j
th

 job is assigned 
to the i

th
 DM for processing there. After assigning a job to a DM, equation (1) is applied to that DM for each unallocated 

jobs in Ph matrix. This process is conducted to update local (row) pheromone. The whole Ph matrix entries are 
recomputed immediately after any job completion in a process called global pheromone update. After that, the row 
corresponding to the DM that just completes executing this job is further multiplied by (1−ρi), where 0≤ρi<1. ρi represents 
overhead incurred in the i

th
 DM  after finishing execution of j

th
 job. 

Performing global pheromone update reflects the changes of network condition and DM status after a job is completed. It 
incorporates the dynamic nature of the grid into the scheduling algorithm such that a better load balancing decision can be 
taken by the GS at the next turn. For n jobs and m DM, assigning the first job needs to calculate the Ph matrix of m×n 
entries. For the second job, only m×(n−1) entries remained in the Ph matrix ... etc. Hence, the total number of computed 

matrix entries equals 





n

i

1i
2

1)+(nnm
m .  This means that the proposed scheduling algorithm has good scalability 

even if n or m grows very large.  

As it is illustrated above, the suggested technique considers the grid computing resources heterogeneity. It balances the 
grid load using the two pheromone update procedures explained earlier. The status of the designated DM is updated 
immediately after allocating jobs by the local update procedure. On the other hand, the global update procedure is used to 
update the status of all DMs with respect to all jobs immediately after a job completion takes place. It supports GS by the 
latest information about all DMs which in turn utilizes such information in taking balancing decisions for next task allocation 
round aiming to effectively utilizing the available grid resources. This policy leads to maximizing system utilization and 
improving load balancing level. Therefore, the task mean response time is improved.  

The following example illustrates how a DM is selected to execute a job based on the pheromone level. 

4.1 Example  

Assume that the grid has five jobs (J1, J2, J3, J4, and J5) and five DMs (DM1, DM2, DM3, DM4 and DM5). Also, assume that 
the sizes of the five jobs are 5MB, 15MB, 10MB, 4MB and 3MB respectively and that the initial status of every DM is as 
given in Table 1. The numbers of CPU iterations required for every job are 4M, 3M, 4.5M, 5M and 3.5M respectively. 

Table 1: Initial status for every DM in the grid 

 DM1 DM2 DM3 DM4 DM5 

Total CPU Speed (MHz) 1500 2000 2500 3000 3500 

Load 0.25 0.1 0.3 0.2 0.35 

Bandwidth (MB/s) 12.6 25.2 15.9 18.4 22.1 
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Applying (1), the initial pheromone level for every element in the pheromone matrix Ph is computed as follows: 
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When the job is dispatched, the GS determines the minimum pheromone level in the Ph matrix, that is Ph25=0.120992. So 
J5 is scheduled to DM2 for execution. Hence, a local update (row update) to second row in the Ph matrix is performed for 
all jobs except J5. Since J5 is scheduled, column 5 in the Ph matrix is no longer needed. Now, assume that as a result of 
assigning J5 to DM2, DM2 load becomes 22%. The new Ph matrix after executing local update is as follows: 
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If the execution of J5 is completed before the scheduler dispatches the next task, all elements of the Ph matrix will be 
updated by the global update process to estimate new values of pheromone indicators. These values are used in taking 
the new decision for allocating next task. 

Suppose that, the DMs new status after the completing J5 is as listed in Table 2, and the overhead incurred in DM2 as a 

result of executing J5 is 0.1 (i.e., ρ2=0.1). Note that ρi=0 for all other DMs (i.e., 2i  ) because no jobs are allocated to 
them for processing yet.  

Table 2: New system status after the execution of J3 

 DM1 DM2 DM3 DM4 DM5 

Total CPU Speed (MHz) 1500 2000 2500 3000 3500 

Load 0.15 0.2 0.18 0.28 0.4 

Bandwidth (MB/s) 10.5 20.2 12.9 15.4 19.1 

Overhead (ρ) 0 0.1 0 0 0 

 

The new Ph matrix after executing global update is as follows 
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This scheduling process is repeated for the other unassigned jobs.  

4.2 Performance Metrics 

Various performance metrics could be used in describing load balancing and grid resource management systems. In this 
study, the most commonly used three performance metrics in evaluating load balancing algorithm are utilized as follows: 

1. Average Job Response Time 

The response time of a job is defined as the interval of time between job arrival instant to grid and the job leaving instant 
from grid after finishing all of its computations and communications. Suppose ri represents the i

th
 job response time. 
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Therefore, the mean job response time is computed by 



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, given N as the entire number of jobs in the 

system. 

2. Average node Utilization Rate 

The utilization rate Ui of i
th 

processing node Pi is obtained by dividing the completion time of task at Pi to the highest task 
completion time obtained from all computing nodes in the whole grid (Makespan), as follows: 
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Hence, the average utilization rate U of all processing nodes is computed by: 
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Where M represents entire number of processing nodes in the system and U is in the range 0-1. 

3. Load Balancing level 

It is known that higher average resource utilization does not guarantee a good load balancing policy [24]. As a result of 

that, the mean square deviation d of processing nodes utilization rate iU  will be used as a measure of load balancing 

level. It is defined by: 
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Based on equation (5), the lower the value of d is, the more efficient load balancing accomplished. Hence, the relative 
deviation α of d with respect to U which explains the level of grid load balancing is given by: 
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The small values of the mean square deviation d lead to higher relative deviation which tells that the entire system 

workload is balanced between processing nodes (i.e. a good load balancing level). The best level of load balancing is 
attained in case of d equals zero which leads to α equals 100%.  

The previously explained three performance metrics can be applied to the grid environment and they are correlated.  For 
example, if the grid workload is balanced between the processing nodes, then the resource utilization rate will be high and 
consequently, the response time of tasks will be improved.  

5. RESULTS AND DISCUSSION  

5.1 Simulation Tool and Environment 

Various simulation tools are available to simulate the proposed algorithm for balancing workload in grid computing 
systems. The reader is referred to [25] for more details. Among these simulation tools, GridSim v4.0 simulator [26] is 
utilized in our experiments because it is easily able to simulate various objects in grid computing systems through its 
offered facilities. These objects include users, heterogeneous resources, software applications, workload balancers of 
resource which are utilized in assessing performance of workload balancing methodologies. During the experiments, a 
heterogeneous grid model was constructed with diverse specifications for its resources to assess the performance of 
PACLBA. Gridlet objects are used to simulate tasks because it has all needed information associated with task and 
processing administration specifics. On the other hand, the Grid Information Service object has all of the requested 
information about the existed grid computing resources. 

The simulation experimentations are conducted on a 3.6 GHz Core I3 Processor‟s PC having 8GB RAM and it is equipped 
by windows 7 OS. 

5.2 Experimental Setup 

The simulated grid environment contains 3 domains (sites) having 60 processing elements in total with different 
characteristics, configurations, and capabilities.  Every domain has one job waiting queue. Domain local scheduling policy 
is M/M/n FCFS with fastest available processing node policy. That is, it selects the fastest PNs to execute a job in case of 
having many free PNs at the decision making time. The local and global bandwidths are 1000Mbps and 100Mbps 
respectively.  All time units are in seconds. 
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The following assumptions are made for the simulations: 

1. Tasks arrive sequentially and randomly to the system following a Poisson process with rate λ.  

2. Times between arrivals are autonomous and follow the exponential distribution.   

3. Instantaneous arriving of tasks is prohibited. 

4. The task‟s processing times are assumed to follow the exponential distribution with mean μ. 

5. Tasks are assumed to be mutually independent that is, there are no dependences or communication between 
them.  

6. Any computing node can be used in executing tasks and every CPU can perform only one task at a certain 
point of time.  

7. Tasks are not preemptable that is, the task processing could not be interrupted or shifted to any other 
computing node during its processing. 

8. Task length is a uniformly distributed random number in the range of (0.1…0.5) Million Instructions (MI) unit. 

9. Total CPUs speed ranging from 0 to 4 Million of Instructions per second (MIPs) are randomly assigned to the 
processing elements. 

10. Every result listed in this paper is the mean value achieved from five simulation rounds starting with various 
seeds for generating random numbers. 

Set ρ to represent the mean system traffic intensity parameter in the simulated mode. It is computed by dividing the mean 
arrival rate to the mean processing rate of tasks. Based on this definition, the tasks processing times μ are adjusted to 
obtain the requested traffic intensity ρ. 

The job response time, mean node utilization and load balancing level are the three performance measurements used in 
evaluating the PACLBA. During the simulations, the average system traffic intensity factor is varied and results are 
collected to assess the performance of PACLBA under various system parameters setting. The final results of the 
simulations are presented on an average basis. 

5.3 Experimental Results 

This section presents an evaluation for the performance of the PACLBA and compares it with the performance of the 
Random Distribution Load Balancing Algorithm (RDLBA). In RDLBA the task processing domain is selected randomly.  
This performance comparison is conducted based on three performance measures: average job response time, average 
node utilization and load balancing level that indicates how much load balancing is achieved. In Fig. 3, the average job 
response time of the two algorithms is compared. From that figure, one can notice that average job response time of the 
two algorithms rises up as the system traffic intensity rises up. This is normal because increasing the traffic intensity 
means that there are many jobs need to be handled. One more point is that the PACLBA outperforms the RDLBA in all 
cases. This result was anticipated because the PACLBA selects a DM to execute a job according to the assessed task 
communication time and expected task processing time if it is allocated to that DM. Taking these parameters in 
consideration leads to effectively utilizing available resources which in turn minimize the grid mean job response time. On 
the other hand, the RDLBA selects randomly a DM to execute a job without taking into account any performance 
indicators and that lead to unbalance the distribution of system‟s load. As a direct result, the available grid resources are 
poorly utilized and consequently, the system performance is degenerated. 

 

Fig. 3. Mean job response time of PACLBA vs RDLBA 
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To estimate the enhancement ratio achieved in task mean response time, we computed the mean task response time 
improvement ratio (TR-TP)/TR, where TR and TP are the mean task response time obtained using the RDLBA and 
PACLB algorithm respectively. Fig. 4 presents the improvement ratio in the mean job response time.  From it, one can 
notice that the enhancement ratio rises up steadily as the load (traffic intensity) rises up. This increase continues till the 
system load come to be intermediate where the extreme enhancement ratio is achieved. After that the enhancement ratio 
declines steadily as the system load rises up till the system‟s saturation point reached. 

 

Fig. 4. Improvement ratio in mean job response time 

Figs. 5 and 6 illustrate the mean utilization and mean square deviation of processing nodes for various grid workload using 
RDLBA and PACLBA respectively. From these figures, one can notice that the average processing nodes utilization 
(mean square deviation) obtained using the two algorithms increases (decreases) as the grid workload increases. 
However, the utilization (mean square deviation) of processing nodes under the PACLBA is always higher (lower) than 
that of the RDLBA which means that, the performance of the PACLBA is better than that of the RDLBA. Since, a low value 
of mean square deviation means a good load balancing level is obtained [24]. This ensures the results presented earlier in 
Figs. 3 and 4. 

Fig. 7 presents the load balancing level for various grid workload using RDLBA and PACLBA. From that figure, it is noticed 
that the load balancing level obtained using the PACLBA is always higher than that of the RDLBA in all cases which again 
ensures the previously presented results. By carefully examining all of the presented results, we can say that the PACLBA 
performs more robustly than the RDLBA. 

 

 

Fig. 5. Average Processing Node Utilization 
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Fig. 6. Mean Square Deviation 

 

Fig. 7. Load Balancing Level 

6. CONCLUSIONS AND FUTURE WORK 

This paper presents an ant colony load balancing technique that selects a suitable domain manager for executing jobs in 
the computational grids infrastructure. The suggested algorithm takes into considerations the computing resources 
heterogeneity. It selects a domain manager to execute a job according to the assessed task transfer time and anticipated 
processing time of the task when it is allocated to that domain manager. The PACLBA balances the grid workload using a 
global and local pheromone update procedures.    

To evaluate the performance of the PACLBA, a simulation model is built using GridSim simulator. The performance of 
proposed technique is compared with that of the RDLBA. The obtained results indicate that the PACLBA enhances the 
average task response time in all cases. The enhancement ratio rises up steadily as the system load rises up. Such 
increase continues till the system load come to be mild where the highest enhancement ratio is attained and then the 
enhancement ratio steadily degenerates as the system load rises up till the system‟s saturation point is reached. 

In the future, we will study the reliability of PACLBA by studying some fault tolerance metrics. Also, the ability to extend the 
PACLBA to be able to deal with dependent tasks by adding a synchronization mechanism to it could be studied because 
the proposed algorithm deals only with independent tasks. 
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