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Abstract : In the field of medical diagnostics, interested parties have resorted increasingly to color medical imaging. 

It is well established that the accuracy and completeness of diagnosis are initially connected with the image quality, 
but the quality of the image is itself dependent on a number of factors including primarily the processing that an 
image must undergo to enhance its quality. This paper introduces an algorithm for color medical image compression 
based on the quincunx wavelets coupled with SPÏHT coding algorithm.  In order to enhance the compression by our 
algorithm, we have compared the results obtained with those of other methods containing wavelet transforms. For 
this reason, we evaluated two parameters known for their calculation speed. The first parameter is the PSNR; the 
second is MSSIM (structural similarity) to measure the quality of compressed image. The results are very 
satisfactory regarding compression ratio, and the computation time and quality of the compressed image compared 
to those of traditional methods. 
 
Keywords: Color Medical image ;Compression ; Quincunx wavelets; PSNR: Peak Signal to Noise Ratio; SSIM: The 
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1. INTRODUCTION 
 

The massive use of numerical methods in medical imaging (MRI, X scanner, nuclear medicine, etc…) today generates 
increasingly important volumes of data. The problem becomes even more critical with the generalisation of 3D sequence. 
So it is necessary to use compressed images in order to limit the amount of data to be stored and transmitted. 
Among many compression schemes by transformation have been proposed, we can cite the standards JPEG images, 
MPEG 1 and 2 for compressing video. All of these standards are based on the discrete cosine transform (DCT). [1] 

Over the past ten years, the wavelets (DWT), have had a huge success in the field of image processing, and have been 
used to solve many problems such as image compression and restoration [2] 

However, despite the success of wavelets in various fields of image processing such as encoding, weaknesses have 
been noted in its use in the detection and representation of the objects’ contours. The wavelets transform and other 
classical multi resolutions decompositions seem to form a restricted and limited class of opportunities for multi-scale 
representations of multidimensional signals. 
To overcome this problem, we propose a new multi resolution decompositions by quincunx wavelets which are better 
adapted to the image representation. This structure of decomposition allows the construction of a no separable transform.  
No separable wavelets, by contrast, offer more freedom and can be better tuned to the characteristics of images. Their less 
attractive side is that they require more computations. The quincunx wavelets are especially interesting because they are 
nearly isotropic [3]. In contrast with the separable case, there is a single wavelet and the scale reduction is more 

progressive: one factor instead of 2. 

2. Quincunx Wavelets 
The separable dyadic analysis require three families of wavelets, which is sometimes regarded as a disadvantage, in 

addition the factor of addition between two successive scales is 4 which may seem high. It is possible to solve these two 
problems, but at the cost of the loss of filter separability and therefore a slightly higher computational complexity. An 
analysis has been particularly well studied to find a practical application, known as "quincunx" , [1], Quincunx 

decomposition results in fewer subbands than most other wavelet decompositions, a feature that may lead to 
reconstructed images with slightly lower visual quality.  

The method is not used much in practice, but, in [7] presents results that suggest that quincunx decomposition 

performs extremely well and may be the best performer in many practical situations. Figure (1) illustrates this type of 
decomposition . [3] 

We notice that the dilation factor is not more than 2 between two successive resolutions, and that only one wavelet 
family is necessary . [8] [9] 
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The Grid transformation (lattice) is done according to the following diagram: 
 
 
This matrix generates a quincunx lattice in 2D. The column vectors of this matrix form a basis to this lattice. The volume 
of the unitcell associated equals 2 (Fig. 2). The same lattice is also emanating from the matrix below. [1] 
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It is noticed that the dilatation step is 2  on each direction and the geometry of the grid obtained justifies the name given 

to this multiresolution analysis.  
 
 

                        Fig. 1. Quincunx wavelet decomposition 
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3. Quincunx Sampling and Filter banks 

First, we recall some basic results on quincunx sampling and perfect reconstruction filter banks, [10] [11].  

The quincunx sampling lattice is shown in figure (3). Let  ][nx


  with 
2

21 ),(  nnn


denote the discrete signal on 

the initial grid. The two-dimensional (2D) z-transform of ][nx


 is denoted by: 
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The continuous 2D Fourier transform is then given by ),(
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Now, we write the quincunx sampled version of ][nx
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 as: 
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Our down-sampling matrix M is such that M
2 

= 2 I. where I is identity matrix. 
The Fourier domain version of (1) is  
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The up-sampling is defined by  
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And its effect in the Fourier domain is as follows:
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Fig. 3. (a) Quincunx lattice,  (b) the corresponding Nyquist area in the frequency domain 
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Fig.4. Perfect reconstruction filter bank in a quincunx lattice 

 
If we now chain the down-sampling and up-sampling operators, we get 
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Since quincunx sampling reduces the number of image samples by a factor of two, the corresponding reconstruction filter 

bank has two channels (Fig.4). The low-pass filter H
~

 reduces the resolution by a factor of 2 ; the wavelet coefficients 

correspond to the output of the high-pass filter 2 G
~

.e.g. “see Ref. 8-9-10”. 

Applying the relation “Eq.(6)” to the block diagram in figure (5), it is easy to derive the conditions for a perfect 
reconstruction 
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Where H and G  (respectively H
~

and G
~

) are the transfer functions of the synthesis (respectively analysis) filters. In 

the orthogonal case, the analysis and synthesis filters are identical up to a central symmetry; the wavelet filter G is 

simply a modulated version of the low-pass filter H . 

4. Fractional Quincunx Filters 

To generate quincunx filters, we will use the standard approach which is to apply the diamond McClellan transform to 
map a 1D design onto the quincunx structure . [14] 

i. New 1D Wavelet Family 

As starting point for our construction, we introduce a new 1-D family of orthogonal filters 
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Which is indexed by the continuously-varying order parameterα . 

These filters are symmetric and are designed to have zeros of order α  at 1z ; the numerator is a fractional power of 

)2( 1 zz  (the simplest symmetric refinement filter of order 2) and the denominator is the appropriate L2-orthonormal-

ization factor.  Also note that these filters are maximally flat at the origin; they essentially behave )(12/)( 
 OzH   

as 0 . Their frequency response is similar to the Daubechies’ filters with two important differences: 1) the filters are 

symmetric and 2) the order is not restricted to integer values. [8] [9] 

ii. Corresponding 2D Wavelet Family 

Applying the diamond McClellan transform to the filter above is straightforward; it amounts to replacing wcos by 

)cos)(cos2/1( 21    in “Eq.(8)”. Thus, our quincunx refinement filter is given by 
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This filter is guaranteed to be orthogonal because the McClellan transform has the property of preserving biorthogonality. 

Also, by construction, the  th order zero at   gets mapped into a corresponding zero at ),(),( 21   ; this is 

precisely the condition that is required to get a 2-D wavelet transform of order . Also, note the isotropic behavior and the 

flatness of )( 
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jeH  around the origin; i.e, )(12/)(
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The corresponding orthogonal scaling function is defined implicitly as the solution of the quincunx two-scale relation 
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Since the refinement filter is orthogonal with respect to the quincunx lattice, it follows that )()( 2

2 RLx 


  and that it is 

orthogonal to its integer translates. Moreover, for 0 , it will satisfy the partition of unity condition, which comes as a 

direct consequence of the vanishing of the filter at ),(),( 21   Thus, we have the guarantee that our scheme will yield 

orthogonal wavelet bases of )( 2

2 RL . The underlying orthogonal quincunx wavelet is simply 
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5. Compression Quality Evaluation 

The Peak Signal to Noise Ratio (PSNR) is the most commonly used as a measure of quality of reconstruction in image 
compression. The PSNR were identified using the following formulae: 
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Mean Square Error (MSE) which requires two MxN grayscale images I and Î  where one of the images is considered as a 
compression of the other is defined as: 

 The PSNR is defined as: 







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imageofDynamics
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2

10
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Usually an image is encoded on 8 bits. It is represented by 256 gray levels, which vary between 0 and 255, the extent or 
dynamics of the image is 255. 

 The structural similarity index (SSIM): 
The PSNR measurement gives a numerical value on the damage, but it does not describe its type. Moreover, as is often 
noted in [16]-[17] , it does not quite represent the quality perceived by human observers. For medical imaging applications 
where images are degraded must eventually be examined by experts, traditional evaluation remains insufficient. For this 
reason, objective approaches are needed to assess the medical imaging quality. We then evaluate a new paradigm to 
estimate the quality of medical images, specifically the ones compressed by wavelet transform, based on the assumption 
that the human visual system (HVS) is highly adapted to extract structural information. The similarity compares the 
brightness, contrast and structure between each pair of vectors, where the structural similarity index (SSIM) between two 
signals x and y is given by the following expression [18]-[19]: 

),().,().,(),( yxsyxcyxlyxSSIM 
 

(17) 

Finally the quality measurement can provide a spatial map of the local image quality, which provides more information on 
the image quality degradation, which is useful in medical imaging applications. For application, we require a single overall 
measurement of the whole image quality that is given by the following formula: 
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Where I and Î are respectively the reference and degraded images, iI and iÎ are the contents of images at the i-th local 

window. 
M: the total number of local windows in image. The MSSIM values exhibit greater consistency with the visual quality. 

6. ALGORITHM 
Before applying Quincunx wavelet technique on the retinographic color images, the RGB color images are converts into 

YCbCr form, and then applying Quincunx wavelet technique on each layer independently, this means each layer from 
YCbCr are compressed as a grayscale image. Figure-5 shows Quincunx wavelet applied on each YCbCr layer. YCbCr 
refers to the color resolution of digital component video signals, which is based on sampling rates. In order to compress 
bandwidth, Cb and Cr are sampled at a lower rate than Y, which is technically known as "chroma subsampling."  

This means that some color information in the image is being discarded, but not brightness (luma) information.  
We obtains the best rate of compression using the rich less layer for the chromatic composante  Cb and Cr. 
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                                                                        (19) 

When the decomposition image is obtained, we try to find a way to code the Quincunx wavelet coefficients into an 
efficient result, taking redundancy and storage space into consideration.  After,we apply SPÏHT algorithm on each layer 
(y,Cr,Cb) independently .  

 
 
 

Fig.5. complete steps image compression Technique using Quincunx wavelet(QWT) coupled with SPIHT 

 
This process is repeated for every resolution in the case of level 3 decompositions.  The encoding / decoding can 

be terminated at any time, with the best reproduction obtained up to that point.  This is made possible because of the 
progressive nature of the coding algorithm. 

7. Results and Discussion  

We are interested in lossy compression methods based on 2D wavelet transforms because of their interesting 
properties. Indeed, the 2D wavelet transforms combines good spatial and frequency locations. As we work on medical 
image, the spatial location and frequency are important [19]-[20] 
 

In this article we have applied our algorithm to compress medical images. For this reason we have chosen a 
retinographic image size 512x512 (color), encoded on 8 bits per pixel. This image is taken from the GE Medical System 
database [21].  

These images were tested on Intel Core (I3) 2.13 GHz PC with 2GB of RAM using Matlab 2009.b 
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Fig.6- original color image 

 
The importance of our work lies in the possibility of reducing the rates for which the image quality remains 

acceptable. Estimates and judgments of the compressed image quality are given by the PSNR evaluation parameters 
and the MSSIM similarity Index. 

Figure (7) shown below illustrates the compressed image quality for different bit-rate values (number of bits per 
pixel). According to the PSNR and MSSIM values, we note that from 0.5bpp, image reconstruction becomes almost 
perfect. 

    
 
 
 
 

   
 
 
 

R=0. 5bpp, PSNR=40.56 dB, 

MSSIM=0.918 
 

R=0. 75bpp, PSNR=41.71 dB,  
MSSIM=0.938 
 

R=0.125bpp, PSNR=36.47dB, 

MSSIM=0.832 
R=0. 25bpp, PSNR=38.64 dB,  
MSSIM=0.88 
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Fig. 7. Compressing of a Retinographic slice with Quincunx wavelet and SPIHT coding. 

 
To show the performance of the proposed method, we will now make a comparison between these different 

types of transform (Quincunx wavelet; CDF 9/7 (Filter Bank) and CDF9/7 (Lifting scheme)) coupled with the SPIHT coding 
and CDF9/7 (Lifting scheme) combined with the EZW coding. For each application we vary the bit-rate 0.125 to 2 and 
calculate the PSNR and MSSIM. The results obtained are given in Table 1. 
Table1. PSNR and MSSIM variation using different methods (Retinographic slice) 

 
Rc 
(bpp) 
 

Quincunx wavelet 
+SPIHT 

CDF9/7(lifting)+ 
SPIHT 
 

PSNR  MSSIM PSNR MSSIM 
0.125 36.47 0.83 34.75 0. 79 
0.25 38.64 0.88 34.97 0.81 
0.5 40.56 0.91 37.95 0.87 
0.75 41.71 0.93 38.51 0.89 
1 42.78 0.94 38.83 0.90 

1.5 44.61 0.96 42.33 0.94 
2 46.51 0.97 43.29 0.95 

 
The comparison in terms of image quality for the four algorithms is given by the PSNR and MSSIM curves 
represented in figures 8 and 9. 
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Variation de PSNR

 

 

Quincunx+SPIHT

CDF9/7(lifting)+SPIHT

CDF 9/7(Filter bank)+SPIHT

CDF9/7(lifting)+EZW

 
      Fig. 8. PSNR variation using different methods  

Rc 
(bpp) 
 

CDF9/7 
(filter bank)+SPIHT 
 

CDF9/7(lifting) 
+EZW 

PSNR  MSSIM PSNR MSSIM 
0.125 32.90 0.74 32.40 0.68 
0.25 33.55 0.79 33.02 0.70 
0.5 35.70 0.80 35.64 0.78 
0.75 36.89 0.84 36.70 0.82 

1 37.65 0.88 37.32 0.87 
1.5 39.88 0.89 39.25 0.88 
2 41.32 0.93 40.90 0.92 

R=1 bpp, PSNR=42.78 dB,  

MSSIM=0.949 
 

R=2 bpp, PSNR=46.51 dB,  

MSSIM=0.971 
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Fig. 9. MSSIM variation using different methods  

Comparing the different values of PSNR and MSSIM, we show clearly the efficiency of our algorithm in 
terms of compressed image quality for the low bit-rate. 

This study was subsequently generalized to a set of medical images of the GE Medical Systems 
database. The following figure (Fig.10) presents the results obtained after application of different algorithms on an 
axial slice of body imaging. These results are obtained with a 0.5-bpp bit-rate ; this study was subsequently 
generalized to a set of medical images of the GE Medical Systems database. The Fig. 11 presents the results 
obtained after application of our algorithm on various slices presented in Fig.10. These results are obtained with a 
0. 5 bpp bite-rate with Time Computational is obtained 30 s. We note that our algorithm is adapted for the color 
medical image compression. 

We can observe that compression degrades to a lessen extent the image structure for a low 
compression bit-rate. However, for high compression bitrate, our algorithm better safe guards the various image 
structures. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
Tc: Time Computational (in second “s”)  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Rc(bpp)
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SS
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Variation de MSSIM

 

 

Quincunx+SPIHT

CDF9/7(lifting)+SPIHT

CDF 9/7(Filter bank)+SPIHT

CDF9/7(lifting)+EZW

Quincunx wavelet 
+SPIHT 

PSNR= 39.09 dB , 
MSSIM=0.946 , Tc= 

35.5s 
 

CDF9/7 (lifting sheme) 
+SPIHT 

PSNR= 34.0942dB, 
MSSIM=0.917 ,Tc= 89s 

Quincunx wavelet +SPIHT 
PSNR= 39.71dB  , 
MSSIM=0.949 ,Tc= 28.38s 

CDF9/7 (lifting sheme) +SPIHT 
PSNR= 37.00dB , 

MSSIM= 0.933, Tc= 64.22s 
 

Fig. 10. Original color 
image: Benign 

 

Fig. 11. Original color 
image: melanoma 
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We can say that our compression algorithm better preserves the different color medical image structures for bit-
rates higher or equal to 0.5 bpp. 

8. Conclusion 
The objective of this paper is undoubtedly the enhancement of medical images quality after the 

compression step. The latter is regarded as an essential tool to aid diagnosis (storage or transmission) in medical 
imaging. We used the quincunx wavelet compression coupled with the SPIHT coding. After several applications, 
we found that this algorithm gives better results than the other compression techniques. 

To develop our algorithm, we used various types of color medical images. We have noticed that for 0.5 
bpp bit-rate, the algorithm provides very important PSNR and MSSIM values color images. Thus, we conclude 
that the results obtained are very satisfactory in terms of compression ratio, time computational  and compressed 
image quality.In perspective, we aspire to apply our algorithm to compress video sequences. 

9. References: 
[1]. Chappelier V., “Progressive coding of images by directed wavelet’’, Phd. Thesis, Rennes1University, 

December 15th ,2005. 
[2].  Mallat S., “Multifrequency channel decompositions of images and wavelet models’’, IEEE Transaction in 

Acoustic Speech and Signal Processing, Vol. 37, pp. 2091-2110, Dec. 1989 
[3]. Salomon D. “Data ompression’’, The Complete Reference,Third Edition, Springer. 
[4]. Stromme, Oyvind. “On The Applicability of Wavelet Transforms to Image and Video Compression’’, Ph.D. 

thesis, University of Strathclyde, February 1999. 
[5]. Truchetet F. “Wavelets for digital signal’’, Hermes Edition, Paris, January 1998. 
[6]. Tanaka Y., Ikehara M and Truong Q. N , “A New Combination of 1D and 2D Filter Banks for Effective 

Multiresolution Image Representation’’ ; IEEE, pp 2820-2823, 2008. 
[7]. Vetterli M. and Kovacevé J., “Wavelets and Subband Coding’’, Upper Saddle River, NJ:Prentice-Hall, 

1995. 
[8]. Manuela F., Dimitri VD. and Michael U., “An Orthogonal Family of Quincunx Wavelets With Continuously 

Adjustable Order’’, IEEE Transactions On Image Processing, Vol. 14, No. 4,APRIL 2005. 
[9]. Dimitri VD., Thierry B. and Michael U. “On the Multidimensional Extension of the Quincunx Subsampling 

Matrix’’, IEEE Signal Processing Letters, Vol. 12, No. 2, FEBRUARY 2005. 
[10]. Chen Y. Michael AD. and Wu-Sheng L. “Design of Optimal Quincunx Filter Banks for Image Coding’’, 

EURASIP Journal on Advances in Signal Processing, Vol. 2007. 
[11]. Lee L., Oppenheir V.A., “Proprerties of approximate parks-McClellan filters’’, IEEE, pp.2165-2168; 1997; 
[12]. Miaou S.G., Chen S.T. and Chao S.N.,“Wavelet-based lossy-to-lossless medical image compression 

using dynamic VQ and sPIHTcoding’’, Biomedical engineering-applications, basis & communications, 
Vol. 15 No3, p 235-242, December 2003. 

[13]. Said A. and Pearlman W. A., “A new fast and efficient image codec based on set partitioning in 
hierarchical trees’’, IEEE Trans. Circuits and Systems for Video Technology, Vol. 6, p243 – 250,June 
1996. 

[14]. Yen-Yu C. and Shen-Chuan T., “Embedded medical image compression Using DCT based subband 
decomposition and modified SPIHT data organization’’, Proceedings of the Fourth IEEE, (BIBE’04), 
2004. 

[15]. Xiong Z., Ramchandran K., and Orchard M., “Spacefrequency quantization for wavelet image coding’’, 
IEEE Trans. Image Processing, Vol. 6, No. 5, pp 677–693, May 1997. 

[16]. Geisler W. S. and Banks M. S., “Visual performance’’, in Handbook of Optics (M. Bass, ed.), McGraw-
Hill, 1995. 

[17]. Watson A. B. and Kreslake L., “Measurement of visual impairment scales for digital video’’, in Human 
Vision, Visual Processing, and Digital Display, Proc. SPIE, Vol. 4299, 2001. 

[18]. Wang Z., Bovik A. C., Sheikh H. R. and Simoncelli E.P, “Image quality assessment: From error visibility 
to structural similarity’’, IEEE Transactions on Image Processing, Vol. 13, No. 4, APRIL 2004. 

[19]. Wang Z. and Bovik A. C, “A universal image quality index’’, IEEE Signal Processing Letters, Vol. 9, 
pp.81–84, Mar. 2002. 

[20]. Buccigrossi R. W. and Simoncelli E. P., “Image compression via joint statistical characterization in the 
wavelet domain’’, IEEE Trans. Image processing, Vol. 8, pp. 1688–1701, December 1999. 

[21]. Chandler D. M. and Hemami S. S., “Additivity models for suprathreshold distortion in quantized wavelet-
coded images’’, in Human Vision and Electronic Imaging VII, Proc. SPIE, Vol. 4662, Jan.2002. 

[22]. www.GE Medical System.com (database). 
[23]. www. GE Healthcare.com (database). 

 
AUTHORS’ INFORMATION 
1, 

Genie-Biomedical Laboratory, Electronics Department . Abou bekr Belkaid university,Tlemcen, 
13000, Algeria 

2
 Bechar University, 08000, Algeria. 



    ISSN 22773061 
      

 

812 | P a g e                                          J u n e  2 0 ,  2 0 1 3  

 
BELADGHAM Mohammed obtained the 
Engineer degree in Electronics from 
university of Tlemcen, Algeria, and then 
a Magister in signals and systems from 
university of Tlemcen, Algeria. His 
research interests are Image processing, 
Medical image compression, wavelets 
transform and optimal encoder.  
e-mail: beladgham@yahoo.fr 

 Abdelhafid BESSAID was born in 

Tlemcen,Algeria. He received the diplom EL-Ing 

degree from the University of Oran (USTO.Algeria); 
the Master degree and the PHD from the University 

of sidi Bel Abbes (Algeria),respectively in  

1981,1997 and 2004.He work,since 1996,in the field 
of Medical Imaging Processing at University of 

Tlemcen. Algeria 

BOUKLI HACENE ISMAIL obtained the 
Engineer degree in Electronics from university of 

Tlemcen, Algeria, and then a Magister in Electronic 

Biomedical from university of Tlemcen, Algeria. 
His research interests are Image processing, 

Medical image compression, wavelets transform 

and optimal encoder. 

E-mail: ismaill80@yahoo.fr 

mailto:ismaill80@yahoo.fr

