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ABSTRACT 

The Java Card technology provides a secure environment for developing smart card application based on Java while also 
respecting some constraints such as the limited memory and processing card. In addition to the security and cryptography 
APIs offered by the Java Card technology, the smart card is protected against some threats. But, the fault attacks based 
on the variation of the physical parameters are able to disrupt its operation. In order to enhance the smart card security, 
we thought to add an intelligent component able to distinguish between the smooth functioning and the attack. This 
component is a Neural Network that we developed in C language and integrated in open source Virtual Machine (Avian) in 
order to simulate the attack effect and the network behavior. In this context, the detection rate of the attacks is 96% with 
no false positive. 
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1. INTRODUCTION 

Developed by Bonech, DeMillo and Lipton [1], the fault attack aims to disrupt the physical environment of the processor 
operation in order to produce errors. For smart card, the context of execution concerns several variables. Some of these 
variables are internal, such as the location of the different component of the chip (CPU, RAM, ROM, EEPROM). Others 
are external such as the signals provided by the terminal (clock, I/O) or the physical environment. Initially, the fault attack 
targeted public-key cryptographic algorithms such as RSA and DES. However, this type of attack can affect every code 
fragment. The fault attack can be induced into the chip by different ways, namely, variations of the card supply voltage, 
electromagnetic emissions, and optical fault induction. In the context of vulnerability analysis on smart cards, the use of 
the optical induction of errors in the chip through laser beams is widely spread, mainly because it allows attackers to be 
sufficiently precise with regards to both timing and location of the fault injection. Also the use of electromagnetic radiation 
generator is spreading nowadays to induce faults in chips. Designing efficient countermeasures, both in term of coverage 
or memory footprint, against these attacks is today a real challenge. 

As part of our research, we are interested particularly in smart cards like Java Card. Being a subset of Java technology, 
Java Card runs by the same principles: 

 Compile the java code to get the file .class or .cap, 
 Execution of the .class or .cap file by a virtual machine, 
 Runtime environment, 
 Programming APIs.  

In brief, following the Java Card applet compilation in a Java Virtual Machine and Java Card environment, the executable 
file .cap or .class which contains the byte code equivalent to the initial program is obtained, and then is loaded in the card 
to be executed by the Java Card Virtual Machine(JCVM). During the execution, the code pointer interprets the instructions 
sequentially, using the operand stack. The fault attacks targeting the Java Card, aim to modify data or code. It can affect 
one or more instructions to execute, the returned value of a method, invert the result of a test, suppress a method call,... 
This class of attack can be used, for example, to avoid the PIN verification by replacing the instruction corresponding by 
the instruction 'nop' equivalent to 'nothing'. 

During our research, we seek to ensure that the executed code corresponds to the developed one by putting a fault 
detection system based on Neural Networks; test this one on a Java Virtual machine, in order to bring it subsequently, in a 
smart card system. 

In this paper, we present the fault attacks and their effect on a Java Card. In a next section, we will discuss the existing 
protection mechanisms. Then we present our solution on the integration on a Neural Network into the main loop of the 
interpreter. In a last section we evaluate our proposal, thanks to a mutant generator framework. 

2. FAULT ATTACKS  

In this section, we will give an overview over actual physical methods to induce faults. This will show that there are 
numerous ways to induce faults into physical devices. Fault attack is an old research field. Researches in avionics or 
space travel brought to the fore that cosmic rays can flip single bits in the memory of an electronic device. Such faults are 
still an issue until now for such devices (c.f. the Curiosity Rover). In the smart card field, researches focused on power 
spikes, clock glitches and optical attacks. A smart card is a portable device without any own power supply neither clock 
and thus requires a smart card reader providing power and clock in order to work. The reader can be replaced by an 
adversary with laboratory equipment, able of tampering with the power supply. With short variations of the power supply, 
which are called spikes, one can use it to induce errors into the computation of the smart card. Spikes allow to induce both 
memory faults but also faults in the execution of a program. The memory cells, i.e., EEPROM memory and semiconductor 
transistors, have been found to be sensitive to light. This happens if the photon energy of the applied light is transformed 
in electron in the semiconductor. Modern green or red lasers can be focused on relatively small regions of a chip, such 
that faults can be targeted fairly well. The last method use changes in the external electrical field and is considered as a 
method for inducing transient faults into smart cards. Here, faults are sought to be induced by placing the device in an 
electromagnetic field, which may inflence the transistors and memory cells. Faults can be induced into the chip by the 
perturbation of its execution environment. Consequences of fault attacks can be perturbation of the chip registers (e.g., the 
program counter, the stack pointer,...), or the writable memories (variables and code modifications). These perturbations 
can have various effects, and in particular, they can allow an attacker to gain illegally access to data or services if not 
detected. In the literature [3,4,5,6], we can find different manners to produce fault attacks but currently laser beam attack 
is the most difficult to tackle with. 

The process is the following, an attacker physically injects energy in a memory cell to change its state. Thus and up to the 
underlying technology, the memory physically takes the value 0x00 or 0xFF. If memories are encrypted, the physical value 
becomes a random value (more precisely a value which depends on the data, the address and an encryption key). Then 
the attacker observes the effect of the fault characterized in terms of temporal and spatial parameters. If the result did not 
provide him any valuable information he restarts the process. 

Smart card manufacturers have been aware of the danger of faults for long time now, hence, they have developed a large 
variety of hardware countermeasures. Major hardware countermeasures are sensors and filters, which aim to detect 
attacks, e.g., using anomalous frequency detectors, anomalous voltage detectors, or light detectors. Other 
countermeasures are to use redundancy, i.e., dual-rail logic, where memory is doubled, doubled hardware, capable of 
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computing a result twice in parallel. If two results are computed, they are considered to be error-free if both values match. 
This is a very expensive countermeasure, and hence, it is not often implemented in smart cards. Using only hardware 
countermeasures has two drawbacks. Highly reliable countermeasures are very expensive and low cost countermeasures 
only detect specific attacks. Since new fault attacks are being developed frequently these days, detecting only currently 
known forms of physical tampering is not sufficient and for long term applications (an e-passport must be valid for 10 
years) it is definitely not sufficient. 

Software countermeasures are introduced at different stages of the development process; their purpose is to strengthen 
the application code against fault injection attacks. Current approaches for software countermeasures include checksums, 
randomization, masking, variable redundancy, and counters. The most efficient are those implemented in the system 
which harden the system by checking that applications are executing in a safe environment. The main advantage is that 
the system and the protections are stored in the ROM, which is a less critical ressource than the EEPROM and cannot be 
attacked thanks to checksum mechanisms that allow to identify modification of data that are stored in the ROM. Thus, it is 
easier to deal with integration of the security data structures and code in the system. 

3. MUTANT APPLICATION  

The purpose of the fault attack is to disrupt the card behavior. The fault attacks targeting the Java Card, aim to generate 
mutants by modifying one or more instructions in order to execute what the attacker wants instead of the original program. 
This class of attack can be used, for example, to access to services without the required credentials. There are many 
types of mutants and multiple mechanisms allow their detection partially. The mutant generation and detection is a new 
research field introduced by [15] using the concepts of combined attacks. To define a mutant application, we use an 
example on the following debit method that belongs to a wallet Java Card applet. In this method, the user PIN (Personal 
Identi cation Number) must be validated prior to the debit operation. 

 

 

 

 

 

 

The corresponding byte code representation is the following table, with on the left the byte before the attack and on the 
right the resulting code while a laser hit the memory cell corresponding to the ifeq instruction. 

Byte Byte Code  Byte Byte Code 

00 : 18 00 : aload_0  00   :18+ 00 :  aload_0 

01 : 83 00 04 01 : getfield #4 01 : 83 00 04 01 : getfield #4 

04 : 8B 00 23 04 : invokevirtual #18 04 : 8B 00 23 04 : invokevirtual #18 

07 : 60 00 3B 07: ifeq 59  07 : 00 07 : nop 

08 : ... 08 : ...  08 : 00 08 : nop 

09 : ...+ 09 : ...  09 : 3B 09 : pop 

...  ...   ...  ...  

59 : 13 63 01 59 : sipush 25345 59 : 13 63 01 59 : sipush 25345 

63 : 8D 00 0D 63 : invokestatic #13 63 : 8D 00 0D 63 : invokestatic #13 

66 : 7A 66 : return  66 : 7A 66 : return 
         

Table 1:Byte Code representation before and after the attack 

 

 

 

 

 

  

private void debit (APDU apdu ) { 

if ( pin.isValidated( )){ 

// make the debit operation 

} else { 

ISOException.throwIt(SW_PIN_VERIFICATIO

N_REQUIRED) ; 

} 

} 

Listing 1: Original Java code 

private void debit (APDU apdu ) { 

// make the debit operat ion 

ISOException . throwI t 

(SW_PIN_VERIFICATION_REQUIRED) ; 

} 

Listing 2:Mutant Java code 
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The verification of the PIN code is bypassed, the debit operation is made and an exception is thrown but too late because 
the attacker will have already achieved his goal. This is a good example of dangerous mutant application: ‘’an application 
that passes undetected through the virtual machine interpreter but that does not have the same behavior than the original 
application’’.  This attack has modified the control flow of the application and the goal of the countermeasure described in 
this paper is to detect when such modifications happen. We propose hereafter to improve the protection techniques 
against the mutants by adopting artificial intelligence methods like the Neural Network which is able to detect changes 
made to the system. 

4. EXISTING COUNTERMEASURES 

The detection of such mutant applications is a field that has been mainly tackled in the scope of Ahmadou Séré’s PhD. 
thesis [7]. As pointed out in [16] , the first countermeasure against mutant applications is either to modify the value 
associated to the nop instruction in order to make 0 an impossible byte code or at least to double-check the read byte 
code when it turns out to be 0. The following describes the other detection methods exposed in the field-of-bit method, the 
basic-block method and the path-check method. 

4.1 The Basic Block Method 

This mechanism is based on code division to elementary blocks. For each one, we have to precise the input, the output 
and the checksum. The checksum is the result of the XOR operation between all the bytes of the bloc. Stored in a table, 
the information is compared with the new checksum, recalculated during the byte code interpretation. If they are not 
identical, we deduce that it is an attack and the program stops. 

The method consists then in statically determining the basic blocks composing each method defined in the method 
component of the CAP file and computing a checksum for each basic block. The authors propose to use a simple XOR as 
checksum operation. They subsequently add a custom component made of a table containing for each basic block: 

 The offset of the entry point in the byte code array representing the methods, 
 The offset of the exit point in the same byte code array, 
 The value of the XOR checksum. 

At runtime, the JCVM is then responsible for dynamically computing the basic blocks, updating incrementally the XOR 
checksum and checking the coherency with the stored entry point, exit point and checksum. That is to say, it should 
check: 

 When a basic block is entered, if the entry point is known (i.e. is in the table); 

 When a basic block is leaved, if the exit point is known and matches the last seen entry point and if the checksum 
is correct. 

Although this method leads to a relatively high computing overhead, it would detect any single-byte error in the byte code 
array. 

4.2 The field of bit detection mechanism 

The idea is based on the fact that the modification of a byte in a methodâ�™s byte code array is likely to modify its 
nature. For example, an instruction byte becomes a parameter one or the reverse. The Field of Bit Detection Mechanism 
consists in associating a field of bit to each byte, knowing that the bit value depends on the nature of the byte: either 
executable (X) or readable (R). Then, during the class execution, the mechanism checks the consistency between the bit 
table and the instructions interpreted.  The principal drawback of this method is then that it will not detect a fault if it does 
not modify the nature of a byte, such as turning an sload_1 into an aaload for instance. 

4.3 The Path Check Method 

The last proposed method enhances the previous basic-block method. This method also uses the notion of basic blocks 
but integrates them in the Control Flow Graph (CFG) representing the execution flow of a given method where each vertex 
correspond to a basic block and each oriented edge to a jump from one basic block to another. The method proposed 
consists then in statically computing and encoding the valid paths in the CFG with the following convention: 

 The tag 01 denotes the beginning of a path; 

 An edge is denoted 0 if it links a basic block ending by a branch instruction to another basic block; 

 An edge is denoted 1 if the entry point of the next basic block directly follows the exit point of the current basic 
block. 

The list of valid paths can then be stored in binary format in a custom component of the CAP file. At runtime, the JCVM is 
then responsible for dynamically computing the basic blocks, encoding the path it executes and checking the path 
whenever entering in a new basic block. Indeed, if the JCVM produces a path that is not one listed in the custom 
component, an error is detected. 
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5. ATTACK DETECTION BY NEURAL NETWORK 

5.1 Illustration 

Java Card program is compiled off card to get the executable file format; .class or .CAP which will be loaded in the smart 
card to be interpreted in the JCVM [2]. In order to guarantee the code integrity, we propose to add new options to the card 
allowing the attack detection. The main detection approaches are the scenario approach and the behavioral one. 

The scenario approach is based on the collection of the signatures of the existing attacks in order to exploit them to detect 
intrusions. But, this approach is unable to detect new attacks. 

The second approach consists on testing and evaluating the systemâ�™s behavior. Any deviation is interpreted as a 
possible intrusion. Thus, the behavioral approach can detect new intrusions. 

A fault attack targets the byte code contained in executable file in order to execute what the attacker wants instead of the 
original program. For that, we propose to verify the code integrity by adopting a behavioral approach. In fact, we thought 
about identifying the basic blocks of the program, constructing the control flow graph representing all paths possible taken 
by the program during its execution and putting a system able to verify the path taken by the program during its execution 
and check whether it is a valid path or not i.e. an attack. Then, the first step consists to divide the byte code into 
elementary blocks whose entry point does not contain code that is the target of a jump instruction and the exit point is an 
instruction: 

 Which starts a method 

 An unconditional branch target (goto, goto_w, jsr, jsr_w and ret) 

 A conditional branch target(ifeq, iflt, ifle, ifne, ifgt, ifge, ifnull, ifnonnull, if_icmpeq, if_icmpne, if_icmplt, if_icmpgt, 
if_icmple, if_icmpge, if_acmpeq, if_acmpne, lcmp, fcmpl, fcmpg, dcmpl, dcmpg) 

 A conditional composed branch target (lookupswitch et tableswitch) 

 Following the return instruction type (ireturn, lreturn, freturn, dreturn, areturn, et return). 

There are many methods which belong the behavioral approache, such as Neural Network and Bayesian Network. In [17], 
it was proved that the Neural Network is more suitable than Bayesian Network in mutant detection. Consequently, in this 
paper we aim to test and evaluate the Neural Network.  

5.2 Creation of the Neural Network 

5.2.1 Neural Network realization 

The human Neural Network contains approximately 10
11

 neurons and from 10
14

 to 10
15

 connections. There are several 
types of neurons, but they all have the following functional properties: 

 The neuron receives signals from other neurons or from the external environment. 

 It is capable of manipulating the signals and processing the information. 

 Its output transmits the information to other neurons. 

Inspired from the biological Neural Network, the artificial Neural Network is composed of several interconnected elements 
capable of receiving processing and manipulating signals, and sending the result. Thus, the artificial Neural Network is 
used to solve diagnosis problems, prediction, classification ones... 

There are several types of artificial network. Based on the simple Perceptron, the multilayer Perceptron (MLP) network 
use intermediate layers called also hidden layers and located between the input and the output, that ameliorate the 
network computational capacity and allow obtaining best result [8]. 

The strengths of the Neural Network reside in learning, objects identification and a better interpretation. Because of that, 
there has been a reason for using it to detect intrusions [9]. Since, a strong and intelligent Neural Network is not necessary 
large, we thought to implement it into a smart card in order to detect the fault attacks. This is what we have done 
previously when we have used the physical parameters of the card to aliment the network. Theoretically, the principle of 
implementation is possible and the system designed in [17] is able to detect any changes made in the electrical properties. 
But practically, these parameters are under the control of the attacker. Therefore, it is necessary to change the entry 
points of the network. 

5.2.2 Learning algorithm 

Learning is the mechanism by which the free parameters (learning weights) of a Neural Network are adapted and modified 
in order to obtain network outputs which matches the desired ones. The kind of learning is determined by how the 
parameters changes are implemented, it is the role of the learning algorithm. There are several types such as the 
Heaviside function, the sign function and the back-propagation one which minimizes the error in a remarkable degree [8]. 
After determining the Neural Network type and the learning algorithm, it is necessary to specify the network architecture, 
namely, the inputs, the output, the number of neurons in the hidden layer and the synaptic weights. 
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5.2.3 The input neurons 

As regards the network inputs and since the fault attacks disrupt the program execution by changing the byte code, we 
affected the vertices of the CFG to the network's inputs. Precisely, we used the numbers of the first instructions of the 
vertices. 

5.2.4 Training and validation patterns 

During the learning phase, the network adjusts the synaptic weights, based on models supplied to the inputs, so that the 
output obtained corresponds to the desired one. Concerning the patterns used, we deduce the possible paths of program 
execution from the control flow graph and we generate the corresponding patterns (we called them the normal patterns). 
And we consider that any path which is different from the normal patterns is an attempted attack. Then, we deduce the 
abnormal patterns corresponding to attacks. Consequently, we used the normal patterns generated from the control flow 
graph to learn the network the valid paths. A part of the abnormal patterns has been used for training and another one for 
the network validation. 

5.2.5 Output neuron 

The objective of our system is to detect if the entry is a valid path or an attack. For that, we used a single neuron in the 
output layer that takes the value '0 'in the normal case and '1' otherwise. 

5.2.6 Hidden neurons 

The hidden or intermediate neurons are a primordial element in Neural Network of MLP type. In fact, they reinforce its 
computational capacity. But, there is no rule to determine the number of hidden neurons. For that and following the same 
approach as described in [17] and after several attempts. We opted for the network with a single hidden layer containing 
three neurons. 

5.2.7 Synaptic weights 

The correction of the connections or learning weights is made according to the difference between the desired and 
obtained outputs. The algorithm back-propagation, based on the sigmoid function, allows minimizing the error [8]. 

5.2.8 Network construction 

Since neuroph package provides the ability to create several types of Neural Network including MLP and operate the 
back-propagation algorithm to determine the synaptic weights. We opted for the use of this package, under the editor 
eclipse, in order to build the Neural Network, to learn it the different patterns and return the final synaptic weights. 

5.2.9 Learning phase of the network 

Under the editor eclipse, and using the package neuroph [13], all patterns dedicated to learning are presented, with the 
desired outputs, once the network. It calculates an output and compares it with the desired one. According to the 
difference between the two output values, the Neural Network corrects the synaptic weights in order to reduce the error by 
using the back-propagation algorithm. 

5.3 Tests and Results 

Once the network is validated, we thought to simulate its operation under a Java Virtual Machine. For that, we have 
developed the network in C language and we have integrated it in a Java virtual machine open source called Avian [14]. 
According to the same rules of control flow graph construction, we modified the virtual machine Avian, so as to return just 
the entry points to blocks executed during the interpretation of the Java class and use it to aliment in the integrated 
network in the same machine. 

After specifying the synaptic weights, it is necessary to validate the network by getting new patterns and verify the 
detection capability of the network and the error rate. By exploiting the package neuroph under the editor eclipse, we 
tested the network with new patterns and only 5 among 131 mutants were not detected. 

One method often used for evaluating the effect of the fault consists to inject the attack into the system. We talk about the 
system mutation. Thus, in order to illustrate the suggested protection mechanism and since the Java Card technology runs 
by the same principle of Java, we used a concrete example with a Java method on a virtual machine. So, using the ASM 
plugin [11] of the eclipse editor [12], we generated the control flow graph, shown in the following figure, of the Java method 
that we intend to secure. 

We consider that the normal way of interpreting is C1: B1, B2, B3, B4, and all the others paths are considered as an 
attempt of attack. We designed the Neural Network on this basis. 

Since any path different from C1 is an invalid path. We executed the Java class under the modified virtual machine. Thus, 
we have two cases: 

 If the program follows the path C1 in the interpretation, the network returns 0. 

 Otherwise, if the program takes a different path, the network returns 1. 
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6. CONCLUSION 

In this paper, we propose a new detection approach of fault attacks. In order to achieve this,first of all, we have created a 
Java class, then we have developed a Neural Network which is able to differentiate between the paths taken by the 
program during its execution and integrate the network in an open source virtual machine to test it. 

According to the study, we found that the Neural Network is able to classify, detect and identify more than 96% of attacks. 
And as it was possible to integrate the Java virtual machine, we can enhance the security of the system of smart card by a 
Neural Network. For that, it is necessary to adapt the program developed in C according to the constraints of the Java 
Card. 
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Figure 3: The Control Flow Graph 


