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ABSTRACT 

This paper presents the Advance Neighbor embedding (ANE) method for image super resolution. The assumption of the 
neighbor-embedding (NE) algorithm for single-image super-resolution Reconstruction is that the feature spaces are locally 
isometric of low-resolution and high-resolution Patches. But, this is not true for Super Resolution because of one to many 
mappings between Low Resolution and High Resolution patches. Advance NE method minimize the problem occurred in 
NE using combine learning technique used to train two projection matrices simultaneously and to map the original Low 
Resolution and High Resolution feature spaces onto a unified feature subspace. The Reconstruction weights of k- Nearest 
neighbour of Low Resolution image patches is found by performing operation on those Low Resolution patches in unified 
feature space. Combine learning use a coupled constraint by linking the LR–HR counterparts together with the k-nearest 
grouping patch pairs to handle a large number of samples. So, Advance neighbour embedding method gives better 
resolution than NE method. 

Keywords 

High Resolution (HR), Low Resolution (LR), grouping patch pairs (GPPs), combine learning, neighbor embedding (NE), 
super-resolution (SR). 
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INTRODUCTION 

The Digital imaging system has lot of limitations, the imaging environment also important part of capturing an image, so it 
is not always easy to capture an image at a desired high-resolution (HR) level. However, in many practical applications 
such as medical imaging, video surveillance, computer vision, and entertainment, HR images are required usually to 
obtain a robust performance. Therefore, it becomes popular to synthesize a new HR image by using one or more low-
resolution (LR) images [1]. 

The fast interpolation methods such as bilinear, bi-cubic, and other resampling methods [2]–[3] can increase the size 
of LR input, they are prone to blur high-frequency details and not super resolve the LR image, they only up-sample the 
image. Thus, a large number of super-resolution (SR) reconstruction techniques have been developed in recent years, 
which can be divided into two categories: multi image-based SR methods and example learning-based SR methods [4], 
[5]. 

There are two types of multi-image-based SR methods: The frequency-domain methods [6]–[7] and spatial-domain 
methods [8]–[9]. It has been proved that the spatial representation of super resolution gives better performance than the 
frequency domain one. Representative spatial-domain methods include the regularized SR reconstruction approaches 
[10]–[11], the projection-onto-convex-sets approach [12], iterative back projection (IBP) [13], adaptive filtering [14], 
nonlocal means [15]–[16], and nonlocal kernel regression [9]. But all the above mention methods require adequate 
number of LR images. Example learning based group of SR methods assumes that the high-frequency details lost in an 
LR image can be learned from a training set of LR and HR image pairs, i.e., the relationship between LR image patches 
and the corresponding HR patches can be used to estimate the missing HR frequency details in the given LR input. The 
example learning based method assumed that the counterparts of LR–HR image patch pairs (or their feature 
representations) are locally isometric. In contrast to above methods, this neighbor-embedding (NE)-based method does 

not require a large number of samples and achieves top level performance. 

REVIEW OF NEIGHBOR EMBEDDING METHOD 

Neighbor Embedding for SR reconstruction [19] is promising, except for its limitation of a locally isometric assumption in 
the Low Resolution and High Resolution feature spaces. To address this type of problem, the existing variations of the NE 
algorithm for image Super Resolution mainly concentrate on two aspects: one is to select more suitable features to 
characterize Low Resolution image patches such that the neighborhood relationship between LR–HR patch pairs can be 
preserved as consistently as possible and the other is to build a better reconstruction function by imposing some 
consistency constraints on HR–LR pairs. 

NE for SR reconstruction uses LLE [20] to estimate the HR patches corresponding to the LR inputs by assuming that 

the two manifolds in the HR and the LR image patch spaces are locally similar. Let 
N

i

i

ss xX 1}{   be the training data set 

of the LR image patches, 
N

i

i

ss yY 1}{   be the training data set of the Corresponding HR image patch. And for Test image 

M

i

i

tt xX 1}{   be the test LR Data set and 
M

i

i

tt yY 1}{   be the Estimated HR image patches.  Here, N and M are the 

number of training image patches in the training data set and that of the test image patches in the test data set, 
respectively. 

2.1 Algorithm 1 (NE for SR Reconstruction) 

Input:  

 Training data sets 
N

i

i

ss xX 1}{   and 
N

i

i

ss yY 1}{   

 Test data set 
M

i

i

tt xX 1}{   

 The number of nearest neighbor - k 
Output: 

 
M

i

i

tt yY 1}{   

The neighbor embedding algorithm method can be summarized as follows: 

1. For each patch 
j

tx   in image tX  

a. Find the set )( jN g  of k nearest neighbors in sX  

b. Compute the reconstruction weights of the neighbors that minimize the error of reconstructing
j

tx . 

c. Compute the high-resolution embedding using the appropriate high-resolution features of the k- nearest 
neighbors and the reconstruction weights. 

2. Construct the target high-resolution image by enforcing local compatibility and smoothness constraints between 
adjacent patches obtained in step 1(c). 
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3. Step 1(a) implement by using Euclidean distance to define neighborhood. Based on the k-nearest neighbors 

identified, step 1(b) seeks to find the best reconstruction weights for each patch 
j

tx  in tX . Optimality is achieved by 

minimizing the local reconstruction error for
j

tx . 

2
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Which are the squared distance between 
j

tx  and its reconstruction. Such that 

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w  and 0ijw  when 

)( jNi g . 

 

Fig. 1 Illustration of neighbor embedding for Single image super-resolution 

ADVANCE NEIGHBOR EMBEDDING BASED SUPERRESOLUTION 

In this section, a MAP reconstruction framework for SR is discussed. A coupled constraint on k-NNs of LR–HR 
counterparts, i.e., GPPs (groping patch pairs), is then established for the combine learning process. Thereafter, for each 
LR image patch to be super-resolved, its nearest GPPs (including k-NNs of LR–HR image patch pairs) is searched to 
perform combine learning for the unified feature subspace. Subsequently, the selection of k-NNs and the optimal weights 
for reconstruction are performed in the unified feature subspace for the initial HR output patches. Fig. 1 illustrates the 
reconstruction framework of Advance NE algorithm. 

 The coupled constraint on GPPs consisting of the LR–HR image patches is applied to the learning process, 
which ensures a better consistency local LR and HR image patches. 

 Matrices lP  and hP  are the mapping matrices obtain from combine learning such that the difference between 

LR–HR counterparts is reduced as much as possible in the unified feature subspace. The optimal reconstruction 
weights for SR reconstruction are then estimated in the unified feature subspace rather than solely in the LR 
feature space. 

3.1 MAP Reconstruction Framework 

HR images can be divided into three sub-bands, the high frequency band hI  , the middle frequency band mI  and the low 

frequency band lI . The middle-frequency components can be recovered based upon a simple interpolation algorithm 

(e.g., bilinear or bicubic). Thus, the goal of SR reconstruction is to estimate the missing high-frequency component with a 
single LR input. If prior knowledge, which is denoted as manifold MF, can be incorporated into the SR process, the 
problem of SR reconstruction can be written as,  

),(maxarg* MFIIPI lh
I

h
h

               (1) 

By using Beyes rule, (1) becomes, 

)()/(),/(maxarg*

hhllh
I

h IPIIPIIMFPI
h

              (2) 

Taking the negative log likelihood E= -log (p (.)) in (2), we can get, 

)()/(),/(minarg*

hhllh
I

h IEIIEIIMFEI
h

      (3) 
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Where lf  and hf  denote two mapping functions used to convert two different feature vectors 
i

sx  and 
i

sy  into a unified 

feature space. In this way, use a common distance metric to measure the similarity between them. 

The term )/( hl IIE stands for the data cost of the reconstruction error of all input LR image patches with respect to their 

neighbourhood Ng (.)  i.e. 

)/( hl IIE = 

2

2
)(

)()( 



j jNi

i

shij

j

tl

g

yfwxf

                  

 (4) 

The term  )( hIE  can be seen as the smoothness prior of the HR image, which can be approximated by overlapping one 

or several pixels within the adjacent image patches. Therefore, the key problem to solve is finding the two mapping 

functions lf  and hf to transform the LR and HR feature spaces into a unified feature subspace. Once achieved, utilize the 

traditional NE algorithm to estimate the optimal weights and generate the desired HR image patch as a linear combination 

of the corresponding HR image patches from its neighbors. In addition, the problem of finding jM  associated with each 

i

sx   remains unresolved. This problem is addressed by grouping the k–nearest group patch pairs of the LR and HR 

features in the training data set. 

3.2 Coupled Constraint 

In NE method [17], the training data set of the LR image patches, 
N

i

i

ss xX 1][   and that of their corresponding HR 

image patches 
N

i

i

ss yY 1][  where represents the index of each image patch and N is the number of image patches 

collected. In the traditional NE for SR 
i

sx  represents a d–dimensional feature vector of the ith LR image patch by 

concatenating the first- and second-order gradient features in horizontal and vertical directions, respectively. The
i

sy is the 

high frequency details of the i-th HR image patch. In order to apply combine learning to two different feature spaces of LR 

and HR patches, and augment another training data set 
N

i

i

ss zZ 1][   that consists of the first- and second-order gradient 

features of HR image patches in horizontal and vertical directions, which is similar to the representation of each LR image 

patch. In such way
i

sz , denotes an m-dimensional feature vector of the ith HR image patch. 

Most existing NE algorithms perform SR reconstruction without considering the correlation between the LR and HR 
image patches. That means that they solely apply an isometric assumption to synthesize the expected HR estimates. 
However, this assumption does not hold perfectly for the SR problem. To solve or at least to reduce this problem, Advance 
NE considers the similarity between the LR image patch and the HR image patch with a coupled constraint as follows. 

Let 
N

i

icC 1][   be a coupled set by concatenating each feature vector 
i

sx  and
i

sy  . Thus, each column 

measurement 
ic  in set C is a (d+m) dimensional feature vector, i.e. 
















my

dx
c

i

s

i

s

i

/

/
                                         (5) 

To adjust the dynamic changes of the concatenated feature Vector, normalize it to a unit two-norm. For each vector 
iC  in Set C, select the k-NNs associated with it and group them Together by 

)(}{ iNJJ

i

K
CG 



                             (6) 

Where )1( NiG i   stands for the i-th GPPs related to 
i

sx  and )(iNk  represents the index set of k-NNs of ic  
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Fig.2. Advance NE method reconstruction 

3.3 Combine Learning on Patch Pairs 

Under the MAP reconstruction framework described in Section II-A, find the two mapping functions lf and hf  to project 

the LR and HR feature spaces onto a unified feature subspace. Then apply combine learning to transform two feature 
spaces spanned by different dimensional feature vectors into a unified feature subspace. 

Let )......,1(* NiRL kdi  denote the constraint patch matrix by stacking K d-dimensional column vectors whose 

indices are specified in iG  , i.e. iGr

r

s

i xL


 }{  . Similarly, )...,1(* NiRH kmi   and iGr

r

s

i zH


 }{ .The existing 

NE-based SR [17] measures the similarity in the LR feature space. Generally, these algorithms make an assumption that 
the relationship between LR and HR feature spaces is locally isometric, i.e., the neighbor relationship between the LR and 
HR feature spaces is locally preserved. 

LR and HR features can share a unified feature subspace in which they are more closely associated with each other 
as in [18]. Based on this consideration, the feature representations of LR and HR counterparts are projected onto a unified 
feature subspace by combine learning via a coupled constraint. Following this, the selection of k-NNs is conducted in this 
unified feature subspace instead of the original LR space. The combine learning on the GPP of each LR input locally also 
performed, rather than on all training samples, which is efficient and tractable for a training data set containing an 
enormous number of samples.  

In unified feature space two mappinf matrices are measured one is for the LR feature space 
PD

l RRf  and 

another is for HR feature space
pm

h RRf  . In this way, project the LR and HR feature spaces simultaneously onto 

a unified feature subspace and measure their similarity by 

))(),(( i

sh

i

slij zfxfDistd                             (7) 

Whereas function distance (Dist(.)) represent Euclidean distance. 

For (7), the problem is converted to construct the mapping functions lf  and hf  such that distance ijd  should be as 

close as possible in the unified feature subspace. If the similarity is measured by the Euclidean distance, then 





ihl

Gi

i

sh

i

sl
ff

zfxf
2

2},{
)()(minarg

,

                      (8) 

Suppose the two mapping functions lf and hf  are represented by projection matrices 
pm

h

pd

l RandPRP **  then 

eq. (8) can modify as- 





ihl

Gi

i

s

T

h

i

s

T

l
pp

zPxP
2

2}{ ,

minarg                   (9) 
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 PSASPtr TT

p
minarg                      (11) 

This equation (11) obtain by assigning P, S, A to matrices shown in eq. (10) respectively. 

Suppose that 
TSASE   and

TSSF   , the optimization problem with respect to P can be obtained by the 

eigenvectors p of PP FE   associated with the second to the p-th )( dP   smallest eigenvalues. Here, matrices E 

and F are of size )()( mdmd  . For the solutions to lp and hp , expand the PP FE    to two linear equations, 

i.e., 

l

Tii

h

Tii

l

Tii pLLpHLpLL )()()(                         (12) 

h

Tii

l

Tii

h

Tii pHHpLHpHH )()()(                (13) 

From (13), the solution to hp  can be obtained from, 

)1(

)())(( 1






l

TiiTii

h

PLHHH
P           (14) 

According to (14), eliminate hp  in (12) and obtain 

l

Tii

l

TiiTiiTii pLLpLHHHHH )()1()())(()( 21 
    (15) 

Let eq. (15) reduces to (16) by replacing, U and V. 

plpl VU 2)1(            (16) 

Once lP  is obtained, substitute it into (13) for hP . By selecting the appropriate dimension of the p subspace (or the unified 

feature subspace), use the two derived projection matrices lP   and hP  to transform the original LR and HR feature 

spaces into a common subspace. In this way, the selection of k-NNs can be conducted within the unified feature 
subspace. Combine learning for the projection matrices is summarized in algorithm. 

3.4 Algorithm 2(Combine Learning for Projection Matrices) 

Input parameters: 

 Training data set 
N

i

i

ss xX 1}{   and 
N

i

i

ss zZ 1}{   

 GPPs set ;}{ 1

N

i

iG   

 LR patch 
j

tx  in the test data set tX  

Output parameters: 

 Projection matrices hl andPP ; 

 Constraint patches matrices
iiandHL . 

Description: 

1. Find the nearest neighbour 
i

sx  related to 
j

sx  in the training data set sX . 

2. Obtain the GPPs 
iG corresponding to

i

sx . 

3. According to the index se specified in
iG , build the constraint patch matrices 

iiandHL  respectively. 

4.  Construct projection matrices hl andPP . 

3.5 Algorithm 3 (Advance Neighbor Embedding)  

Input parameters: 

 Training data set 
N

i

i

ss xX 1}{  , 
N

i

i

ss yY 1}{   and 
N

i

i

ss zZ 1}{   

 GPPs set ;}{ 1

N

i

iG   
LR image ; 

 The size of LR image patch q*q ; 

 Neighborhood size k; 

 Dimension P of the unified feature subspace to be projected. 
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Output parameters: 

 HR image Y 
Description: 

1. Partition Y into q*q  image patches with one or two pixels overlapped in raster-scan order to construct the test 

data set 
M

i

i

tt xX 1}{   

2. For each patch  
j

tx
 
in tX , execute the following steps  repeatedly: 

 Compute the mean values x  of patch 
j

tx  

 Construct the constraint patch matrices hl andPP
 
related to the nearest neighbour 

i

sx of 
j

tx
 
and 

compute the projection matrices hl andPP
 
associated with 

j

tx with algorithm 1. 

 Compute the transformed feature of 
j

tx
 

via 
j

t

T

l xP  and project the coupled constraint patches 

iiandHL  
 
the unified feature subspace via 

iT

h

iT

l HandPLP respectively. 

 Compute the optimal weights by minimizing reconstruction error as follows: 
2

2
)(

}{ ,

minarg 



jNi

iT

hij

j

t

T

l
w

g
ji

HPwxP           (17) 

 Reconstruct each 
j

ty  corresponding to 
j

tx  with the optimal weights ijw  as follows: 





)( jNi

i

sij

j

t

g

ywy              (18) 

 Sum up mean values x  and 
j

ty  together to generate the HR patch 
j

ty  and append it to tY . 

3. Produce the initial HR image X0 by merging all the HR patches in the set 
M

j

j

tt yY 1}{  for the overlapping 

region between those adjacent patches, averaging fusion is applied to obtain the estimated pixels. 

EXPERIMENTAL RESULT 

The PSNR obtained for the different images is given in table below. And the SR results of different images shown in fig. 3, 
4, and 5 respectively. 

Table 1. PSNR 

 Bi-Cubic 

Interpolation (db) 
Neighbor Embedding 

(db) 
Advance NE (db) 

Boy.bmp 
(255*258) 

32.699140 39.7584 33.279377 

   Grapes.bmp (306*306) 34.154598 41.534 35.334959 

Fruit.bmp 
(360*360) 

31.328248 37.887 32.821744 

 

        

Fig. 3(a)           (b)                         (c)                                          (d)                                  (e) 

Fig. 3 shows results for Boy.bmp (255*258) image. Upsample (b), (c), (d) by factor *3. 

Fig.3 (a) is down-sampled by *3 version of original image. Fig.3 (b) is High-Resolution image obtained from Bicubic 
Interpolation method.  Fig.3 (c) is High-Resolution image obtained from Neighbor Embedding method. Fig.3 (d) is High-
Resolution image obtained from Advance Neighbor Embedding Method and Fig.3 (e) is original High-Resolution image. 
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Fig. 4(a)                  (b)                  (c)    (d)     (e) 

Fig. 4 shows results for Grapes.bmp (306*306) image. Upsample (b), (c), (d) by factor *3. 

Fig.4 (a) is down-sampled by *3 version of original image. Fig.4 (b) is High-Resolution image obtained from Bicubic 
Interpolation method.  Fig.4 (c) is High-Resolution image obtained from Neighbor Embedding method. Fig.4 (d) is High-
Resolution image obtained from Advance Neighbor Embedding Method and Fig.4 (e) is original High-Resolution image 

     

Fig.5. (a)               (b)   (c)               (d)   ( e) 

Fig. 5 shows results for Fruit.bmp (360*360) image. Upsample (b), (c), (d) by factor *3. 

Fig.5 (a) is down-sampled by *3 version of original image. Fig.5 (b) is High-Resolution image obtained from Bicubic 
Interpolation method.  Fig.5 (c) is High-Resolution image obtained from Neighbor Embedding method. Fig.5 (d) is High-
Resolution image obtained from Advance Neighbor Embedding Method and Fig.5 (e) is original High-Resolution image. 

CONCLUSION 

This paper represents Advance Neighbor Embedding and conventional NE-based single-image SR reconstruction. 
Thorough experimental results demonstrate that Advance NE method gives the best SR output. The distinction of the 
advance NE lies in the selection of k-NNs and the linear embedding being performed in the unified feature subspace 
rather than in the original LR space. In order to obtain the formation process of the LR image from its HR version, all the 
training HR images are downsampled by using the bicubic interpolation by a factor of 3 to obtain the corresponding LR 
images. Since the human visual system (HVS) is more sensitive to the luminance component than the chrominance 
components, Use of the YCbCr color space for color images and only perform SR reconstruction in the luminance 
component. Considering that the middle-frequency information of LR images has greater correlation with high frequency 
than low frequency, first magnify the original LR input by a factor of 3 with the bicubic interpolation and then perform SR 
on it. In this implementation, the combine learning technique on GPPs those are most relevant to each LR input patch to 
obtain the desired unified feature subspace. In principle, the Advance NE method has the potential to be extended to other 
SR applications such as face image hallucination. In addition, the construction of optimal GPPs rather than a fixed 
neighborhood size is challenging for this method. 

When the magnification increase (e.g., more than *3 up-scaling), the SR problem becomes severely undetermined. It 
is also important to notice that NE methods takes bit more time to execute. Only single training image is used in NE to 
recover patches, but in Advance NE training dictionary means multiple training images used to recover the patches to 
obtain HR ouuput. 
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