
 ISSN 22773061

1410 | P a g e A u g 1 0 , 2 0 1 3

ALGORITHM FOR THE ANALYSIS OF EXACTICTY OF BANERJEE TEST

Monica-Iuliana CIACA
Babeş-Bolyai University, str. T. Mihali no.58-60

monica.ciaca@econ.ubbcluj.ro
Loredana MOCEAN

Babeş-Bolyai University, str. T. Mihali no.58-60

loredana.mocean@econ.ubbcluj.ro
Alexandru VANCEA

Babeş-Bolyai University, str. T. Mihali no.58-60

alexandru.vancea@cs.ubbcluj.ro

ABSTRACT

In compiler theory, the Banerjee test is a dependence test. The Banerjee test assumes that all loop indices are
independent, however in reality, this is often not true. The Bannerjee test is a conservative test. That is, it will not break a
dependence that does not exist.

This means that the only thing the test can guarantee is the absence of dependence.

This paper proposes an innovative algorithm which allows precise determination of information about dependences and
can act in situation where certain cycling limits are known.

Keywords

Banerjee, data dependences, imprecise test, solvable

Academic Discipline And Sub-Disciplines

Mathematics applied in Computer Science

SUBJECT CLASSIFICATION

37N40

TYPE (METHOD/APPROACH)

Quasi-Experimental; Literary

Council for Innovative Research

Peer Review Research Publishing System

Journal: INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY

Vol 10, No 3

editor@cirworld.com
www.cirworld.com, member.cirworld.com

http://en.wikipedia.org/wiki/Compiler_theory
http://en.wikipedia.org/wiki/Dependence_analysis
http://member.cirworld.com/
http://www.cirworld.com/
http://www.cirworld.com/

 ISSN 22773061

1411 | P a g e A u g 1 0 , 2 0 1 3

INTRODUCTION

In previous researches we presented Banerjee test for the analysis of data dependencies. Generally, it is an imprecise
test, supposing the testing of necessary conditions for the existence of of data dependencies. Utility of such a test is
highlighted is the case of un-verifying for conditions, situation that leads to the conclusion of data independence. If we are
in the case of conditions verification, testing algorithm decides in conservative way the dependence, even if it is not
present.

That’s why, some researchers have directed their efforts to formulate sufficient conditions for the existence of data
dependencies, aimed at improving the accuracy of these algorithms.

Psarris et al. [Psarris91] demonstrated a sufficient condition for Banerjee test accuracy, which we will present in Theorem
2.2.

Our analysis of accuracy testing algorithms for data dependencies has resulted in the original results that we present in
3.3 and also in [Vancea98].

We have shown that the condition of sufficiency becomes under certain circumstances (defined in Lemma 3.3) also a
necessary condition for the accuracy of the test Banerjee (Theorem 3.4). This result allowed the implementation of an
improved algorithm (Algorithm 4.1) which has two main advantages:

a). allows precise determination of information about dependences, in some cases that traditional tests Banerjee and
CMMDC fail;

b). can act in situations where certain cycling limits are not known (for example analysis 3.4.2 is edifying in this sense);

1. Preliminaries. Definitions and notations.

Definition 1.1.

(I) Let a0, a1, ... , an integers. For each k, 1 ≤ k ≤ n, let Lk şi Uk integers, Lk ≤ Uk. The equation:

02211 ... aIaIaIa nn

they say that is (L1,U1; L2,U2; ...; Ln,Un) - solvable (or interval solvable, shortly I-solvable) if exists the integers i1,
i2, ... , in so that

 02211 ... aiaiaia nn and

 for each k, 1 ≤ k ≤ n, Lk ≤ ik ≤ Uk.

(II) For each k, 1 ≤ k ≤ m, let ak0, ak1, ak2, ... , akn integers. For each k', 1 ≤ k' ≤ n let Lk' and Uk' integers, Lk' ≤ Uk'.
The system of equations:

02211

2021222121

101212111

...

..

...

...

mnmnm

nn

nn

aIaIaIa

aIaIaIa

aIaIaIa

they say that is (L1,U1; L2,U2; ...; Ln,Un) - I-solvable if exists integers i1, i2, ..., in so that

 101212111 ... aiaiaia nn

 202222121 ... aiaiaia nn

..

 ISSN 22773061

1412 | P a g e A u g 1 0 , 2 0 1 3

 02211 ... mnmnmm aiaiaia

 for each k', 1 ≤ k' ≤ n, Lk' ≤ ik' ≤ Uk'.

(III) Let a1, ..., an , L şi U integers. An equation of the form

],[...2211 ULIaIaIa nn

is called interval equation and it has solution if exists a0 [L,U] so that

02211 ... aIaIaIa nn to be I-rezolvable.

Let be the structure of nested cycles below, where the two references to elements of the m-dimensional A vector potential
causes a dependency of data.

for j1 := inf1 to sup1 do

 for j2 := inf2 to sup2 do

 . . .

 for jr := infr to supr do

 . . .

B := A[f1(j1,...,jr),f2(j1,...,jr),...,fm(j1,...,jr)] ...

 . . .

A[g1(j1,...,jr),g2(j1,...,jr),...,gm(j1,...,jr)] := ...

 . . .

 end for

 . .

 end for

end for

We assume for simplicity that:

 k, 1 ≤ k ≤ r, infk and supk are integers and infk ≤ supk;

 k, 1 ≤ k ≤ r, fk and gk are linear functions of the form:

022111 ...),...,(krkrkkrk cjcjcjcjjf and respectively (3.1)

022111 ...),...,(krkrkkrk djdjdjdjjg

where kiki dc , ℤ, 0≤ i ≤ r.

Let γ = (inf1,sup1; inf2,sup2; ... ;infr,supr; inf1,sup1; inf2,sup2; ... ;infr,supr). Between those two references of m-dimensional
array A, from above, exists a data dependences if and only if the following system of equations is γ-solvable:

 ISSN 22773061

1413 | P a g e A u g 1 0 , 2 0 1 3

0),...,,(),...,,(

...

0),...,,(),...,,(

""

2

"

1

''

2

'

1

""

2

"

11

''

2

'

11

rmrm

rr

jjjgjjjf

jjjgjjjf

 (3.2)

The practical procedure of the testing of dependency suppose conservatively the dependence until at least one of the
equations of the system (3.2) is not I-solvable, the moment in which we deduce the dependence.

Such a method of approach is called subscript-by-subscript testing [Bane93].

So, let us consider an arbitrary equation chose from (3.2), that, in view of (3.1) we write in the form:

Eliminating possibly terms of coefficient 0 and simplifying notation (meaning factorization based on index values), testing
step by step will be to determine if an equation of the form:

 02211 ... aIaIaIa nn (3.3)

is (L1,U1; L2,U2; ... ,LnUn)-solvable, where n ≤ 2r and ak 0, 1 ≤ k ≤ n.

Generalization cmmdc test for interval equations is given without proof (which is immediate) in the following theorem.

Theorem 1.2. Fie a1, a2, ..., an non-zero integers and let U, L integers. We note

g = cmmdc(a1, a2, ... , an)

The interval equation a1x1 + a2x2 + ... + anxn = [L,U] has solution (is I-solvable) if and only if L/g ≤ U/g.

In [Bane76] it is shown that in the particular case in which all dependence coefficients have absolute value equation 1,
Banerjee test is exactly, solving the problem of integers solutions for the concerned period.

The same conclusion is proved in [Li89] where the coefficient (either ak) of the dependence equation has absolute and
unitary solution and

1|)(|max
1

kki

ni

LUa

Based on the analysis of [Psarris91] we prove a sufficient condition of Banerjee test accuracy, which condition is less
restrictive than the above.

2. A sufficient condition for Banerjee test accuracy.

Based on the positive and negative notations of numbers, upper and lower limits calculated Banerjee test for expression
a1I1 + a2I2 + ... + anIn

are respectively

0...... 011011 krkrkkrkrk djdjdcjcjc

 ISSN 22773061

1414 | P a g e A u g 1 0 , 2 0 1 3

n

i

iiii

n

i

iiii

LaUal

UaLal

1

sup

1

inf

)(

)(

 (3.4)

The precise wording of the Banerjee test [Bane97] says that if

a0 [linf, lsup]

then there exists real numbers r1,r2, ... , rn so that

 02211 ... ararara nn and

 i N, 1 ≤ i ≤ n, Li ≤ ri ≤ Ui.

Sufficiency condition will appeal to the whole values assumed by a1I1 + ... + anIn.

Lema 2.1. If a1, a2,..., an are integers, and for every k, 1 ≤ k ≤ n, Lk and Uk are integers fulfill the condition Lk ≤ Uk, then :

n

i 1

 (a

i Ui - a

i Li) -

n

i 1

 (a

i Li - a

i Ui) =

n

i 1

ai(Ui - Li).

Demonstration. For each of the integers a, L and U we have

(a
+
U – a

-
L) – (a

+
L - a

-
U) = a

+
U - a

+
L = aU – aL = a (U - L) if a > 0 and

(a+U – a-L) – (a+L - a-U) = -a-L - (-a-U) = aL – aU = -a L + a U = a (U - L) if a < 0, from where results
immediately.the above formula.

Theorem 2.2. Let a1, a2, ..., an integer numbers, not zero. For each k, 1 ≤ k ≤ n, let Lk and Uk integers with Lk < Uk. If

exists a permutation π of the set {1, 2, ..., n} so that:

 aπ(1) = 1 and

 for each j, 2 ≤ j ≤ n,

aπ(j) ≤ 1+

1

1

j

k

aπ(k) (Uπ(k) - Lπ(k))

Then for each integer x from the interval

 [

n

i 1

 (a

i Li – a

i Ui),

n

i 1

 (a

i Ui - a

i Li)]

exist integers x1, x2, ..., xn so that

 ISSN 22773061

1415 | P a g e A u g 1 0 , 2 0 1 3

 a1x1+ a2x2 + ... + anxn = x and

 for each i, 1 ≤ i ≤ n, Li ≤ xi ≤Ui.

Demonstration. We will demonstrate through induction after n.

Case n = 1. In this case let a1 = 1 and let a1 = -1. If a1 = 1, then

n

i 1

 (a

i Li - a

i Ui) = a

1 L1 – a

1 U1 = aL1 = L1

and

n

i 1

 (a

i Ui - a

i Li) = a

1 U1 - a

1 L1 = a1U1 = U1

so we must demonstrate that for every integer x [L1,U1], exit x1 with L1 ≤ x1 ≤ U1, so that a1x1 = x. But this is
obviously true for x1 = x. The case a1 = -1 is demonstrated in similar mode.

Suppose now that the theorem is true for n = q-1 and we consider the case that n = q. In this case we have, from the
hypothesis of theorem that exists a permutation π of the numbers {1, 2, ..., q} so that:

 aπ(1) = 1 and

 for each j, 2 ≤ j ≤ q,

aπ(j) ≤ 1+

1

1

j

k

aπ(k)(Uπ(k) – Lπ(k))

and therefore on the induction assumption, for every integer x from the interval

[

1

1

q

i

 (a

)(i Lπ(i) - a

)(i Uπ(i)),

1

1

q

i

 (a

)(i Uπ(i) - a

)(i Lπ(i))]

Exist integers xπ(1), xπ(2), ..., xπ(q-1) so that

 aπ(1)xπ(1) + aπ(2)xπ(2) + ... + aπ(q-1)xπ(q-1) = x and

 for each i, 1 ≤ i ≤ q-1, Lπ(i) ≤ xπ(i) ≤ Uπ(i).

We consider two cases: aπ(q) > 0 and aπ(q) < 0.

Case aπ(q) > 0. Let y an arbitrary integer from interval

[

q

i 1

 (a

)(i Lπ(i) - a

)(i Uπ(i)),

q

i 1

 (a

)(i Uπ(i) - a

)(i Lπ(i))].

Because aπ(q) > 0, the interval can be describe as:

 ISSN 22773061

1416 | P a g e A u g 1 0 , 2 0 1 3

[(

1

1

q

i

 (a

)(i Lπ(i) - a

)(i Uπ(i))) + aπ(q)Lπ(q), (

1

1

q

i

 (a

)(i Uπ(i) - a

)(i Lπ(i))) + aπ(q)Uπ(q)]

Let

 L =

1

1

q

i

 (a

)(i Lπ(i) - a

)(i Uπ(i))

and

 U =

1

1

q

i

 (a

)(i Uπ(i) - a

)(i Lπ(i)),

and we consider the set of intervals

{ [L + aπ(q)(Lπ(q) + k), U + aπ(q)(Lπ(q) + k)] | 0 ≤ k ≤ Uπ(q) - Lπ(q) }

Because aπ(q) > 0, these intervals are in the next sequence of intervals, ordered ascending after the first element:

[L + aπ(q)Lπ(q), U + aπ(q)Lπ(q)],

[L + aπ(q)(Lπ(q) + 1), U + aπ(q)(Lπ(q) + 1)],

[L + aπ(q)(Lπ(q) + 2), U + aπ(q)(Lπ(q) + 2)],

[L + aπ(q)Uπ(q), U + aπ(q)Uπ(q)].

The length of each interval is U + aπ(q)(Lπ(q) + k) - (L + aπ(q)(Lπ(q) + k)) + 1 = U– L+1.

We consider two successive intervals, [L + aπ(q)(Lπ(q) + k), U + aπ(q)(Lπ(q) + k)] şi [L + aπ(q)(Lπ(q) + k + 1), U + aπ(q)(Lπ(q) + k +
1)]. Exists a distance between those two, if and only if

U + aπ(q)(Lπ(q) + k) + 1 < L + aπ(q)(Lπ(q) + k + 1),

what comes to aπ(q) > U – L + 1, or, because aπ(q) > 0, aπ(q) > U – L + 1, of which falsity results from the assumption that
for each j, 2 ≤ j ≤ q,

 aπ(j) ≤ 1 +

1

1

j

k

aπ(k)(Uπ(k) - Lπ(k))

combinated with lemma 3.2.1.

So, we have that

 ISSN 22773061

1417 | P a g e A u g 1 0 , 2 0 1 3

)()(

0

qq MN

k

 [L + aπ(q)(Lπ(q) + k), U + aπ(q)(Lπ(q) + k)] = [L + aπ(q)Lπ(q), U + aπ(q)Uπ(q)].

We observe that for at least k, 0 ≤ k ≤ Uπ(q) - Lπ(q), the y to which we referred above is in the range

[L + aπ(q)(Lπ(q) + k), U + aπ(q)(Lπ(q) + k)].

For some integer r, 0 ≤ r ≤ U-L, we have in this way

 y = L + aπ(q)(Lπ(q) + k) + r = L + r + aπ(q)(Lπ(q) + k)

But, L ≤ L + r ≤ U so must exist xπ(1), xπ(2), ..., xπ(q-1) so that

 aπ(1)xπ(1) + aπ(2)xπ(2) + ... + a π(q-1)x π(q-1) = L+ r and

 for each i, 1 ≤ i ≤ q-1, Lπ(i) ≤ xπ(i) ≤ Uπ(i).

We have 0 ≤ k ≤ Uπ(q)-Lπ(q), so L π(q) ≤ L π(q) + k ≤ U π(q), and in this way exist xπ(1), xπ(2), ..., xπ(q-1), xπ(q) = Lπ(q) + k so that

 aπ(1)xπ(1) + aπ(2)xπ(2) + ... + aπ(q-1)xπ(q-1) + aπ(q)xπ(q) = aπ(1)xπ(1) + aπ(2)xπ(2) + ... +

aπ(q-1)xπ(q-1) + aπ(q)(Lπ(q) + k) = L + r + aπ(q)(Lπ(q) + k) = y şi

 for each i, 1 ≤ i ≤ q, Lπ(i) ≤ xπ(i) ≤ Uπ(i).

 Case aπ(q) < 0. The demonstration is similar with that of the previous case.

The theorem 2.3, whose demonstration follows immediately from the theorem 2.2, shows that hypothesis of Theorem 2.2
is a sufficient condition for the test to be accurate Banerjee, i.e., to determine the limits of cycling full solutions and not just
real solutions.

Theorem 2.3. Let a0 an integer and let a1, a2, ..., an integers not equal zero. For each k, 1 ≤ k ≤ n, let Lk şi Uk integers so

that Lk < Uk. If exists a permutation of π of the numbers {1, 2, ..., n} so that:

 aπ(1) = 1 and

 for each j, 2 ≤ j ≤ n,

aπ(j) ≤ 1 +

1

1

j

k

aπ(k) (Uπ(k) - Lπ(k))

then

 a0 [

n

i 1

(a

i Li – a

i Ui),

n

i 1

(a

i Ui - a

i Li)]

if and only if

a1I1 + a2I2 + ... + anIn = a0

 ISSN 22773061

1418 | P a g e A u g 1 0 , 2 0 1 3

is (L1, U1; L2, U2; ...; Ln, Un) – solvable, i.e., Banerjee test search integers solutions for equation a1I1 + a2I2 + ... + anIn = a0
between limits of cycling.

The empirical results provided in [Shen90] shows that the number of iterations is relatively high for a cycle
instead of dependence equations resulting coefficients are usually low, often even denominations.

These empirical results combined with the results of Theorem 2.3 formally prove that the Banerjee test proves
accurate in practice, that it causes the whole of the limits of cycling solutions and not just real solutions.

The formulation of sufficiency theorem suggests that practical application of Banerjee's test has at least exponential
complexity (factorial of the number of ai values) as the worst case would be considered all possible permutations of the
values of the coefficients.

Conversely, if the conditions of Theorem 3.2.3 are satisfied by arbitrary permutation of the values of ai , these conditions
will be met with more than permutation that has these values sorted in ascending order.

Therefore resulting consequence 2.4, that shows that once the coefficients are sorted, dependence testing can be done in
linear time relative to the number of coefficients.

Theorem 2.4. Let a0 an integer and let a1 ≤ a2 ≤ ... ≤ an integers nonzero. For each k, 1 ≤ k ≤ n, let Lk and Uk integeres, so

that Lk < Uk. If:

 a1 = 1 and

 For each j, 2 ≤ j ≤ n,

aj ≤ 1+

1

1

j

k

ak (Uk - Lk)

then

 a0 [

n

i 1

(a

i Li – a

i Ui),

n

i 1

(a

i Ui - a

i Li)]

if and only if

a1I1 + a2I2 + ... + anIn = a0

is (L1, U1; L2, U2; ...; Ln, Un) – solvable, i.e., Banerjee test search integers solutions for ecuation a1I1 + a2I2 + ... + anIn = a0
between the limits of cycling.

Once the coefficients are ordered, testing can be done in linear time relative to the number of coefficients.

3. The increased accuracy Banerjee test.

Because we want to approach only the existence or un-existence of integers solution to the equation of dependence,
below by [A, B] we mean the set of integers between A and B inclusive.

Definition 3.1. We define the operation of adding of two set of integers S and S' like that:

 S + S' = { s+s' | s S şi s' S' }

Notice that if S = [L,U] and S' = { s1, s2, ..., sn } than we have

[L,U] + S' =
n

1i

[L + si, U + si]

 ISSN 22773061

1419 | P a g e A u g 1 0 , 2 0 1 3

The next lemma is obvious.

Lemma 3.2. If M ≤ x ≤ N then a
+
M – a

-
N ≤ ax ≤ a

+
N – a

-
M. These limits are extreme values of function f(x) = ax in the

specified region by M ≤ x ≤ N.

The result of the following lemma is essential for our purpose of this section. Improve test accuracy Banerjee will be
possible just based on restriction imposed in lemma (| a | ≤ U - L + 1).

Lema 3.3. Let [L,U] an interval with integer limits. Let a, M and N integer numbers so that M < N and let S = { ax | x ℤ şi

M ≤ x ≤ N }. Then

[L,U] + S = [L + a
+
M – a

-
 N, U + a

+
N – a

-
 M]

if and only if | a | ≤ U – L + 1.

Demonstration. For a = 0 lemma is verified in trivial way. Let a > 0. Then, based on the definition of parts of a number we

have:

[L + a
+
M – a

-
 N, U + a

+
N – a

-
 M] = [L + aM, U + aN]

The general form for an element from S is aM + ka, with k = 0, N - M.

Based on definition 3.1 we have

[L,U] + S =
MN

0k

 [L + aM + ka, U + aM + ka] (3.5)

So we must show that:

 [L,U] + S = [L + aM, U + aN] ⇔ a ≤ U -L + 1.

To note that L + aM = L + aM + ka, for k = 0

 U + aN = L + aM + ka, for k = N - M

which means we have to determine a necessary and sufficient condition for the reunion (3.5) to be an interval. This
happens, if and only if every two successive intervals are disjoint, or, at worst, are disjoint but adjacent as like the
situation:

 L+a+M+ka U+aM+ka L+aM+(k+1)a U+aM+(k+1)a

what is the necessary and sufficient condition

 ISSN 22773061

1420 | P a g e A u g 1 0 , 2 0 1 3

 L + aM + (k+1)a ≤ U + aM + ka + 1 ⇔ a ≤ U - L + 1

Notice that this is true only in the sense that I gave a notation [A, B] at the beginning of the paragraph. If we consider real
numbers, of these integers, then the result above does not occur, because the worst "get lost" real values of integers
representing the ends of intervals.

The case a < 0 is treated in the same way and we obtained -a ≤ U - L + 1. Combining the results we obtained that

[L,U] + S = [L + a
+
M – a

-
 N, U + a

+
N – a

-
 M]

if and only if | a | ≤ U – L + 1, q.e.d.

Using the result of lemma 3.3, we will show that the condition of sufficiency of theorem 3.3. is also a necessary condition
for the accuracy Banerjee test.

Theorem 3.4. Let non-zero integers, a1, a2, ... , an and k N, 1 ≤ k ≤ n, f Lk and Uk integers so that Lk < Uk. If for each

integer x from the interval

n

i

iiii

n

i

iiii LaUaUaLa
11

)](),([

exist integers x1, x2, ... , xn so that

 xxaxaxa nn ...2211 and

 i N, 1 ≤ i ≤ n, Li ≤ xi ≤ Ui.

Then exist a permutation π of the set {1, 2, ... , n} so that

(i) |a π(1) | = 1 and

(ii) jN, 2 ≤ j ≤ n

1

1

)()()()()(||1||
j

k

kkkj LUaa

Demonstration. We will demonstrate by induction on n. Let n = 1. On basis of hypothesis of theorem, we have that for

each x from interval

],[11111111 LaUaUaLa

exists an integer x1, L1 ≤ x1 ≤ U1 , so that a1x1 = x, and from here results that

 ISSN 22773061

1421 | P a g e A u g 1 0 , 2 0 1 3

111

1
],[],[11111111111

UxL

xaxaLaUaUaLa

On the other hand, according to lemma 3.2 we have that

],[],[111111111111

111

LaUaUaLaxaxa
UxL

so that we have equality:

],[],[111111111111

111

LaUaUaLaxaxa
UxL

where on the basis of lemma 3.3 in which L = U = 0 we have that |a1| = 1, so for n = 1 the conclusion is verified. We
suppose now that the theorem is true for the case n-1 and we deduce the conclusion for the case of n.

Let

1

1

1

1

)(

)(

n

i
iiii

n

i
iiii

LaUaU

UaLaL
 (3.6)

From the hypothesis of induction results that exists a permutation π' of the set {1, 2, ..., n-1} so that

|a π'(1) | = 1 and

 jN, 2 ≤ j ≤ n-1

1

1
)(')(')(')(')(||1||

j

k
kkkj LUaa

We define a permutation π of the set {1, 2, ... , n} so that:

nin

nii
i

if,

11if),('
)(

And we must show that (for the rest of the value the relation is true through assumption of induction)

1

1
)()()()()(||1||

n

k
kkkn LUaa

but as π(n) = n, it returns to show that:

1

1

)(||1||
n

i
iiin LUaa (3.7)

 ISSN 22773061

1422 | P a g e A u g 1 0 , 2 0 1 3

The hypothesis of the theorem says that for any x in the interval

],[nnnnnnnn LaUaUUaLaL

exist integers x1, x2, ... , xn so that

xxaxaxa nn ...2211 and

 i N, 1 ≤ i ≤ n, Li ≤ xi ≤ Ui.

This assumption combined with lemma 3.3 and Banerjee formulas (3.4,3.6) of calculus of limits for an amount shows that
for any x from the interval

],[nnnnnnnn LaUaUUaLaL

exist integers

1

1

n

i
ii xaw şi xn , so that

x = w + anxn ;

L ≤ w ≤ U;

Ln ≤ xn ≤ Un ;

Hence we have the relation:

nnn UxL

nnnnnnnnnnnn xaUxaLLaUaUUaLaL

],[],[

On the basis of lemma 3.3 we deduce immediately that we have and

],[],[nnnnnnnn
UxL

nnnn LaUaUUaLaLxaUxaL
nnn

so that results the equality

],[],[nnnnnnnn
UxL

nnnn LaUaUUaLaLxaUxaL
nnn

And so we can apply the lemma 3.3, from where results

|an| ≤ U - L + 1

what comes to

 ISSN 22773061

1423 | P a g e A u g 1 0 , 2 0 1 3

1

1

)(||1||
n

i
iiin LUaa

and so the theorem is demonstrated.

4. The implementation of algorithm

After the analysis done in this section, the algorithm which reflects the presented results is the following:

Algorithm 4.1.

input: a0, a1, ... , an - equation coefficients of depending;

 L1, U1, ... , Ln, Un - loop limits;

output: - NO - dependence equation it is not I-solvable;

 - YES – dependence equation is I-solvable;

 - MAYBE – dependence equation might be I-solvable;

begin

L = a0 ; U = a0 ; coef = { a1, a2, ... , an};

while (true) do

{ while (ai coef a.î. |ai| ≤ U - L + 1) do

 {

 iiii LaUaLL ;

 iiii UaLaUU ;

 coef = coef -{ai};

 if coef = Ø then {if (L ≤ 0 and 0 ≤ U) then return ('YES')

 else return ('NO')}

 }

 g = gcd(ai), ai coef

 if (not(L/g ≤ U/g)) then return ('NO');

 if (g 1) then {for ai coef do ai = ai/g ;

 L = L/g; U = U/g;}

 else return('MAYBE');

}

end.

In the next figure we see an implementation of algorithm 4.1. The values are introduced in cells and in final we see the
interpretation of results. Our example is explained after the figure.

 ISSN 22773061

1424 | P a g e A u g 1 0 , 2 0 1 3

Fig 1: A capture of application

The value on which we have tested the application are described below. Let dependence equation

x1 - 2x2 + 8x3 + 8x4 = 26

with restriction

 1 ≤ x1 ≤ 3 1 ≤ x3 ≤ 10

1 ≤ x2 ≤ 3 1 ≤ x4 ≤ 15 (3.8)

cmmdc(1, -2, 8, 8) = 1, which divide 26 so cmmdc test doesn’t exclude the possibility of dependence.

Limit values for expresion x1 - 2x2 + 8x3 + 8x4 compared at conditions (3.8) are calculated according to the formulas of
Banerjee (3.4) and we obtain linf = 11 and lsup = 201. Because 11 ≤ 26 ≤ 201, Banerjee test also indicate that the equation
above can be I-solvable.

After applying the dependence algorithm 4.1. we first obtain:

x1 - 2x2 + 8x3 + 8x4 = [26, 26]

and after, because a1 = 1 ≤ U - L + 1 = 26 - 26 + 1 = 1, we obtain

-2x2 + 8x3 + 8x4 = [26-3, 26-1] = [23, 25]

cmmdc(-2, 8, 8) = 2 and 12 = 23/2 ≤ 25/2 = 12, we continue through rewriting the equation under the form -x2 + 4x3 +
4x4 = [12, 12] and because |a2| = 1 ≤ 12 - 12 + 1 = 1 we will eliminate the term x2 and we will have:

4x3 + 4x4 = [12 + 1, 12 + 3] = [13, 15]

 ISSN 22773061

1425 | P a g e A u g 1 0 , 2 0 1 3

cmmdc(4, 4) = 4, but this time we have 4 = 13/4 ≰ 15/4 = 3, so equation doesn’t have solution, so we have
dependences.

So, algorithm 4.1. gives here an exactly answer (NO dependences) while CMMDC and Banerjee tests can only
assume the conservative (and wrong this time!) dependence.

It is important to note that in contrast to classical CMMDC and Banerjee tests, test 4.1 may also action in circumstances
where certain limits are not known. For example here, if you would not know the variables x3 and x4 limits, the test would
conclude dependence gcd (acting solely on the basis of coefficients) and classical Banerjee test is not applicable at all,
because it could calculate the limit values. Instead, the application of algorithm 4.1 to 4.2 to above example shows that it is
not necessary to know the limits of cycling for x3 and x4, which are not used in the algorithm.

5. State of Art

Peterson et al. in their paper [4] include the generalized greatest common divisor test, three variants of Banerjee’s test,
and the Omega test. Their effectiveness was measured with respect to the Perfect Benchmarks and the linear algebra
libraries, EISPACK and LAPACK. Two methods were applied, one using only compile-time information for the analysis,
and the second using information gathered during program execution. The results indicate that Banerjee’s test is for all
practical purposes as accurate as the more complex Omega test in detecting parallelism.

In paper [5], the author proposes a theorem on which delinearization algorithm is based on algorithm itself.

Banerjee et al. in paper [6] present an overview of an automatic programs parallelization and the last section of the paper
surveys several experimental studies on the experimental studies on the effectiveness of parallelizing compilers.

In paper [7], the authors discuss the effectiveness of several dependence tests in the Perfect Benchmarks. The tests
analyzed include the generalized greatest common divisor

test, Banerjee’s test and the Omega test. The dynamic analysis shows that the Omega test does not improve the detected
inherent parallelism.

In paper [8], the authors describe the range test that can handle non-linear expressions. The test proves independence by
determining whether certain symbolic inequalities hold of a permutation of the loop nest.

6. Conclusions

Data dependency analysis is the theoretical basis of the methodology of restructuring sequential programs for automatic
parallelization.

Analysis of data dependencies is a problem in the general case un-decidable, Even when we limit the nested loop
structures of particular forms (affine structures), determining of a complete information relative to data dependence, even if
become decidable, remains an NP-complete problem.

Therefore, in practice are chosen simply techniques, based on the theory of diofantic equations and theory of limits
continuous real functions. Even if these methods are imprecise, they generally prove more effective than conventional
methods of linear integer programming.

In this context, efforts to improve the accuracy of these algorithms (even under a certain restriction of generality) are
justified.

In Section 2 we presented a sufficient condition for the accuracy test demonstrated by Psarris Banerjee et al. in
[Psarris91]. In Section 3, which constitutes an original contribution, we have shown that under certain circumstances (as
defined in Lemma 3.3) the condition of sufficiency becomes necessary, result which allowed the development of an
improved algorithm for data dependence analysis.

Example presented is illustrative regarding the advantages exhibited by this algorithm: the source code as an example to
successfully determine the exact dependency information, gcd and Banerjee tests failing in this case. Furthermore, our
algorithm can act in situations where the loop limits are not known, our example is illustrative in this aspect.

On the other hand, in the general case, the algorithm 4.1 remains imprecise; there are situations in which he must assume
the conservative dependence (variant 'MAYBE' in the algorithm). As we highlight, only a full linear programming algorithm
can provide an exact answer for any event.

Improved algorithms for testing the accuracy of data dependencies have been exceptionally important. They highlight the
main task of a high degree of parallelism as processed by automatic parallelization algorithms. An analysis of the latter we
will do in a further research.

REFERENCES

[1] Psarris, K., Klappholz, D. and Kong, X.1991. On the accuracy of the Banerjee test, in Journal of Parallel and
Distributed Computing, 12, pp.152-157.

[2] Vancea, A. and Boian, F. 1998. On the exactness of a data dependence analysis method, in Studia Informatica,
vol.XLIII, no.1, pp.33 - 39.

 ISSN 22773061

1426 | P a g e A u g 1 0 , 2 0 1 3

[3] Shen, Z., Z.Li and Pen-Chung Yew. 1990. An Empirical Study of FORTRAN programs for Parallelizing Compilers, in
IEEE Transactions on Parallel and Distributed Systems, vol.1, nr.3, pp.356-364.

[4] Petersen, P.M. and Padua, D.A. 1996. Static and Dynamic Evaluation

of Data Dependence Analysis Techniques IEEE Transactions on parallel and distributed systems, vol. 7, no. 11

[5] Maslov, V. Delinearisation, An Efficient way to break Multiloop Dependence Equations

[6] Banerjee, U., EigenMann, R., Nicolau, A., Padua, D. 1993. Automatic Program Parallelisation

[7] Peterson, P. and Padua, D. Static and Dynamic Evaluations of Data Dependence Analysis.

[8] Blume, W. and Eigenmann, R. The range test, a dependence test for symbolic, non-linear expressions

[9] Banerjee, A., Carrion-i-Silvestre, J.L. Cointegration in panel data with breaks and cross-section dependence

Author’ biography with Photo

Dr. Monica Iuliana Ciaca obtained her bachelor’s degree at Babes Bolyai

University Cluj-Napoca, in the field of Computer Science. After graduation, she has worked
as programmer at the Institute for Computation Techniques from Cluj-Napoca.

In 1994 she started working at the Babes Bolyai University as teaching assistant, being
interested in artificial intelligence, expert systems, business information systems and
software engineering.

She published various articles, the most important being the one written after her
participation in a Tempus Phare project, in Perugia. In 2003 she got her PhD in
Mathematics and Computer Science, with a thesis on parallel computing: “Implementation
Techniques in Parallel Computing”.

In the last five years she looked to extend her knowledge in another field: theology. She
obtained her Bachelor’s Degree and Master’s Degree in Biblical Studies and Iconographic
exegesis, in 2012, at Babes Bolyai University.

Since 2004 she is Associate Professor at Babes Bolyai University, Cluj-Napoca, Faculty of
Economics, in the Department of Business Information Systems.

Dr. Loredana MOCEAN has graduated Babes-Bolyai University of Cluj-Napoca, the

Faculty of Computer Science, she holds a PhD diploma in Economics and she had gone
through didactic position of assistant, lecturer and associate professor, since 2000 when she
joined the staff of the Babes- Bolyai University of Cluj-Napoca, Faculty of Economics and
Business Administration. Also, she graduated Faculty of Economics and Business
Administration. She is the author of more than 20 books and over 35 journal articles in the field
of Databases, Data mining, Web Ser-vices, Web Ontology, ERP Systems and much more. She
is director or member in more than 20 grants and research projects, national and international.

 Dr. Alexandru Vancea has graduated the Computer Science Department of “Babes-

Bolyai” University Cluj-Napoca in 1986 and he obtained Ph.D. in Computer Science in 2000.

Research areas and domains of interests: Programming Languages Design and Analysis,
Automatic parallelization of programs, Distributed Programming

Teaching: Operating Systems, Computer Architecture, Fundamentals of Programming
Languages.

