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ABSTRACT 

In this paper, a hybridization of two different swarm intelligent approaches, stochastic diffusion search, and particle 

swarm optimization techniques is presented  for solving integer programming problems. The hybrid implementation 

allows us to avoid certain drawbacks and weaknesses of each algorithm, which means that we are able to find an optimal 
solution in an acceptable computational time. Our hybrid implementation allows the IP algorithm to reach the optimal 
solution in a considerably shorter time than is needed to solve the model using the entire dataset directly within the model. 
Our hybrid approach outperforms the results obtained by each technique separately. It is able to find the optimal solution 
in a shorter time than each technique on its own, and the results are highly competitive with the state-of-the-art in large-
scale optimization. Furthermore, according to our results, combining the PSO with SDS approach for solving IP problems 
appears to be an interesting research area in combinatorial optimization.  
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INTRODUCTION  

Optimization can be viewed as one of the major quantitative tools in network of decision making, in which decisions have 
to be taken to optimize one or more objectives in some prescribed set of circumstances. In view of the practical utility of 
optimization problems there is a need for efficient and robust computational algorithms, which can numerically solve on 
computers the mathematical models of medium as well as large size optimization problem arising in different fields. 
Heuristics and bioinspired techniques have become efficient and effective alternatives for researchers in solving several 
complex optimization problems. These techniques are not able to reach the optimal solution for large-scale combinatorial 
optimization problems in spite of their effectiveness. But these techniques are able to provide satisfactory solutions for 
most of the applied problems within acceptable computational times. In contrast, mathematical programming techniques, 
particularly the Integer Programming, have been studied and developed by scholars over several decades with the main 
goal of obtaining optimal solutions to difficult problems using as little CPU time as possible. For these reasons, a hybrid 
swarm intelligence technique has been suggested. In recent years, swarm intelligence, which can be considered as a 
branch of Artificial Intelligence techniques, has attracted much attention of researchers, and has been applied successfully 
to solve a variety of problems. A swarm can be viewed as a group of agents cooperating with certain behavioural pattern 
to achieve some goal [10]. There are a number of different models of swarm intelligence that have been proposed and 
investigated, and among the most commonly used swarm intelligence models include ant colony optimization [3], [6], 
particle swarm optimization [15], [4], honey bee swarming [29], [30], stochastic diffusion search, and bacterial foraging 
[24], [25]. These algorithms have proved their mettle in solving complex and intricate optimization problems arising in 
various fields. The paper is organized such that the next section 2 provides a brief overview of integer programming. 
Section 3 describes Particle Swarm Optimization technique. Section 4 describes Stochastic Diffusion Search technique. 
Section 5 describes the method of the proposed hybrid swarm intelligence technique used. Section 6 discusses the 
computational results. In section 7, a conclusion is introduced.  

INTEGER PROGRAMMING 

It is often impossible to represent certain features of many real-world problems using only linear constraints and 
continuous variables. In modeling a real world problem, it is often necessary to represent discrete activities by variables 
which are restricted to take only integer values. The general mathematical form of integer programming problems is: 
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This problem is called the linear integer-programming problem. It is said to be a mixed integer program when some, but 
not all, variables are restricted to be integer, and is called a pure integer program when all decision variables must be 
integers. If the constraints are of a network nature, then an integer solution can be obtained by ignoring the integrality 
restrictions and solving the resulting linear program. In general, though, variables will be fractional in the linear-
programming solution, and further measures must be taken to determine the integer- programming solution. We consider 
the 0-1 integer programming problem. 
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We will restrict our attention to the case where a is 0-1, and where b is integer. Also with these restrictions, the problem is 

NP-hard, and several well known NP-hard problems, such as the set partitioning, covering and packing problems, are 
conveniently stated in this way. Common solution methods for ILP are based on solving LP, which can usually be done 
efficiently. If LP happens to give a 0-1 solution, this is also an optimal solution to ILP, and for certain common and 
nontrivial subclasses of 0-1 problems, LP always have an integer solution. For more difficult problems particular instances 
may also be easy in this sense. If however the LP solution has many noninteger values, very little information about the 
solution to the 0-1 problem is obtained in this way, and typically techniques such as branch and bound have to be used to 
resolve the solution to integrality. This can work very well for small problems and also for larger problems with special 
structure, but nevertheless strongly limits the range and size of problems that can be solved. For a full presentation of 
existing methods, see for example [12], [27]. Optimization techniques developed for real search spaces can be applied on 
Integer Programming problems and determine the optimum solution by rounding off 
 the real optimum values to the nearest integer [23], [26]. One of the most common deterministic approaches for tackling 
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Integer Programming problems is the Branch and Bound (BB) technique [11], [22], [26]. The technique is based on the 
observation that the enumeration of integer solutions has a tree structure. The main idea of the branch and bound 
algorithm is to find an optimal solution and to prove its optimality by successively partitioning the feasible set of the 
solution, or the original problem, into subproblems of smaller size. These subproblems are investigated by computing 
lower/upper bounds of the objective function. These lower/upper bounds are used to avoid exhaustive search of the 
solution space. Evolutionary and Swarm Intelligence algorithms are stochastic optimization methods that involve 
algorithmic mechanisms similar to natural evolution and social behavior respectively. They can cope with problems that 
involve discontinuous objective functions and disjoint search spaces [8], [14], [28]. Genetic Algorithms (GA), Stochastic 
Diffusion Search (SDS), and the Particle Swarm Optimization (PSO) are the most common paradigms of such methods. 
Early approaches in the direction of Evolutionary Algorithms for Integer Programming are reported in [9], [13].  

PARTICLE SWARM OPTIMIZATION 

The particle swarm optimization (PSO) was inspired by the observations of birds flocking and fish schooling. It differs from 
other well-known Evolutionary Algorithms (EA) [1], [7], [8], [14], [28].  As in EA a population of potential solutions is used to 
probe the search space; but, no operators, inspired by evolution procedure, are applied on the population to generate a 
new promising solution. Instead, in PSO, each individual (named particle) of the population (called swarm), adjusts its 
trajectory towards its own previous best solution (called pbest) and the previous best solution attained by any member of 
its topological neighborhood. There are different kinds of sharing information between particles. In the global variant of 
PSO, the whole swarm is considered as the neighborhood. Thus, global sharing of information takes place and the 
particles benefit from the discoveries and the previous experiences of all other companions during the search for 
promising regions of the landscape [17]. Alternatively, there are some local variants of PSO wherein particles only make 
use of their own information and that of the best of their adjacent neighbors. Each particle in PSO has two main 
characteristics: its position and its velocity. Assume that the current position and velocity vector of the i-th particle in the d-
dimensional search space are denoted as Xi = (xi1, xi2,…., xid) and Vi = (vi1, vi2,…., vid), respectively. The best earlier 
position of the i-th particle is represented as pbesti = (pbesti1, pbesti2,…., pbestid). There are different kinds of PSO 
including global vision of PSO with inertia weight (GWPSO), local vision of PSO with inertia weight (LWPSO), global vision 
of PSO with constriction factor (GCPSO), and local vision of PSO with constriction factor (LCPSO) [31]. In GWPSO, which 
is very popular among researchers, there are two methods for updating position and velocity of each particle. The best 
position of entire group at k-th iteration is used in the first method while in the second method; the best position of entire 

group up to the current search is employed. In the first method, the position 𝑥𝑖𝑑
𝑘  and velocity 𝑣𝑖𝑑

𝑘
 of particle i in the k-th 

iteration are updated as follow: 
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In the second equation w  is the inertia weight,  c1  and  c2  are positive constants called cognitive and social parameters, 
respectively, and  r1  and  r2  are random numbers selected in the interval [0 1]. The constants  c1  and  c2  represent the 
weighting of the stochastic acceleration terms that pull each particle towards  pbest  and  gbest  positions and usually are 
set c1=c2=2 . In the second method gbest is replaced by gbestk. As will be shown later, in the numerical examples of 

mixed-variables or in the problems that only have discrete variables, usage of gbestk is more suitable compared to the use 
of gbest. In other words, the success rate of gbestk is higher than that of gbest. The reason is firstly due to the fast 
convergence of gbest and secondly, the inability of particles to escape from local minima in gbest method. In other words, 
since the discrete variables are rapidly converged the continuous variables will be obliged to search in a limited specific 
area which might not be the optimum area. The role that inertia weight w plays in the convergence behavior of PSO is 
very important. The inertia weight is employed to control the effect of the previous velocities on the current velocity. This 
way, the parameter w makes a compromise between global and local exploration abilities of the swarm. In PSO, when the 
search continues, the inertia term decreases linearly as: 

𝑤 = 𝑤𝑚𝑎𝑥 −  
𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛

𝑘𝑚𝑎𝑥
 𝑘                    (4) 

Where 𝑤𝑚𝑎𝑥  and 𝑤𝑚𝑖𝑛  are the maximum and minimum values of the inertia term, respectively, and  𝑘𝑚𝑎𝑥   is the 

maximum number of iterations. These parameters are assumed to be: 

𝑤𝑚𝑎𝑥 = 1, 𝑤𝑚𝑖𝑛 = 0                                (5) 

Sometimes as particle oscillations become wider, the system will gain tendency to explode [14]. The usual means of 

preventing explosion is simply to define a parameter  𝑤𝑚𝑎𝑥   and curb the velocity of every individual i from exceeding 

that velocity on each dimension d. In the case that velocity violates, it will be modified as follows: 

If 𝑣𝑖𝑑 > 𝑣𝑚𝑎𝑥   then   𝑣𝑖𝑑 = 𝑣𝑚𝑎𝑥                    (6) 

If 𝑣𝑖𝑑 < −𝑣𝑚𝑎𝑥  then 𝑣𝑖𝑑 = −𝑣𝑚𝑎𝑥                 (7) 

The effect of this is to allow particles to oscillate within the bounds [14].     
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Fig 1. The pseudocode of PSO algorithm 

Although PSO has been used mainly to solve unconstrained, single-objective optimization problems, PSO algorithms have 
been developed to solve constrained problems, multi-objective optimization problems, problems with dynamically 
changing landscapes, and to find multiple solutions. There are some disadvantages of PSO Algorithm as follow: 

 The  method  easily  suffers  from  the partial optimism,  which  causes  the  less  exact  at  the regulation of its speed 
and the direction. 

 The method cannot work out the problems of scattering and optimization. 

 The method cannot work out the problems of non-coordinate system, such as the solution to the energy field and the 
moving rules of the particles in the energy field. 

STOCHASTIC DIFFUSION SEARCH 

This section introduces Stochastic Diffusion Search (SDS) [2], a multi-agent global search and optimization algorithm, 
which is based on simple interaction of agents. A high-level description of SDS is presented in the form of a social 
metaphor demonstrating the procedures through which SDS allocates resources. SDS introduced a new probabilistic 
approach for solving best-fit pattern recognition and matching problems. SDS, as a multi-agent population-based global 
search and optimization algorithm, is a distributed mode of computation utilizing interaction between simple agents [5]. 
Unlike many nature inspired search algorithms, SDS has a strong mathematical framework, which describes the behavior 
of the algorithm by investigating its resource allocation [19], convergence to global optimum [20], robustness and minimal 
convergence criteria [18] and linear time complexity [21]. The SDS algorithm commences a search or optimization by 
initializing its population. In any SDS search, each agent maintains a hypothesis, h, defining a possible problem solution. 
After initialization two phases are followed, test Phase, and diffusion phase. In the test phase, SDS checks whether the 
agent hypothesis is successful or not by performing a partial hypothesis evaluation which returns a boolean value. Later in 
the iteration, contingent on the precise recruitment strategy employed, successful hypotheses diffuse across the 
population and in this way information on potentially good solutions spreads throughout the entire population of agents. In 
the Test phase, each agent performs partial function evaluation, pFE, which is some function of the agent’s hypothesis; 
pFE = f(h). In the diffusion phase, each agent recruits another agent for interaction and potential communication of 
hypothesis. 

 

 

 

Fig 2. The pseudocode of SDS algorithm 

Passive recruitment mode is employed In SDS algorithm. In this mode, if the agent is inactive, a second agent is randomly 
selected for diffusion; if the second agent is active, its hypothesis is communicated to the inactive one. Otherwise a 
completely new hypothesis is generated for the first inactive agent at random. The main disadvantage of the SDS is in the 
case of search spaces distorted heavily by noise, diffusion of activity due to disturbances will decrease an average 
number of inactive agents taking part in random search and in effect will increase the time needed to reach the steady 
state. 

 

 

 

 

 

 

 

 

Initialise particles 
While ( stopping condition is not met ) 
     For all particles 
          Evaluate fitness value of each 
particle 
          If (current fitness < pbest ) 
          pbest = current fitness 
          If (pbest<global (or local ) best) 
          global (or local ) best = pbest 
          Update particle velocity 
          Update par t icle position 
     End 
End 

Initialising agents() 
    While ( stopping condition is not met) 
    Testing hypotheses () 
    Diffusion hypotheses () 
End 

for ag = 1 to No of agents 
      if (ag. activity () == false ) 
          r ag = pick a random agent () 
          if (r ag. activity () == true) 
              ag. setHypothesis ( r ag 
.getHypothesis()) 
          else 
              ag. setHypothesis 
(randomHypothsis()) 
end 
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 Fig 3.  Passive Recruitment Mode  

PROPOSED SDS-PSO TECHNIQUE 

Because of the drawbacks of PSO algorithm, a hybrid swarm intelligence technique called SDS-PSO technique has been proposed for 
solving integer programming problems to produce better solution by improving the effectiveness and reducing the limitations. The 
motivating thesis justifying the merging SDS and PSO is the partial function evaluation deployed in SDS, which may mitigate the high 
computational overheads entailed when deploying a PSO onto a problem with a costly fitness function. In the hybrid algorithm, each PSO 
particle has a position, and a velocity; each SDS agent, on the other hand, has hypothesis and status. Every PSO particle is an SDS 
agent too together termed psAgents. In the psAgent, SDS hypotheses are defined by the PSO particle positions and a status which 
determines whether the psAgent is active or inactive (see Figure 4). 

 

 

 

 

 

 

 

 

 
 

Fig 4.  psAgent 

Figure 5 shows the pseudocode of the proposed SDS-PSO technique. In the test-phase of a stochastic diffusion search, 
each agent has to partially evaluate its hypothesis. The fitness of each psAgent’s particle’s personal best is compared 
against that of a random psAgent; if the selecting psAgent has a better fitness value, it will become active, otherwise it is 
flagged inactive. On average, this mechanism will ensure 50% of psAgents remain active from one iteration to another. In 
the Diffusion Phase, each inactive psAgent picks another psAgent randomly, if the selected psAgent is active, the selected 
psAgent communicates its hypothesis to the inactive one; if the selected psAgent is inactive too, the selecting psAgent 
generates a new hypothesis at random from the search space. In the proposed technique, after each n number of PSO 
function evaluations, one full SDS cycle is executed. 
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SDS agent                           Hypothesis 

 

  Status 

PSO Particle 

Memory Position 

Velocity 
Active/Inactive 

Solving problem using LP 
Initialise psAgents 
While ( stopping condition is not met ) 
       For all psAgents 
              Evaluate fitness value of each particle 
              If ( evaluation counter MOD n == 0 ) 
              //START SDS 
              // TEST PHASE 
                   for ag = 1 to No of psAgents 
                         r ag = pick−random−psAgent () 
                         if ( ag. pbestFitness() <=r ag . pbestFitness() ) 
                              ag. setActivity (true) 
                         else 
                              ag. setActivity ( false ) 
                         end i f 
                   end for 
              // DIFFUSION PHASE 
                  for ag = 1 to No of psAgents 
                         if ( ag. activity () == false ) 
                             r ag = pick−random−psAgent() 
                             if ( r ag . activity () == true ) 
                                   ag. set-psAgentHypothesis(r ag. get-psAgentHypothesis()) 
                             else 
                                   ag. set-psAgentHypothesis ( randomHypothesis()) 
                             end i f 
                  end for 
             end i f 
             // END SDS 
             If ( current fitness < pbest) 
                   pbest = current fitness 
             If (pbest < global (or local ) best) 
                   global (or local ) best = pbest 
             Update particle velocity 
             Update particle position 
     End 
End 
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Fig 5.  Pseudocode of the proposed technique 

 

COMPUTATIONAL RESULTS 

This section presents computational results of the proposed SDS-PSO technique to solve Knapsack Problems. The 
computational results show performance comparison between the particle swarm optimization algorithm (PSO) and the 
proposed SDS-PSO technique. Table 1, and Figure 6 present execution time to solve knapsack problems by PSO and 
SDS-PSO technique. A proposed SDS-PSO technique run on computer (Core 2 Due CPU, 2.2GHz, 2048MB RAM.). 

No. of Variables 
SDS-PSO PSO 

Z Time (ms) Z Time (ms) 

10 241 98 241 360 

20 425 279 425 751 

50 569 621 569 1350 

100 460 842 460 4687 

200 658 1154 658 8547 

500 965 2614 965 10115 

Table 1. Execution time of different instances of knapsack problems 

 

Fig 4. Execution time of different instances of knapsack problems 

Computed results show that in small problems; with 10, and 20 variables, execution times were approximately equal in 
both algorithms (SDS-PSO, and PSO). However moving to largest scale problems, the execution time of SDS-PSO was 
obviously smaller than that in PSO. It may be included from the results that as the number of variables increase the 
difference between execution time of the two algorithms assures the better performance of the SDS-PSO algorithm with a 
clear reduction of execution time dealing with large problems. From the previous results we can conclude from the 
author’s view, the efficiency improvement between SDS-PSO and PSO as shown in the following equation 

𝑇𝑘
𝑇𝑗

× 100% 

Where the Tk is the execution time of SDS-PSO technique, and Tj is the execution time of PSO technique. The results are 
shown in table 2. 

No. of Variables Efficiency Improvement in Time 

10 326.1% 

20 537.9% 

50 466.1% 

100 188.6% 

200 415.8% 

500 728.5% 

Table 2. Efficiency improvement in time between SDS-PSO and PSO 
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It appears that the efficiency in time of SDS-PSO is much greater than PSO. Also, it appears that in large problem sizes 
the time efficiency in SDS-PSO gets better than PSO. 

CONCLUSION 

This paper proposed a hybrid swarm intelligence technique called SDS-PSO to solve integer programming problems, and 
compares its performance with PSO technique. The proposed technique effectively overcomes the drawbacks of PSO 
technique, such as the partial optimism, which causes the less exact at the regulation of its speed and the direction. It 
also, overcomes the drawbacks of SDS technique. SDS-PSO technique also, increases the efficiency of the solution 
process, improves the performance scalability, and increases the diversification of solutions at the same time, reducing the 
execution time in comparison with PSO technique. The proposed technique has been tested by solving a set of different 
knapsack problems. It is capable to provide a considerable reduction of time compared with other techniques most 
obviously at lower scale problems. In general, the proposed SDS-PSO technique seems an efficient alternative for solving 
Integer Programming problems, when deterministic approaches fail, or it could b e considered as an algorithm for 
providing good initial points to deterministic methods, as the BB technique, and thus, help them converge to the global 
minimizer of the integer problem. 
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