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Abstract: We propose an independent component analysis (ICA) algorithm which can separate mixtures of sub- and 

super- Gaussian source signals with self-adaptive nonlinearities. The ICA algorithm in the framework of natural Riemannian 
gradient, is derived using the parameterized Generalized Compound Gamma Distribution density model. The nonlinear 
function in ICA algorithem is self-adaptive and is controlled by the shape parameter of Adaptive Generalized Compound 
Gamma Distribution density model. Computer simulation results confirm the validity and high performance of the proposed 
algorithm 
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1-Introduction: 

The problem of independent component analysis (ICA) has received wide attention in various fields such as biomedical 

signal analysis and processing (EEG, MEG, ECG), geophysical data processing, data mining, speech recognition, image 

recognition and wireless communications [4, 6, 17, 24]. In many applications, the sensory signals (Observations obtained 

from multiple sensors) are generated by a linear generative model which is unknown to us . In other words, the 

observations are linear instantaneous mixtures of unknown source signals and the objective is to process the observations 

in such a way that the outputs correspond to the separate primary source signals. The operation starts with a random 

source vector S defined by ],...,,[)( 21 mSSSnS   where the m components are supplied by a set of independent 

sources. Temporal sequences are considered here; henceforth the argument n denotes discrete time. The vector S is 

applied to a linear system whose input-output characterization is defined by a nonsigular m-by-m matrix A, called the mixing 

matrix. The result is an m-by-1 observation vector X(n)  related to S(n) as follow  X=AS where 
T]X,...,X,[X m21X 

. The source vector S and the mixing matrix A are both unknown. The only thing available to us is the observation vector X. 

Given X, the problem is to find a demixing matrix W  such that the original source vector S  can be recovered from the 

output vector Y  defined by Y=WX   where 
T

mYYYY ]...,,,[ 21 . This is called the blind source separation. The 

solution to the blind source separation is feasible, except for an arbitrary scalling of each signal component and permutation 

of indices. In other words, it is possible to find a demixing matrix W whose individual rows are a rescalling and permutation 

of those of the matrix A. that is, the solution may be expressed in the form Y=WX=WASDPS  where D is a nonsingular 

diagonal matrix and P is a permutation matrix.  

Since Jutten and Herault[21] Proposed a linear feedback network with a simple unsupervised learning 

algorithem, several methods have been developed .  

Cichocki el al. [13;14] proposed robust, flexible algorithm with equivariant properties. Comon [15] gave a good 

insight to ICA problem from the statistical point of view. Bell and Sejnowski[7] adopted an information 

maximization principle to find a solution to ICA problem. Maximum likelihood estimation[1;6;25] was proposed by 

Pham et al. an was elaborated in [23;26]. The nonlinear extension of PCA  was extensively studied in [21;24]. 

Serial updating rule was introduced by Cardoso and Laheld[8;27] and the resulting algorithm was shown to have 

equivariant performance. Independent, natural gradient was proposed and applied to ICA by Amari et al. 

[5;17;19]. Conditions on cross cumulants for the separation of the source signals were investigated in 

[1;2;3;4;23;10;9]. 

2. Maximum Entropy Algorithm: 

 

 

Fig.1: Maximum Entropy Method 

This is an adaptive algorithm based on information theoretic approach and was suggested by Bell & Sejnowski [7]. The 
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block diagram in Figure 1 explains the maximum entropy method for blind source separation. 

The demixer operates on the observed data X to produce an output Y = WX, which is an estimate of source S. The output Y 

is transformed into Z by passing it through a non-linearity G(.), which is invertible and monotonic. For a given non-linearity 

G(.), the maximum entropy method produces an estimate of source S by maximizing the entropy h(Z) with respect to W. 

The mathematical representation of the whole process may be given as follows: 

Z = G(y) = G(WAS)        S = ψ(z)(z)1G1W1A 
  

where 
1G

 is the inverse non-linearity. 

The probability density function of the output Z is defined in terms of that of the source S by 

 

ψ(z)sdet(J(s))

f[S(s)]
f[Z(z)]


  

Where det (J(s)) is the determinant of the Jacobian matrix J(s). The ij-th element of the matrix J(s) is defined by 

j

i
ij

s

z
J




 . Hence, the entropy of the output Z at the output of the non-linearity G(.) is 

h(Z) = -E[log (z)fz ] = -E det(j)D
ψ(z)sdet(J(s))

f[S(s)]
log fs






























 evaluated S = ψ(z) . 

Hence, maximizing the entropy h(z) is equivalent to minimizing the Kullback-Leibler divergence between (s)
s

f   and a 

probability density function of S, defined by det(J(s)) . 

If the random variable Zi ( i
th

 element of Z) is uniformly distributed inside the interval [0,1] for all i, then the entropy h(z) is 

equal to zero. Accordingly, 

 h(Z) = -E[log (z)fz ] = -E det(J(S)))(
ψ(z)sdet(J(s))

f[S(s)]
log 






























sfs   

Under the ideal condition, 
1AW  , the above relationship reduces to 

)g(szy

z
)(Sf

ii

i

iS i 




i

  for all i. 

Conversely, the results from Maximum Entropy Method may be stated as follows: 

Let the non-linearity at the demixer output be defined in terms of the original source distribution as 
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,)()(gz

iz

i 


 iiiii dssfSy  for all i = 1,2,…,n. 

Then, maximizing the entropy of the random vector z at the output of the non-linearity G is equivalent to 
1AW  , which 

yields perfect blind source separation. The maximum entropy and maximum likelihood methods for blind source separation 

are equivalent under the condition that the random variable i z is uniformly distributed inside the interval [0,1] for all i. This 

relationship may be proven with the help of chain rule of calculus as 
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The Jacobian matrix J is expressed as J = DWA, where D is a diagonal matrix given by 

.
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Hence, 
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gn

1i

det(WA)det(J)






   

In the light of the above equation, an estimate of the probability density function )(
s

f s  parameterized by the weight 

matrix W and the non-linearity G may be written formally as 

i
y

)
i

(y
i

gn

1i

det(WA)G)(s/W,
s

f






                                                         

(1) 

Therefore, under the above condition, maximizing the log-likelihood function  G)(s/W,
s

logf {}) is equivalent to 

maximizing the entropy h(Z) for blind source separation. 

Referring to the expression h(z) = -E[log (Z)f z ] = -E 





























 ψ(z)sdet(J(s))

f[S(s)]
log   , it is seen that since the source 

distribution is fixed, maximizing the entropy h(Z) requires maximizing the expectation of the denominator term 

 det(J(s)log    with respect to the separating matrix W. 

To do the computation using an adaptive algorithm that will maximize the objective function, the instantaneous objective 

function φ may be considered as: 
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φ = det(J)log                   

(2) 

On expanding (2), we get: 

φ = 





















n

1i i
y

i
z

logdet(W)logdet(A)log  and 


















 








i
y

i
z

log
n

1i W

T-W
W


 (3) 

The non-linear function should be judiciously selected to deal with the super-Gaussian, sub-Gaussian, stationary and 

non-stationary signals. The popular non-linearity's used are logistic function and hyperbolic tangent function: 

i
y

e1

1
)

i
g(y

i
z




    ,    n1,2,...,i      ),tanh()
i

g(y
i

z  iy    

The non-linear functions should be monotonic and invertible. 

Finding out 
W


 using the above non-linearity, we obtain 

TT 2z)x(1W
W




 
 where x is the observed source 

vector, z is the non-linearly transformed output vector and 1 is a corresponding vector of ones. 

Using the steepest ascent method to maximize the entropy h(Z), the change in weight matrix W is given by 






 




 T2z)x(1T-Wη

W
ηΔW


, where η is the learning rate parameter. The generalized final version for the 

update on W or the learning rule is obtained by using the natural gradient, which is equivalent to multiplying the expression 

for ΔW  by WWT
 instead of evaluating 

T-W  as given below: 

WT2z)y(1IηWT2z)(Wx)(1IηWWT2z)x(1T-WηΔW T





 





 





    

 W(k)(k)2z(k))y(1Iη)(1)W(k T kW       (4) 

where y is the output of the demixer before passing through the non-linearity, I is the unity matrix and is a fixed learning rate 

parameter with value less than 1. 

The algorithm gives better result when applied on pre-whitened data. It is sensitive to the learning rate parameter and 

works better for super-Gaussian signals. 

3. Generalized Compound Gamma Distribution for Sources 

Optimal nonlinear activation function )(
s

f s is calculated by (1). However, it required the knowledge of the 

probability distribution of source signals which are not available to us. A variety of hypothesized density model has been 

used. For example, for the supper-Gaussian source signals, unimodal or hyperbolic-Cauchy distribution model [7] leads to 
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the nonlinear function given by 

.(s))ftanh(β(s)f ss                    (5) 

Such sigmodal function was also used in [7]. For sub-Gaussian sorce signals, cubic nonlinear function 
3
s

f(s)
s

f   has 

been a favorite choice. For Mixtures of Sub- and super-Gaussian source signals, according to the estimated kurtosis of the 

expected signals, nonlinear function can be elected from two different choices [15;16]. (for example, either 
3
s

f(s)
s

f   or 

.(s))ftanh(β(s)f ss   Several approaches [18;10;11] are already available.  

This paper presents a flexible nonlinear function derived using Generalized Compound Gamma density model. It is shown 

that the nonlinear function is self-adaptive and controled by Generalized Compound Gamma shape parameter. It is not a 

form of fixed nonlinear function. 

3.1. Generalized Compound Gamma Distribution  

The probability density function of the Generalized Compound Gamma Distribution is given by :  

           
 

,

θα

b

λχ
1

1α

b

λχ

θα,bβ

1
bλ,θ,α,χ;f






 
















 











 
    

                                     ,χλ0         0bθ,α,                                     

(6)  

where and   are the shape parameters,   is the location parameter and b is the scale parameter and  .,. is well 

known beta function.  

The standard form of the distribution will have 0  and  1b  so that the standard density function is  

          
 

  




  θαχ11αχ

θα,β

1
bλ,θ,α,χ;f      0α0,χ                                 (7)                       

 

 

 

 

 

 

 

Fig.2: The plot of pdf of the generalized compound gamma distribution for .8b0.02,λ5,θ5,α   
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Fig.3: The plot of  f-distribution. 

 

 

 

 

 

 

 

 

Fig.4: The plot of the mixture of generalized compound gamma distribution and f-distribution. 
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Fig.5: The plots of separated generalized compound gamma distribution and separated f-distribution. 

3.2 The Moments of  Generalized Compound Gamma Distribution   

  In order to fully understand the generalized compound gamma distribution, it is usefull to look at its moments ( 

specially 2
nd

 and 4
th

 moments which give the kurtosis). The 
thr  moment about zero for the compound density (6) can be 

derived as:  
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                                                    1,2,3,...r                                                 

(9)                                                       

3.3. Kurtosis and shape parameter 

 The kurtosis is a nondimensional quantity. It measures the relative peakdness or faltness of a distribution. A 

distribution with positive kurtosis is termed leptokurtic( super-Gaussian). A distribution with negative kurtosis is termed 

platykurtic(sub-Gaussian). The kurtosis of the distribution is defined in termsof the 2
nd

-and 4
th

 –order moment as 
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Fig.6: The plots of kurtosis 4  for platykurtic and leptokurtic signals for generalized compound gamma 

distribution. 

 

 

 

 

 

 

 

 

Fig.7: The plots of kurtosis 4  for platykurtic and leptokurtic signals for f-distribution. 
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The activation function for generalized compound gamma distribution in (3) is given by 
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4. COMPUTER SIMULATION RESULTS 

Example1: To illustrate the method applicability, we consider a simulation 
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example which consists of analyzing a mixture of three sources. The mixture is obtained by constructing three synthetic 

spectra and considering nineteen measures with mixing coefficients chosen in such a way to have a realistic evolution. A 

Gaussian noise is added to have a signal to noise ratio equal to 50 dB. Figure 1 shows the resulting mixture. To discuss the 

result accuracy, we use the global system matrix G = 

1

A


A that indicates the separation performance. The empirical 

source covariance matrix is: 

 

A = 





















000.1105.0386.0

105.0000.1516.0

386.516.0000.1

 

 

 

Fig. 8: Mixture synthesis 

When analyzing this covariance matrix we note that the available samples of the sources are spatially correlated, so the 

independence assumption is not sufficient for the spectra reconstruction. This explains the failure in applying directly an 

ICA algorithm. To give an illustration of this aspect, the global system matrix resulting from the analysis by JADE algorithm 

[1] is shown: 

G = 























480.0856.0127.0

280.0412.0263.1

030.1836.0499.0

 

The results obtained by applying the proposed method for the mixture analysis are presented in figure 9. We can see that 

source spectra and mixing coefficients are estimated without apparition of negative values. Concerning the separation 

performances, the global system matrix associated to the reconstruction is: 
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020.1089.0018.0

137.0996.0014.0

011.0027.0028.1

G = 

 

True (dashed line) and estimated (continuous line) mixing coefficients 

 

Fig. 9: Mixture analysis results 

CONCLUSION 

We have proposed an ICA algorithm (in the framework of natural Riemannian gradient) where the self-adaptive nonlinear 

function eas derived using Adaptive Generalized Compound Gamma Distribution density model for the probability 

distributions of the source signals. We have shown that the proposed ICA algorithm can separate the mixtures of sub-and 

super-gaussian signals with self adaptive nonlinearities which is controlled by Adaptive Generalized Compound Gamma 

Distribution. Finally we apply our algorithm on a mixture of other distributions and signal separation, which give a good 

results. 
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