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ABSTRACT 

In compiler theory, the Banerjee test is a dependence test. The Banerjee test assumes that all loop indices are 
independent, however in reality, this is often not true. The Bannerjee test is a conservative test. That is, it will not break a 
dependence that does not exist. 

This means that the only thing the test can guarantee is the absence of dependence. 

This paper proposes an innovative algorithm which allows precise determination of information about dependences and 
can act in situation where certain cycling limits are known. 
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INTRODUCTION 

In previous researches we presented Banerjee test for the analysis of data dependencies. Generally, it is an imprecise 
test, supposing the testing of necessary conditions for the existence of of data dependencies. Utility of such a test is 
highlighted is the case of un-verifying for conditions, situation that leads to the conclusion of data independence. If we are 
in the case of conditions verification, testing algorithm decides in conservative way the dependence, even if it is not 
present. 

That’s why, some researchers have directed their efforts to formulate sufficient conditions for the existence of data 
dependencies, aimed at improving the accuracy of these algorithms. 

Psarris et al. [Psarris91] demonstrated a sufficient condition for Banerjee test accuracy, which we will present in Theorem 
2.2. 

Our analysis of accuracy testing algorithms for data dependencies has resulted in the original results that we present in 
3.3 and also in [Vancea98].  

We have shown that the condition of sufficiency becomes under certain circumstances (defined in Lemma 3.3) also a 
necessary condition for the accuracy of the test Banerjee (Theorem 3.4). This result allowed the implementation of an 
improved algorithm (Algorithm 4.1) which has two main advantages: 

a). allows precise determination of information about dependences, in some cases that traditional tests Banerjee and 
CMMDC fail; 

b). can act in situations where certain cycling limits are not known (for example analysis 3.4.2 is edifying in this sense); 

1. Preliminaries. Definitions and notations. 

Definition 1.1. 

 

(I) Let a0, a1, ... , an integers. For each k, 1 ≤ k ≤ n, let Lk şi Uk integers, Lk ≤ Uk. The equation: 

02211 ... aIaIaIa nn   

 

 

they say that is (L1,U1; L2,U2; ...; Ln,Un) - solvable (or interval solvable, shortly I-solvable) if exists the integers i1, 
i2, ... , in so that  

 

 02211 ... aiaiaia nn                   and 

 for each k, 1 ≤ k ≤ n, Lk ≤ ik ≤ Uk. 

 

(II) For each k, 1 ≤ k ≤ m, let  ak0, ak1, ak2, ... , akn  integers. For each  k', 1 ≤ k' ≤ n let Lk' and Uk' integers, Lk' ≤ Uk'. 
The system of equations: 

02211

2021222121

101212111

...

..............................................

...

...

mnmnm

nn

nn

aIaIaIa

aIaIaIa

aIaIaIa







 

 

they say that is (L1,U1; L2,U2; ...; Ln,Un) - I-solvable if exists integers i1, i2, ..., in so that  

 101212111 ... aiaiaia nn   

 202222121 ... aiaiaia nn   

.............................................. 
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 02211 ... mnmnmm aiaiaia   

 for each  k', 1 ≤ k' ≤ n, Lk' ≤ ik' ≤ Uk'. 

 

(III) Let a1, ..., an , L şi U integers. An equation of the form  

 

],[...2211 ULIaIaIa nn   

 

is called interval equation and it has solution if exists a0  [L,U] so that   

02211 ... aIaIaIa nn   to be I-rezolvable. 

 

Let be the structure of nested cycles below,  where the two references to elements of the m-dimensional A vector potential 
causes a dependency of  data. 

 

for j1 := inf1 to sup1 do 

 for j2 := inf2 to sup2 do 

  . . . 

  for jr := infr to supr do 

  . . .   

B := A[f1(j1,...,jr),f2(j1,...,jr),...,fm(j1,...,jr)] ...  

   . . . 

A[g1(j1,...,jr),g2(j1,...,jr),...,gm(j1,...,jr)] := ...  

   . . . 

  end for 

  . . 

 end for 

end for  

 

We assume for simplicity that: 

 k, 1 ≤ k ≤ r, infk and supk are integers and infk ≤ supk; 

 k, 1 ≤ k ≤ r, fk and gk  are linear functions of the form: 

022111 ...),...,( krkrkkrk cjcjcjcjjf   and respectively  (3.1) 

022111 ...),...,( krkrkkrk djdjdjdjjg      

where kiki dc ,  ℤ, 0≤ i ≤ r. 

 

Let γ = (inf1,sup1; inf2,sup2; ... ;infr,supr; inf1,sup1; inf2,sup2; ... ;infr,supr). Between those two references of m-dimensional 
array A, from above, exists a data dependences if and only if the following system of equations is γ-solvable:  
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    (3.2) 

 

The practical procedure of the testing of dependency suppose conservatively the dependence until at least one of the 
equations of the system ( 3.2) is not I-solvable, the moment in which we deduce the dependence. 

Such a method of approach is called subscript-by-subscript testing [Bane93]. 

So, let us consider an arbitrary equation chose from (3.2), that, in view of (3.1) we write in the form: 

 

 

Eliminating possibly  terms of coefficient 0 and simplifying notation (meaning factorization based on index values), testing 
step by step will be to determine if an equation of the form: 

 

    02211 ... aIaIaIa nn      (3.3) 

 

is (L1,U1; L2,U2; ... ,LnUn)-solvable, where n ≤ 2r and ak  0, 1 ≤ k ≤ n. 

 

Generalization cmmdc test for interval equations is given without proof (which is immediate) in the following theorem. 

 

Theorem 1.2. Fie a1, a2, ..., an non-zero integers and let U, L integers. We note  

 

g = cmmdc(a1, a2, ... , an) 

 

The interval equation a1x1 + a2x2 + ... + anxn = [L,U] has solution (is  I-solvable) if and only if  L/g ≤ U/g. 

In [Bane76] it is shown that in the particular case in which all dependence coefficients have absolute value equation 1, 
Banerjee test is exactly, solving the problem of integers solutions for the concerned period. 

The same conclusion is proved in [Li89] where the coefficient (either ak) of the dependence equation has absolute and 
unitary solution and  

 

1|)(|max
1




kki

ni

LUa  

 

Based on the analysis of [Psarris91] we prove a sufficient condition of Banerjee test accuracy, which condition is less 
restrictive than the above. 

2. A sufficient condition for Banerjee test accuracy. 

  

Based on the positive and negative notations of numbers, upper and lower limits calculated Banerjee test for expression 
a1I1 + a2I2 + ... + anIn 

are respectively  

 

0...... 011011  krkrkkrkrk djdjdcjcjc
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n

i

iiii

n

i

iiii

LaUal

UaLal

1

sup

1

inf

)(

)(

   (3.4) 

 

The precise wording of the Banerjee test [Bane97] says that if 

 

a0  [linf, lsup] 

 

then there exists real numbers  r1,r2, ... , rn so that 

 

 02211 ... ararara nn  and 

  i N, 1 ≤ i ≤ n, Li ≤ ri ≤ Ui. 

Sufficiency condition will appeal to the whole values assumed by a1I1 + ... + anIn. 

       

Lema 2.1. If a1, a2,..., an are integers, and for every k, 1 ≤ k ≤ n, Lk and Uk are integers fulfill the condition  Lk ≤ Uk, then :  

 




n

i 1

 (a

i Ui - a



i Li) - 


n

i 1

 (a


i Li - a


i Ui) = 


n

i 1

ai(Ui - Li). 

 

Demonstration. For each of the integers a, L and U we have 

(a
+
U – a

-
L) – (a

+
L - a

-
U) = a

+
U  - a

+
L = aU – aL = a (U - L)   if a > 0   and 

 

(a+U – a-L) – (a+L - a-U)  =  -a-L  - (-a-U)  =  aL – aU  =  -a L + a U  =  a (U - L) if a < 0,  from where results 
immediately.the above formula.  

Theorem 2.2.   Let  a1,  a2, ..., an  integer numbers, not zero. For each k, 1 ≤ k ≤ n,  let Lk and Uk  integers with  Lk < Uk.  If 

exists a permutation π of the set {1, 2, ..., n} so that: 

 

 aπ(1) = 1 and 

 for each j, 2 ≤  j ≤ n,  

 

aπ(j)  ≤ 1+




1

1

j

k

aπ(k) (Uπ(k) - Lπ(k)) 

 

Then for each integer x from the interval  

 

 [


n

i 1

 (a


i Li – a


i Ui), 


n

i 1

 (a


i Ui - a


i Li)] 

 

exist integers  x1, x2, ..., xn so that  
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 a1x1+ a2x2 + ... + anxn = x and 

 for each i, 1 ≤ i ≤ n, Li ≤ xi ≤Ui. 

 

Demonstration. We will demonstrate through induction after n. 

 

Case n = 1. In this case let a1 = 1 and let a1 = -1. If a1 = 1, then 

 

 


n

i 1

 (a


i Li - a


i Ui) = a


1 L1 – a


1 U1 = aL1 = L1 

and 




n

i 1

 (a


i Ui - a


i Li) = a


1 U1 - a


1 L1 = a1U1 = U1 

 

so we must demonstrate that for every integer x  [L1,U1], exit x1 with  L1 ≤ x1 ≤ U1, so that a1x1 = x. But this is 
obviously true for  x1 = x. The case a1 = -1 is demonstrated in similar mode.  

Suppose now that the theorem is true for n = q-1 and we consider the case that n = q. In this case we have, from the 
hypothesis of theorem that exists a permutation π of the numbers {1, 2, ..., q} so that: 

 

 aπ(1) = 1 and 

 for each j, 2 ≤ j ≤ q, 

aπ(j) ≤ 1+




1

1

j

k

aπ(k)(Uπ(k) – Lπ(k)) 

 

and therefore on the induction assumption, for every integer x  from the interval 

 

[




1

1

q

i

 (a


)(i Lπ(i) - a


)(i Uπ(i)), 




1

1

q

i

 (a


)(i Uπ(i) - a


)(i Lπ(i))] 

 

Exist integers  xπ(1), xπ(2), ..., xπ(q-1) so that  

 

 aπ(1)xπ(1) + aπ(2)xπ(2) + ... + aπ(q-1)xπ(q-1) = x  and  

 for each i, 1 ≤ i ≤ q-1, Lπ(i)  ≤  xπ(i)   ≤  Uπ(i). 

 

We consider two cases:  aπ(q) > 0 and  aπ(q) < 0. 

  

Case aπ(q) > 0. Let  y an arbitrary integer from interval  

[


q

i 1

 (a


)(i Lπ(i) - a


)(i Uπ(i)), 


q

i 1

 (a


)(i Uπ(i) - a


)(i Lπ(i))]. 

 

Because aπ(q) > 0, the interval can be describe as: 
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[(




1

1

q

i

 (a


)(i Lπ(i) - a


)(i Uπ(i))) + aπ(q)Lπ(q), (




1

1

q

i

 (a


)(i Uπ(i) - a


)(i Lπ(i))) + aπ(q)Uπ(q)] 

 

Let 

 L =




1

1

q

i

 (a


)(i Lπ(i) - a


)(i Uπ(i)) 

and 

 U =




1

1

q

i

 (a


)(i Uπ(i) - a


)(i Lπ(i)), 

 

and we consider the set of intervals  

 

{ [L + aπ(q)(Lπ(q) + k), U + aπ(q)(Lπ(q) + k)] | 0 ≤ k ≤ Uπ(q) - Lπ(q) } 

 

Because aπ(q) > 0, these intervals are in the next sequence of intervals, ordered ascending  after the first element: 

 

[L + aπ(q)Lπ(q), U + aπ(q)Lπ(q)], 

[L + aπ(q)(Lπ(q) + 1), U + aπ(q)(Lπ(q) + 1)], 

[L + aπ(q)(Lπ(q) + 2), U + aπ(q)(Lπ(q) + 2)], 

        

[L + aπ(q)Uπ(q), U + aπ(q)Uπ(q)]. 

 

The length of each interval is U + aπ(q)(Lπ(q) + k) - (L + aπ(q)(Lπ(q) + k)) + 1 = U– L+1. 

 

We consider two successive intervals, [L + aπ(q)(Lπ(q) + k), U + aπ(q)(Lπ(q) + k)] şi [L + aπ(q)(Lπ(q) + k + 1), U + aπ(q)(Lπ(q) + k + 
1)]. Exists a distance between those two, if and only if  

 

U + aπ(q)(Lπ(q) + k) + 1 < L + aπ(q)(Lπ(q) + k + 1), 

 

what comes to aπ(q) > U – L + 1, or, because aπ(q) > 0, aπ(q) > U – L + 1, of which falsity results from the assumption that 
for each  j, 2 ≤ j ≤ q, 

 

 aπ(j) ≤ 1 + 




1

1

j

k

aπ(k)(Uπ(k) - Lπ(k)) 

 

combinated with lemma 3.2.1. 

 

So, we have that   
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)()(

0

qq MN

k

 



 [L + aπ(q)(Lπ(q) + k), U + aπ(q)(Lπ(q) + k)] = [L + aπ(q)Lπ(q), U + aπ(q)Uπ(q)]. 

 

We observe that for at least k, 0 ≤ k ≤ Uπ(q) - Lπ(q),  the y to which we referred above is in the range 

 

[L + aπ(q)(Lπ(q) + k), U + aπ(q)(Lπ(q) + k)]. 

 

For some integer r, 0 ≤ r ≤ U-L, we have in this way 

 

 y = L + aπ(q)(Lπ(q) + k) + r = L + r + aπ(q)(Lπ(q) + k) 

 

But, L ≤ L + r ≤ U so must exist xπ(1), xπ(2), ..., xπ(q-1) so that 

 

    aπ(1)xπ(1) + aπ(2)xπ(2) + ... + a π(q-1)x π(q-1) = L+ r and 

    for each i, 1 ≤ i ≤ q-1, Lπ(i) ≤ xπ(i)  ≤ Uπ(i). 

 

We have 0 ≤ k ≤ Uπ(q)-Lπ(q), so L π(q)  ≤  L π(q) + k  ≤  U π(q), and in this way exist xπ(1), xπ(2), ..., xπ(q-1), xπ(q) = Lπ(q) + k so that 

 

     aπ(1)xπ(1) + aπ(2)xπ(2) + ... + aπ(q-1)xπ(q-1) + aπ(q)xπ(q) = aπ(1)xπ(1) + aπ(2)xπ(2) + ... +  

aπ(q-1)xπ(q-1) + aπ(q)(Lπ(q) + k) = L + r + aπ(q)(Lπ(q) + k) = y şi  

    for each i, 1 ≤ i ≤ q, Lπ(i) ≤ xπ(i) ≤ Uπ(i). 

 

 Case aπ(q) < 0. The demonstration is similar with that of the previous case.               

 

The theorem 2.3, whose demonstration follows immediately from the theorem 2.2, shows that hypothesis of Theorem 2.2 
is a sufficient condition for the test to be accurate Banerjee, i.e., to determine the limits of cycling full solutions and not just 
real solutions. 

Theorem 2.3. Let a0 an integer and let a1, a2, ..., an integers not equal zero. For each k, 1 ≤ k ≤ n,  let Lk şi Uk integers so 

that Lk < Uk. If exists a permutation of π of the numbers  {1, 2, ..., n} so that: 

 

 aπ(1) = 1 and 

 for each j, 2 ≤ j ≤ n,  

  

aπ(j)  ≤ 1 + 




1

1

j

k

aπ(k) (Uπ(k) - Lπ(k)) 

then 

 a0  [


n

i 1

(a


i Li – a


i Ui), 


n

i 1

(a


i Ui - a


i Li)] 

 

if and only if 

 

a1I1 + a2I2 + ... + anIn = a0 
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is (L1, U1; L2, U2; ...; Ln, Un) – solvable, i.e., Banerjee test search integers solutions for equation a1I1 + a2I2 + ... + anIn = a0 
between limits of cycling. 

The empirical results provided in [Shen90] shows that the number of iterations is relatively high for a cycle 
instead of dependence equations resulting coefficients are usually low, often even denominations. 

These empirical results combined with the results of Theorem 2.3 formally prove that the Banerjee test proves 
accurate in practice, that it causes the whole of the limits of cycling solutions and not just real solutions. 

The formulation of sufficiency theorem suggests that practical application of Banerjee's test has at least exponential 
complexity (factorial of the number of ai values) as the worst case would be considered all possible permutations of the 
values of the coefficients. 

Conversely, if the conditions of Theorem 3.2.3 are satisfied by arbitrary permutation of the values of ai , these conditions 
will be met with more than permutation that has these values sorted in ascending order. 

Therefore resulting consequence 2.4, that shows that once the coefficients are sorted, dependence testing can be done in 
linear time relative to the number of coefficients. 

Theorem 2.4. Let a0 an integer and let a1 ≤ a2 ≤ ... ≤ an integers nonzero. For each k, 1 ≤ k ≤ n,  let Lk and Uk integeres, so 

that Lk < Uk. If: 

 

 a1 = 1 and 

 For each j, 2 ≤ j ≤ n,  

 

aj ≤ 1+




1

1

j

k

ak (Uk - Lk) 

then 

 a0  [


n

i 1

(a


i Li – a


i Ui), 


n

i 1

(a


i Ui - a


i Li)] 

 

if and only if  

 

a1I1 + a2I2 + ... + anIn = a0 

 

is (L1, U1; L2, U2; ...; Ln, Un) – solvable, i.e., Banerjee test search integers solutions for ecuation a1I1 + a2I2 + ... + anIn = a0  
between the limits of cycling. 

 

Once the coefficients are ordered, testing can be done in linear time relative to the number of coefficients. 

3. The increased accuracy Banerjee test. 

Because we want to approach only the existence or un-existence of integers solution to the equation of dependence, 
below by  [A, B] we mean the set of integers between A and B inclusive. 

 

Definition 3.1. We define the operation of adding of two set of integers S and S' like that: 

    S + S' = { s+s' | s S şi s' S' } 

 

Notice that if S = [L,U] and S' = { s1, s2, ..., sn } than we have  

  

[L,U] + S' =  
n

1i

[L + si, U + si] 
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The next lemma is obvious. 

 

Lemma 3.2. If  M ≤ x ≤ N then a
+
M – a

-
N ≤ ax ≤ a

+
N – a

-
M. These limits are extreme values of function f(x) = ax in the 

specified region by M ≤ x ≤ N. 

 

The result of the following lemma is essential for our purpose of this section. Improve test accuracy Banerjee will be 
possible just based on restriction imposed in lemma (| a | ≤ U - L + 1). 

 

Lema 3.3. Let [L,U] an interval with integer limits. Let a, M and N integer numbers so that M < N and let S = { ax | x  ℤ şi 

M ≤ x ≤ N }.  Then 

 

[L,U] + S = [L + a
+
M – a

-
 N, U + a

+
N – a

-
 M] 

 

if and only if | a | ≤ U – L + 1. 

 

Demonstration. For a = 0 lemma is verified in trivial way. Let a > 0. Then, based on the definition of parts of a number we 

have:  

 

[L + a
+
M – a

-
 N, U + a

+
N – a

-
 M] = [L + aM, U + aN] 

 

The general form for an element from S is aM + ka, with  k = 0, N - M. 

Based on definition  3.1 we have   

 

[L,U] + S  =   
MN

0k





 [L + aM + ka, U + aM + ka]    (3.5) 

 

So we must show that: 

 

 [L,U] + S = [L + aM, U + aN] ⇔ a ≤ U -L + 1. 

 

To note that        L + aM = L + aM + ka,  for k = 0 

     U + aN = L + aM + ka,  for k = N - M 

 

which means we have to determine a necessary and sufficient condition for the reunion (3.5) to be an interval. This 
happens, if and only if every two successive intervals are disjoint, or, at worst, are disjoint but adjacent as like the 
situation: 

 

 

  

        L+a+M+ka               U+aM+ka      L+aM+(k+1)a       U+aM+(k+1)a 

 

what is the necessary and sufficient condition 
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    L + aM + (k+1)a ≤ U + aM + ka + 1    ⇔ a ≤ U - L + 1 

 

 

Notice that this is true only in the sense that I gave a notation [A, B] at the beginning of the paragraph. If we consider real 
numbers,  of these integers,  then the result above does not occur, because the worst "get lost" real values of integers 
representing the ends of intervals. 

 

The case a < 0 is treated in the same way and we obtained  -a ≤ U - L + 1. Combining the results we obtained that 

 

[L,U] + S = [L + a
+
M – a

-
 N, U + a

+
N – a

-
 M] 

 

if and only if  | a | ≤ U – L + 1, q.e.d.      

 

Using the result of lemma 3.3, we will show that the condition of sufficiency of theorem 3.3. is also a necessary condition 
for the accuracy Banerjee test. 

 

Theorem 3.4. Let non-zero integers, a1, a2, ... , an and  k N, 1 ≤ k ≤ n, f Lk and Uk integers so that  Lk < Uk. If for each 

integer x from the interval 

 








 
n

i

iiii

n

i

iiii LaUaUaLa
11

)](),([  

 

exist integers x1, x2, ... , xn so that 

 

 xxaxaxa nn  ...2211      and 

  i N, 1 ≤ i ≤ n, Li ≤ xi ≤ Ui. 

 

Then exist a permutation π of the set {1, 2, ... , n} so that  

 

(i) |a π(1) | = 1  and 

(ii)  jN, 2 ≤ j ≤ n  





1

1

)()()()( )(||1||
j

k

kkkj LUaa   

 

Demonstration. We will demonstrate by induction on n. Let n = 1. On basis of hypothesis of theorem, we have that for 

each  x from interval  

 

],[ 11111111 LaUaUaLa    

 

exists an integer x1, L1 ≤ x1 ≤ U1 , so that  a1x1 = x, and from here results that  
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111

1
],[],[ 11111111111

UxL

xaxaLaUaUaLa


   

 

On the other hand, according to lemma 3.2 we have that 

 

],[],[ 111111111111

111

LaUaUaLaxaxa
UxL





  

 

so that we have equality: 

],[],[ 111111111111

111

LaUaUaLaxaxa
UxL





  

 

where on the basis of lemma 3.3 in which L = U = 0 we have that |a1| = 1, so for n = 1 the conclusion is verified. We 
suppose now that the theorem is true for the case n-1 and we deduce the conclusion for the case of n. 

 

Let 

 

 













1

1

1

1

)(

)(

n

i
iiii

n

i
iiii

LaUaU

UaLaL
    (3.6) 

 

From the hypothesis of induction results that exists a permutation π' of the set  {1, 2, ..., n-1} so that 

 

|a π'(1) | = 1  and  

 jN, 2 ≤ j ≤ n-1   




1

1
)(')(')(')(' )(||1||

j

k
kkkj LUaa   

 

We define a permutation π of the set {1, 2, ... , n} so that: 

 










nin

nii
i

if,

11if),('
)(


  

 

And we must show that (for the rest of the value the relation is true through assumption of induction)  

 




1

1
)()()()( )(||1||

n

k
kkkn LUaa   

but as π(n) = n, it returns to show that: 
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The hypothesis of the theorem says that for any x in the interval 

 

],[ nnnnnnnn LaUaUUaLaL    

 

exist integers x1, x2, ... , xn  so that 

xxaxaxa nn  ...2211      and 

 i N, 1 ≤ i ≤ n, Li ≤ xi ≤ Ui. 

 

This assumption combined with lemma 3.3 and Banerjee formulas (3.4,3.6) of calculus of limits for an amount shows that 
for any x from the interval  

 

],[ nnnnnnnn LaUaUUaLaL    

 

exist integers 




1

1

n

i
ii xaw  şi  xn , so that 

x = w + anxn ; 

L   ≤  w ≤ U; 

Ln ≤ xn ≤ Un ; 

Hence we have the relation: 

 


nnn UxL

nnnnnnnnnnnn xaUxaLLaUaUUaLaL


  ],[],[  

 

On the basis of lemma 3.3 we deduce immediately that we have and  
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so that results the equality 
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And so we can apply the lemma 3.3, from where results  

 

|an| ≤ U - L + 1 

what comes to 
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and so the theorem is demonstrated. 

4. The implementation of algorithm 

 

After the analysis done in this section, the algorithm which reflects the presented results is the following: 

 

Algorithm 4.1.  

 

input:  a0, a1, ... , an             - equation coefficients of depending; 

 L1, U1, ... , Ln, Un     - loop limits; 

 

output:  - NO - dependence equation it is not I-solvable; 

 - YES – dependence equation is I-solvable; 

 - MAYBE – dependence equation might be I-solvable; 

 

begin 

L = a0 ; U = a0 ; coef = { a1, a2, ... , an}; 

while (true) do 

{ while ( ai  coef a.î. |ai| ≤ U - L + 1) do 

         { 

  iiii LaUaLL   ; 

  iiii UaLaUU   ; 

  coef = coef -{ai}; 

  if coef = Ø  then {if (L ≤ 0 and 0 ≤ U) then return ('YES') 

   else return ('NO')} 

          } 

 g = gcd(ai), ai  coef 

 if (not(L/g ≤ U/g)) then return ('NO'); 

 if (g  1) then {for ai  coef  do  ai = ai/g ; 

                  L = L/g; U = U/g;} 

     else return('MAYBE'); 

} 

end. 

 

In the next figure we see an implementation of algorithm 4.1. The values are introduced in cells and in final we see the 
interpretation of results. Our example is explained after the figure.  
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Fig 1: A capture of application 

The value on which  we have tested the application are described below. Let  dependence equation  

 

x1 - 2x2 + 8x3 + 8x4 = 26 

with restriction 

                       1 ≤ x1 ≤   3           1 ≤ x3 ≤ 10 

1 ≤ x2 ≤   3 1 ≤ x4 ≤ 15   (3.8) 

 

cmmdc(1, -2, 8, 8) = 1, which divide 26 so cmmdc test doesn’t exclude the possibility of dependence. 

 

Limit values for expresion x1 - 2x2 + 8x3 + 8x4  compared at conditions (3.8) are calculated according to the formulas of 
Banerjee (3.4) and we obtain linf = 11 and lsup = 201. Because 11 ≤ 26 ≤ 201, Banerjee test also indicate that the equation 
above can be   I-solvable.  

After applying the dependence algorithm 4.1. we first obtain: 

 

x1 - 2x2 + 8x3 + 8x4 = [26, 26] 

 

and after, because a1 = 1 ≤ U - L + 1 = 26 - 26 + 1 = 1, we obtain 

 

-2x2 + 8x3 + 8x4 = [26-3, 26-1] = [23, 25] 

 

cmmdc(-2, 8, 8) = 2 and 12 = 23/2 ≤ 25/2 = 12, we continue through rewriting the equation under the form   -x2 + 4x3 + 
4x4 = [12, 12] and because |a2| = 1 ≤ 12 - 12 + 1 = 1 we will eliminate the term  x2 and we will have: 

 

4x3 + 4x4 = [12 + 1, 12 + 3] = [13, 15] 
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cmmdc(4, 4) = 4, but this time we have 4 = 13/4 ≰ 15/4 = 3, so equation doesn’t  have solution, so we have 
dependences.  

So, algorithm 4.1. gives here an exactly answer ( NO dependences ) while CMMDC and Banerjee tests can only 
assume the conservative (and wrong this time!) dependence. 

It is important to note that in contrast to classical CMMDC and Banerjee tests, test 4.1 may also action in circumstances 
where certain limits are not known. For example here, if you would not know the variables x3 and x4 limits, the test would 
conclude dependence gcd (acting solely on the basis of coefficients) and classical Banerjee test is not applicable at all, 
because it could calculate the limit values. Instead, the application of algorithm 4.1 to 4.2 to above example shows that it is 
not necessary to know the limits of cycling for x3 and x4, which are not used in the algorithm. 

5. State of Art 

Peterson et al. in their paper [4] include the generalized greatest common divisor test, three variants of Banerjee’s test, 
and the Omega test. Their effectiveness was measured with respect to the Perfect Benchmarks and the linear algebra 
libraries, EISPACK and LAPACK. Two methods were applied, one using only compile-time information for the analysis, 
and the second using information gathered during program execution. The results indicate that Banerjee’s test is for all 
practical purposes as accurate as the more complex Omega test in detecting parallelism. 

In paper [5], the author proposes a theorem on which delinearization algorithm  is based on algorithm itself.    

Banerjee et al. in paper [6] present an overview of an automatic programs parallelization and the last section of the paper 
surveys several experimental studies on the experimental studies on the effectiveness of parallelizing compilers.  

In paper [7], the authors discuss the effectiveness of several dependence tests in the Perfect Benchmarks. The tests 
analyzed include the generalized greatest common divisor 

test, Banerjee’s test and the Omega test. The dynamic analysis shows that the Omega test does not improve the detected 
inherent parallelism. 

In paper [8], the authors describe the range test that can handle non-linear expressions. The test proves independence by 
determining whether certain symbolic inequalities hold of a permutation of the loop nest.    

6. Conclusions 

Data dependency analysis is the theoretical basis of the methodology of restructuring sequential programs for automatic 
parallelization. 

Analysis of data dependencies is a problem in the general case un-decidable, Even when we limit the nested loop 
structures of particular forms (affine structures), determining of a complete information relative to data dependence, even if 
become decidable, remains an NP-complete problem. 

Therefore, in practice are chosen simply techniques, based on the theory of diofantic equations and theory of limits 
continuous real functions. Even if these methods are imprecise, they generally prove more effective than conventional 
methods of linear integer programming. 

In this context, efforts to improve the accuracy of these algorithms (even under a certain restriction of generality) are 
justified. 

In Section 2 we presented a sufficient condition for the accuracy test demonstrated by Psarris Banerjee et al. in 
[Psarris91]. In Section 3, which constitutes an original contribution, we have shown that under certain circumstances (as 
defined in Lemma 3.3) the condition of sufficiency becomes necessary, result which allowed the development of an 
improved algorithm for data dependence analysis. 

Example presented  is illustrative regarding the advantages exhibited by this algorithm: the source code as an example to 
successfully determine the exact dependency information, gcd and Banerjee tests failing in this case. Furthermore, our 
algorithm can act in situations where the loop limits are not known, our example is illustrative in this aspect. 

On the other hand, in the general case, the algorithm 4.1 remains imprecise; there are situations in which he must assume 
the conservative dependence (variant 'MAYBE' in the algorithm). As we highlight, only a full linear programming algorithm 
can provide an exact answer for any event. 

Improved algorithms for testing the accuracy of data dependencies have been exceptionally important. They highlight the 
main task of a high degree of parallelism as processed by automatic parallelization algorithms. An analysis of the latter we 
will do in a further research. 
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