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Exponential two step approach for Time Domain based Software Process 
Control  

ABSTRACT 

Software Reliability Growth Model is a mathematical model of how the software reliability improves as faults are detected 
and repaired. In this paper we propose a control mechanism based on the cumulative quantity between observations of 
time domain failure data using mean value function of Goel-Okumoto model, which is based on Non Homogenous Poisson 
Process. The model parameters are estimated by a two step approach. Software reliability process can be monitored 
efficiently by using Statistical Process Control. Control charts are widely used for process monitoring. It assists the 
software development team to identify failures and actions to be taken during software failure process and hence, assures 
better software reliability.  

General Terms 

Software Engineering, Statistical Reliability. 
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Statistical Process Control, Software reliability, G-O Model, Mean Value function, two step approach, Probability limits, 
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1. INTRODUCTION 

Software reliability is defined as the probability of failure-free software operation for a specified period of time in a specified 
environment (Musa et al., 1987; Lyu, 1996). Among all SRGMs developed so far, a large family of stochastic reliability 
models based on a non-homogeneous Poisson Process known as NHPP reliability models, has been widely used. Some 
of them depict exponential growth while others show S-shaped growth depending on nature of growth phenomenon during 
testing. The success of mathematical modeling approach to reliability evaluation depends heavily upon quality of failure 
data collected.  

Software reliability assessment is important to evaluate and predict the reliability and performance of software system, 
since it is the main attribute of software. To identify and eliminate human errors in software development process and also 
to improve software reliability, the Statistical Process Control concepts and methods are the best choice. They are used to 
monitor the performance of a software process over time in order to verify that the process remains in the state of 
statistical control. It helps in finding assignable causes, long term improvements in the software process. Software quality 
and reliability can be achieved by eliminating the causes or improving the software process or its operating procedures 
(Kimura et al., 1995 ). 

The most popular technique for maintaining process control is control charting. The control chart is one of the seven tools 
for quality control. Software process control is used to secure the quality of the final product which will conform to 
predefined standards. In any process, regardless of how carefully it is maintained, a certain amount of natural variability 
will always exist. A process is said to be statistically “in-control” when it operates with only chance causes of variation. On 
the other hand, when assignable causes are present, then we say that the process is statistically “out-of-control.” 

The control charts can be classified into several categories, as per several distinct criteria. Control charts should be 
capable of creating an alarm when a shift in the level of one or more parameters of the underlying distribution or a non-
random behavior occurs. Normally, such a situation will be reflected in the control chart by points plotted outside the 
control limits or by the presence of specific patterns. The most common non-random patterns are cycles, trends, mixtures 
and stratification (Koutras et al., 2007). For a process to be in control the control chart should not have any trend or 
nonrandom pattern. 

SPC is a powerful tool to optimize the amount of information needed for use in making management decisions.  Statistical 
techniques provide an understanding of the business baselines, insights for process improvements, communication of 
value and results of processes, and active and visible involvement.  SPC provides real time analysis to establish 
controllable process baselines; learn, set, and dynamically improve process capabilities; and focus business areas which 
need improvement. An early detection of software failures will improve the software reliability. The selection of proper SPC 
charts is essential to effective statistical process control implementation and use. The SPC chart selection is based on 
data, situation and need (MacGregor and Kourti., 1995). Many factors influence the process, resulting in variability. The 
causes of process variability can be broadly classified into two categories, viz., assignable causes and chance causes. 

The control limits can then be utilized to monitor the failure times of components. After each failure, the time can be plotted 
on the chart. If the plotted point falls between the calculated control limits, it indicates that the process is in the state of 
statistical control and no action is warranted. If the point falls above the UCL, it indicates that the process average, or the 
failure occurrence rate, may have decreased which results in an increase in the time between failures. This is an important 
indication of possible process improvement. If this happens, the management should look for possible causes for this 
improvement and if the causes are discovered then action should be taken to maintain them. If the plotted point falls below 
the LCL, it indicates that the process average, or the failure occurrence rate, may have increased which results in a 
decrease in the failure time. This means that process may have deteriorated and thus actions should be taken to identify 
and the causes may be removed. It can be noted here that the parameters a, b should normally be estimated with the data 
from the failure process. We followed a two step approach in estimating the parameters. 

The control limits for the chart are defined in such a manner that the process is considered to be out of control when the 
time to observe exactly one failure is less than LCL or greater than UCL. Our aim is to monitor the failure process and 
detect any change of the intensity parameter. When the process is normal, there is a chance for this to happen and it is 
commonly known as false alarm. The traditional false alarm probability is set to be 0.27% although any other false alarm 
probability can be used. The actual acceptable false alarm probability should in fact depend on the actual product or 
process (Gokhale and Trivedi, 1998).  

2. LITERATURE SURVEY 

2.1 NHPP SRGM 

The Non-Homogenous Poisson Process (NHPP) based software reliability growth models (SRGMs) have proved to be 
quite successful in practical software reliability engineering (Musa et al., 1987). The main issue in the NHPP model is to 
determine an appropriate mean value function to denote the expected number of failures experienced up to a certain time 
point. Model parameters can be estimated by using two step approach (i.e one parameter is estimated through Maximum 
Likelihood Estimate (MLE) and another parameter is estimated through Least Square Estimation (LSE)). Various NHPP 
SRGMs have been proposed upon various assumptions. Many of the SRGMs assume that each time a failure occurs, the 
fault that caused it can be immediately removed and no new faults are introduced, which is usually called perfect 
debugging. Imperfect debugging models have proposed a relaxation of the above assumption (Ohba, 1984; Pham, 1993). 
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If „t‟ is a continuous random variable with probability density function: 1 2( ; , , , )kf t   
, where 1 2, , , k  

are k 

unknown constant parameters which need to be estimated, and cumulative distribution function: 
 F t

. Let „a‟ denote the 
expected number of faults that would be detected given infinite testing time in case of finite failure NHPP models and „b‟ 
represents the fault detection rate. In software reliability, the initial number of faults and the fault detection rate are always 

unknown. Then, the mean value function of the finite failure NHPP models can be written as:
( ) ( )m t aF t

, representing 

the expected number of software failures by time „t‟. The failure intensity function 
( )t

 in case of the finite failure NHPP 

models is given by: 
( ) '( )t aF t 

, which is proportional to the residual fault content (Pham, 2006).  

Let 
 N t

 be the cumulative number of software failures by time „t‟. A non-negative integer-valued stochastic process 

 N t
 is called a counting process, if 

 N t
represents the total number of occurrences of an event in the time interval [0, t] 

and satisfies these two properties: 

If 1 2t t
, then 

   1 2N t N t
 

If 1 2t t
, then 

   2 1N t N t
is the number of occurrences of the event in the interval 

 1 2,t t
. 

One of the most important counting processes is the Poisson process. A counting process, 
 N t

, is said to be a Poisson 

process with intensity  if 

The initial condition is N(0) = 0 

The failure process, N(t), has independent increments 

The number of failures in any time interval of length s has a Poisson distribution with mean  s, that is, 

    
 
!

nse s
P N t s N t n

n

 

   
 

Describing uncertainty about an infinite collection of random variables one for each value of „t‟ is called a stochastic 

counting process denoted by 
  , 0N t t    . The process 

  , 0N t t 
 is assumed to follow a Poisson distribution with 

characteristic MVF (Mean Value Function) m(t). Different models can be obtained by using different non decreasing m(t). 

A Poisson process model for describing about the number of software failures in a given time (0, t) is given by the 
probability equation.  

 
( )[ ( )]

( ) , 0,1,2,...
!

m t ye m t
P N t y y

y



  

 

Where, 
 m t

 is a finite valued non negative and non decreasing function of ' 't  called the mean value function. Such a 

probability model for 
 N t

 is said to be an NHPP model. 

2.2 Model description: G-O Model 

One simple class of finite failure NHPP model is the Goel and Okumoto model (Goel and  Okumoto, 1979), which has an 
exponential growth of the cumulative number of failures experienced. It  is an NHPP based SRGM, assuming that the 
failure intensity is proportional to the number of faults remaining in the software describing an exponential failure curve. It 
has two parameters. Where, „a‟ is the expected total number of faults in the code and „b‟ is the shape factor defined as, the 

rate at which the failure rate decreases. The cumulative distribution function of the model is: 
  1 btF t e 

. The 

corresponding probability density function has the form: 
( ) btf t be

. The expected number of faults at time„t‟ is denoted 

by
   1 btm t a e 

. The corresponding failure intensity function is given by
  btt abe 

, where „t‟ can be calendar 
time (Krishna Mohan et al., 2012).  

2.3 Parameter estimation methods 
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The main issue in the NHPP model is to determine an appropriate mean value function to denote the expected number of 
failures experienced up to a certain time point. Method of least squares (LSE) or maximum likelihood (MLE) has been 
suggested and widely used for estimation of parameters of mathematical models (Kapur et al., 2008). Non-linear 
regression is a method of finding a nonlinear model of the relationship between the dependent variable and a set of 
independent variables. Unlike traditional linear regression, which is restricted to estimating linear models, nonlinear 
regression can estimate models with arbitrary relationships between independent and dependent variables. The model 
proposed in this paper is non-linear and it is difficult to find solution for nonlinear models using simple Least Square 
method. Therefore, the model has been transformed from non linear to linear.  

The least squares method is widely used to estimate the numerical values of the parameters to fit a function to a set of 
data. We will use the method in the context of a Linear regression problem. It exists with several variations. Its simpler 
version is called Ordinary Least Squares (OLS) and more sophisticated version is called Weighted Least Squares (WLS) 
(Lewis-Beck, 2003).  

3. TWO STEP APPROACH FOR PARAMETER ESTIMATION 

MLE and LSE techniques are used to estimate the model parameters (Lyu, 1996; Musa et al., 1987). Sometimes, the 
likelihood equations are difficult to solve explicitly. In such cases, the parameters are estimated with some numerical 
methods (Newton Raphson method). On the other hand, LSE, like MLE, can be applied for small sample sizes and may 
provide better estimates (Huang and Kuo, 2002).  

3.1 Algorithm for 2-step approach. 

Consider the Cumulative distribution function
( )F t

 and equate to ip
, i.e 

( ) iF t p
, where 1

i

i
p

n


  

Express the equated equation
( ) iF t p

as a linear form, 
y mx b 

. 

Find model parameters of mean value function
( )m t

. Where 
 ( )m t aF t

 

The initial number of faults a


is estimated through MLE method. Since, it forms a closed solution. 

The remaining parameters are estimated through LSE regression approach. 

3.2 ML (Maximum Likelihood) Parameter Estimation 

The idea behind maximum likelihood parameter estimation is to determine the parameters that maximize the probability of 
the sample data. The method of maximum likelihood is considered to be more robust and yields estimators with good 
statistical properties. In other words, MLE methods are versatile and apply to many models and to different types of data. 
Although the methodology for MLE is simple, the implementation is mathematically intense. Using today's computer 
power, however, mathematical complexity is not a big obstacle. If we conduct an experiment and obtain N independent 

observations, 1 2, , , Nt t t
, the likelihood function (Pham, 2003) may be given by the following product: 

 1 2 1 2 1 2

1

, , , | , , , ( ; , , , )
N

N k i k

i

L t t t f t     


  
 

Likelihood function by using λ(t) is: 1

( )
n

i

i

L t



 

Log Likelihood function for ungrouped data (Pham, 2006), 

 

1

1

log log ( )

log ( ) ( )

n

i

i

n

i n

i

L t

t m t









 
  

 

 




 

The maximum likelihood estimators (MLE) of 1 2, , , k  
are obtained by maximizing L or  , where is ln L . By 

maximizing , which is much easier to work with than L, the maximum likelihood estimators (MLE) of 1 2, , , k  
are the 

simultaneous solutions of k equations such as:

 
0

j

 



, j=1,2,…,k. The parameters „a‟ and „b‟ are estimated as 
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follows. The parameter „b‟ is estimated by iterative Newton Raphson Method using 
1

( )

'( )

n
n n

n

g b
b b

g b
  

, which is 
substituted in finding „a‟. 

3.3 LS (Least Square) parameter estimation 

LSE is a popular technique and widely used in many fields for function fit and parameter estimation (Liu, 2011). The least 
squares method finds values of the parameters such that the sum of the squares of the difference between the fitting 
function and the experimental data is minimized. Least squares linear regression is a method for predicting the value of a 
dependent variable Y, based on the value of an independent variable X. 

o The Least Squares Regression Line 

Linear regression finds the straight line, called the least squares regression line that best represents observations in a 

bivariate data set. Given a random sample of observations, the population regression line is estimated by: 
ŷ bx a 

. 

Where, „a‟ is a constant, „b‟ is the regression coefficient and „x‟ is the value of the independent variable, and „
ŷ

‟ is the 
predicted value of the dependent variable. The least square method defines the estimate of these parameters as the 
values which minimize the sum of the squares between the measurements and the model. Which amounts to minimizing 

the expression: 

 
2

ˆ
i i

i

E Y Y 
(Xie, 2001). 

Taking the derivative of E with respect to „a‟ and „b‟ and setting them to zero gives the following set of equations (called 
the normal equations): 

2 2 2 0i i

E
Na b X Y

a


   


 

, and 

22 2 2 0i i i i

E
b X a X Y X

b


   


  

 

The Least Square Estimates of „a‟ and „b‟ are obtained by solving the above equations. Where, a Y bX   and 

 

  

 
2

i i

i

Y Y X X
b

X X

 







. 

 

4. ILLUSTRATING THE PARAMETER ESTIMATION: G-O model 

4.1 ML Estimation 

Procedure to find parameter ‘a’ using MLE. 

The likelihood function of G-O model is given as,

( )

1

N
bt

i

L abe




 

Taking the natural logarithm on both sides, The Log Likelihood function is given as:         

( ) ( )

1

log log( ) [1 ]i n

n
bt bt

i

L abe a e
 



  
 . 

Taking the Partial derivative with respect to „a‟ and equating to „0‟. (i.e 

log
0

L

a




 ).                    

 
1 nbt

n
a

e



 
    

Taking the Partial derivative with respect to „b‟ and equating to„0‟. (i.e

log
( ) 0

L
g b

b


 

 ). 

 

  1

( ) 0
1

n

n

btn

i n bt
i

n e
g b t nt

b e






   



 

http://stattrek.com/Help/Glossary.aspx?Target=Bivariate%20data
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Taking the partial derivative again with respect to „b‟ and equating to „0‟. 

(i.e

2

2

log
'( ) 0

L
g b

b


 

 ).

  

 

  
2

2 2

1
'( )

1 1

n

n

n
n

bt

bt

n bt bt

n e
g b nt e

b e e





 

 
 

   
 

   

 

4.2 LS Estimation 

Procedure to find parameter ‘b’ using regression approach. 

The cumulative distribution function of G-O model is,
( ) 1

ix

F t e


  
  

. The c.d.f is equated to ip
. Where, 1

i

i
p

n


 .  

The equation
( ) iF t p

is expressed as a linear form, i iY CX D 
. Where, 

  log log 1i iY p  
; 

 logi iX x
; 

logD  
. 

The parameter D is estimated as, D Y X


  and therefore, 
De

  . Where, „

1
 ‟ is nothing but the parameter „b‟ 

estimated through regression approach. 

5. DISTRIBUTION OF TIME BETWEEN FAILURES 

Based on the inter failure data given in Table 1, we compute the software failures process through failure Control chart. 
We used cumulative time between failures data for software reliability monitoring using G-O model. The use of cumulative 

quality is a different and new approach, which is of particular advantage in reliability. „



a ‟ and „



b ‟ are estimates of 
parameters and the values can be computed using iterative method for the given cumulative time between failures data 

(Xie, 2002) shown in table 1. Using „a‟ and „b‟ values we can compute
( )m t

. 

Table 1. Time between failures of a software 

Failure Number Time between 
failure(h) 

Failure Number Time between 
failure(h) 

1 30.02 16 15.53 

2 1.44 17 25.72 

3 22.47 18 2.79 

4 1.36 19 1.92 

5 3.43 20 4.13 

6 13.2 21 70.47 

7 5.15 22 17.07 

8 3.83 23 3.99 

9 21 24 176.06 

10 12.97 25 81.07 

11 0.47 26 2.27 

12 6.23 27 15.63 

13 3.39 28 120.78 

14 9.11 29 30.81 

15 2.18 30 34.19 
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Assuming an acceptable probability of false alarm of 0.27%, the control limits can be obtained as (Xie, 2002): 

 

  99865.01  


bt

U eT
  

  5.01  


bt

C eT
 

 
  00135.01  


bt

L eT
   

These limits are converted to 
( )Um t

,
( )Cm t

and 
( )Lm t

 form. They are used to find whether the software process is in 

control or not by placing the points in Mean value chart shown in figure 1. A point below the control limit 
( )Lm t

 indicates 

an alarming signal. A point above the control limit 
( )Um t

indicates better quality. If the points are falling within the control 
limits, it indicates the software process is in stable condition. The values of control limits for the considered data set are as 
follows. 

Table 2. parameters and Control Limits-Xie data 

Approach a b )( Utm
 

)( Ctm
 

)( Ltm  

MLE 31.899246 0.003819 31.856182 15.949623 0.043064 

Two step 
approach 

31.899246 0.062017 31.856182  15.949623  0.043064  

 

Table 3. Successive differences of mean values – MLE approach (Xie data) 

FN m(t) SD 
F
N 

m(t) SD 
F
N 

m(t) SD 

1 3.455282 0.155994 11 11.364900 0.482795 21 19.936169 0.755000 

2 3.611276 2.326236 12 11.847694 0.257922 22 20.691169 0.169492 

3 5.937512 0.134492 13 12.105617 0.676800 23 20.860661 5.403435 

4 6.072003 0.336109 14 12.782417 0.158495 24 26.264096 1.500439 

5 6.408112 1.253176 15 12.940912 1.091707 25 27.764535 0.035689 

6 7.661289 0.472051 16 14.032619 1.671508 26 27.800225 0.237515 

7 8.133340 0.345089 17 15.704127 0.171643 27 28.037740 1.426867 

8 8.478428 1.804980 18 15.875771 0.117062 28 29.464607 0.270256 

9 10.283408 1.044601 19 15.992833 0.248915 29 29.734864 0.264934 

10 11.328009 0.036891 20 16.241748 3.694421 30 29.999798  
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Table 4. Successive differences of mean values – Two step approach(Xie data) 

FN m(t) SD FN m(t) SD FN m(t) SD 

1 26.942115 0.423503 11 31.874286 0.007999 21 31.899242 0.000003 

2 27.365618 3.408387 12 31.882285 0.003216 22 31.899245 0.000000 

3 30.774005 0.091014 13 31.885501 0.005933 23 31.899245 0.000001 

4 30.865020 0.198175 14 31.891434 0.000988 24 31.899246 0.000000 

5 31.063195 0.467322 15 31.892422 0.004220 25 31.899246 0.000000 

6 31.530516 0.100813 16 31.896641 0.002076 26 31.899246 0.000000 

7 31.631330 0.056644 17 31.898717 0.000084 27 31.899246 0.000000 

8 31.687973 0.153830 18 31.898801 0.000050 28 31.899246 0.000000 

9 31.841803 0.031744 19 31.898851 0.000089 29 31.899246 0.000000 

10 31.873548 0.000738 20 31.898941 0.000302 30 31.899246   

Figure 1 is obtained by placing the Successive differences of 
 m t

shown in table 2 on y axis and failure number on x 
axis and the values of control limits are placed on Mean Value chart. The Failure Control chart shows that from the 9th 

failure, the data has fallen below 
( )Lm t

which indicates the failure process. It is significantly early detection of failures 
using Failure Control Chart. The software quality is determined by detecting failures at an early stage. No failure data has 

fallen outside the
( )Um t

. It does not indicate any alarm signal. 

 

Figure: 1  Failure Control Chart -MLE approach(Xie data) 
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Figure: 2  Failure Control Chart- Two step approach(Xie data) 

 

Table 5. Comparison of control charts 

Data Set MLE 
Two step 
approach 

Xie 10, 25th  9th 

NTDS 25th 5th 

AT&T  15, 18th 6th 

SONATA Within limits 11th 

IBM Within limits 12th 

 

6. CONCLUSION 

 The given 30 inter failure times are plotted through the estimated mean value function against the failure serial 
order. The parameter estimation is carried out by two step approach for the considered model. The graphs have shown 
out of control signals i.e below the LCL. Hence we conclude that our method of estimation and the control chart are giving 
a +ve recommendation for their use in finding out preferable control process or desirable out of control signal. By 
observing the Failure Control chart we identified that the failure situation is detected at 9th point of table-4 for the 

corresponding
( )m t

, which is below 
( )Lm t

 and then continued to fail. It indicates that the failure process is detected at 
an early stage compared with Xie et. a1 (2002) control chart, which detects the failure at 23rd point for the inter failure 
data above the UCL. Hence our proposed Failure control chart detects out of control situation at an earlier than the 
situation in the time control chart. The early detection of software failure will improve the software Reliability. When the 
time between failures is less than LCL, it is likely that there are assignable causes leading to significant process 
deterioration and it should be investigated. On the other hand, when the time between failures has exceeded the UCL, 
there are probably reasons that have lead to significant improvement. 

From Figure.2 the process is stabilized by touching the X-axis. Where as in Figure.1 there is a possibility of upward 
average number of failures also. As SPC is to stabilize at some point of time the two-step approach in Figure.2 is 
preferable.  
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