
Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume.4, No.2, March- April, 2013, ISSN 2277-3061

393 | P a g e w w w . i j c t o n l i n e . c o m

Security Test by using F T M and Data Allocation Strategies on Leakage
Detection

P RADHA KRISHNA REDDY
M Tech student in CSE, VITS-PDTR, JNT University

Anantapur
Pallavali@gmail.com

G.SIREESHA

Assistant Professor in CSE Department, St. Petere’s
Engineering College

Sirisha.peas@gmail.com

Abstract: The data distributors work is to give

sensitive data to a set of presumably trusted third party
agents.The data i.e., sent to these third parties are
available on the unauthorized places like web and or
some ones systems, due to data leakage. The
distributor must know the way the data was leaked from
one or more agents instead of as opposed to having
been independently gathered by other means. Our new
proposal on data allocation strategies will improve the
probability of identifying leakages along with Security
attacks typically result from unintended behaviors or
invalid inputs. Due to too many invalid inputs in the real
world programs is labor intensive about security
testing.The most desirable thing is to automate or
partially automate security-testing process. In this paper
we represented Predicate/ Transition nets approach for
security tests automated generationby using formal
threat models to detect the agents using allocation
strategies without modifying the original data.The guilty
agent is the one who leaks the distributed data. To
detect guilty agents more effectively the idea is to
distribute the data intelligently to agents based on
sample data request and explicit data request. The fake
object implementation algorithms will improve the
distributor chance of detecting guilty agents.

Key words: Data leakage, Data privacy, Allocation

strategies, security testing, Software security.

INTRODUCTION

Our consideration about applications where the Original
sensitive data can’t be perturbed. For this the application
must detect when the sensitive data got leaked and if
possible from where. Before sending the sensitive data
to the agents we need to convert it to low sensitive data
by using the most useful technique perturbation. For
example, one can add random noise to certain
attributes, or one can replace exact values by ranges
[1]. In some critical cases there is no need of altering the
original distributor’s sensitive data. For example, the
alteration of bank account number and salary
information not needed if an outsourcer is doing our
payroll.In medical field also the researchers need
accurate information about patients. Traditionally,
leakage detection is handled by water -marking, e.g., a
unique code is embedded in each distributed copy. The
leaker can identify easily in the hands of the
unauthorized party where the copy is discovered later.In
some cases this watermarks technique also useful, but it
involves some modification of the originalsensitive data.
If the data recipient is malicious the watermarks can also
be destroyed.In this paper, the leakage of a set of
objects or records will detect by using the study
unobtrusive techniques.The following is the special
scenario we will study: the distributor founds same
objects in unauthorized place those are distributed to the
agents,afterdistribution.By this moment, the distributor

will acquires the information about leaked data where it
came from either one or more agents, neither gathered
independently by other means. For example a cookie is
stolen from a cookie jar, if distributor catchesRam with a
single cookie; he can argue that a friend gave him the
cookie. But if we catch Ram with five cookies, it is too
hard to him to argue that his hands were not in the
cookie jar. In (Stanford, 2008) If the distributor sees
“enough evidence” that an agent leaked data, he may
stop doing business with him, or may initiate legal
proceedings.

Security testing needs to target the “presence of an
intelligent adversary bent on breaking the system” [10].
The threat model will provide a basis for effective
security testing because threat models describe security
threats from the standpoint of how the adversary would
attack or exploit a system. Although threat modeling has
become a viable practice for secure software
development, security testing with implicit and informal
threat models has very limited ability to automatically
generate security tests (Lijo Thomas). The Predicate/
Transition (PrT) nets are used for automated security
testing by using formal threat models represented.PrT
nets are high-level Petri nets, which are a well-studied
mathematically-based method for modeling and verifying
distributed systems. To achieve secure design, wehave
used PrT nets as a unified formalism for
modelingsystem functions, security threats, and security
features.Presence (or absence) of the threats can be
verified againstthe functions before (or after) the security
features areapplied. Recently, we have implemented an
animator forstepwise simulation of attack behaviors.
Based on this work,this paper aims at automated
security testing with PrT net-based threat models.

Our developed model will acquire the agent’s guilt. To
identify the leaker of whom we sent the objects, we
present the algorithms also. We also add the fake
objects to the original objects. Such objects will appear
related to the agents but do not correspond to real
entities. The fake objects will act as a watermark for the
entire set, without modifying any individual members. In
(Karthik, 2012) If it turns out that an agent was given
one or more fake objects that were leaked, then the
distributor can be more confident that agent was guilty.

Section 2 explains our problem setupand the used
notation.The 4 & 5Sections willrepresent amodel for
calculating data leakage “guilt” probabilities.The data
allocation strategies will be explained in Sections 6 and
7. Section 8 will explains the way we evaluatethe
strategies to identify the leaker in different data leakage
scenarios.

PROBLEMSETUP ANDNOTATION

Entities and Agents

mailto:Pallavali@gmail.com

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume.4, No.2, March- April, 2013, ISSN 2277-3061

394 | P a g e w w w . i j c t o n l i n e . c o m

A district but or owns a setT¼ft1;...; tm of valuable data
objects. The set of agents U1;U2;…;Un, the distributor
wants to share some of the objects, but leakage of
objects to the other third parties are not interested. The
objects in T could be of any type and size, e.g., they
could be tuples in a relation, or relations in a database.

In (Panagiotis Papadimitriou)RiT is a subset of objects is
received by agent Ui.determined either by a sample
request or an explicit request:

Sample request Ri ¼SAMPLEðT; miÞ: Any
subset of mi records from T can be given to Ui
Explicit request Ri ¼EXPLICITðT; CondiÞ:
Agent Ui receives all To bisects that satisfy
Cond i

For example: Say thatTcontains customer records for a
given companyA. One company C1hires a marketing
agency M1 to do an online survey of customers. If any
customer wants to do the survey,agency M1 requests a
sample of 1,000 customer records. At the same time,
company C1 subcontracts with agent M2 to handle
billing for all Mumbai customers. Thus, M2receives all T
records that satisfy the condition “state is Mumbai.” Our
model for a sample of object requests can easily be
extended to satisfy a condition (e.g., an agent wants any
100 Mumbai customer records). Also note that we need
not concern ourselves with the randomness of a sample.

Guilty Agents

T is a set of objects leaked from agents is discovered by
the distributor after distribution of objects. The third party
called the target has been caught in jump to S. For
example, the target website displaysthat it’s Son the
main website, or perhaps as part of a legal discovery
process, the target turned over S to the distributor.
Based on this we can say that the data was leaked
because the agentsU1;...; Un have some of the data.
And data S were obtained through other way by the
target. For example, (Panagiotis, 2011) X is the
customer S in the objects, and also a customer of some
other company, and that company provided the data to
the target.

Our aim is to found that the leaked data came from the
agents compare to other sources. Intuitively, the agents
may argue that they dint leak anything to third party is
very hard. Similarly, it is hard to get that the objects
obtained by other means to the targeter.

Our aim is not only to estimate the likelihood of leaked
data from the agents, but also like to find out the leaker
in particular more likely. For the moment of time, in S
object one is only given to the agentU1, and the other
objects were given to all other agents, we may doubt
onU1 more. The model we present next captures this
intuition. We can say that an agent Ui is guilty due to his
contribution on the objects leakage to the target. The
agent Ui is guilty by Gi and the event that agent Ui is
guilty for leakage of set S by GijS. The next step is to
estimate PrfGijSg, i.e., the probability that agent Ui is
guilty given evidence S.

Data Allocation Problem

To detect the guilty agents more effectively the
distributor will give data logically to agents.In this
problem we represent four instances based on the

agent’s data requests whether they allowed or not the
fake objects. The Agent calls are two types called
sample and explicit,but the fake objects may add based
on the type of request. The Fake objects are not in the
set T &objects are generated by the distributor.These
fake objects may look like real objects, and are
distributed to agents together with the T objects, in order
to increase the detecting chances of agent’sdata
leakage.

Fig: 1 Leakage Problem Instances

The above figure represents four problem instances with
the names EF, E, SF and S, where E =explicit requests,
S = sample requests, F = use of fake objects, and for
the case where fake objects are not allowed.

To detect guilty agents more effectively the distributor
will add the fake objects to the distributed data.Based on
this will find out the correctness of the agents.By using
the fake objects we can “trace” records in mailing lists.

RELATEDWORK

Our proposed detection of guilt approachis related to the
data provenance problem [2]: tracing the lineage of S
objects implies essentially the detection of the guilty
agents. Tutorial [3] provides a good overview on the
research conducted in this field. Suggested solutions are
domain specific, such as lineage tracing for data ware-
houses [4], and assume some prior knowledge on the
way a data view is created out of data sources. Our
problem formulation with objects and sets is more
general and simplifies lineage tracing, since we do not
consider any data transformation from Ri sets to S.

How many times the data allocation strategies are
concerned, our work is relevant to watermarking
technique will establish original ownership of distributed
objects. Watermarks were initially used in images [5],
video [6], and audio data [6] whose digital
representation includes considerable redundancy. Our
approach is similar as watermarking that provides
agentssome receiver identifying information.

By its nature, a watermark modifies the item being
watermarked. If the object is watermarked it cannot be
modified, and another watermark cannot be inserted. In
such cases, attaching watermarks to the distributed data
are not applicable.

Other works are also there to allow authorized user
access control to access sensitive data through access
control policies. Those approaches will prevent in sense

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume.4, No.2, March- April, 2013, ISSN 2277-3061

395 | P a g e w w w . i j c t o n l i n e . c o m

the data leakage by sharing information only with trusted
parties. However, these policies impossible to satisfy
agents’ requests.

The main focus in this paper is on automated generation
of executable security test code from Threat Model-
Implement Description (TMID) specifications. A TMID
specification consists of a threat model (i.e., PrT net)
and a Model-Implementation Mapping (MIM) description.
A threat model describes how toattack to violate a
security goal. A MIM description maps the individual
elements of a threat model to their implementation
constructs. Given a TMID specification, our approach
can generate all attack paths from the threat model and
then convert them into executable code according to the
MIM description. As such, the security tests generated
from the threat model can be executed automatically.
We have implemented our approach in Integration and
System Test Automation (ISTA), a framework for
automated test code generation from PrT nets [12].
Currently, ISTA uses either HTML/Selenium IDE or C as
the target language of test code for generating security
tests from TMID specifications. Selenium 2 is a Firefox
plug-in for creating, recording, and replaying test cases
for web applications.

We have built comprehensive threat models according
to the threat classification system STRIDE (spoofing
identity, tampering with data, repudiation, information
disclosure, denial of service, and elevation of privilege)
[10], [13]. STRIDE has been widely used for threat
modeling [46]. The security tests generated from the
threat models of these systems have revealed security
vulnerabilities and risks in each system. While all attack
paths are generated automatically from the threat
models, about 95 percent of them are converted to
executable test code and can be performed
automatically. To further evaluate the vulnerability
detection capability of the security tests, we have
applied them to the security mutants of the above
systems. Each mutant is a variation of the original
version with one vulnerability injected deliberately. A
mutant is said to be killed if at least one of the security
tests is a successful attack against the mutant.

Our experiments shows that the security tests generated
from the security models are very effective they have
killed about 90 percent of the mutants. The contribution
of this paper is twofold. First, our approach can generate
executable security tests from rigorous threat models
that capture various security attacks, such as spoofing,
tampering with data, information disclosure, denial of
service, and elevation of privilege. It is recognized that
security testing of software applications needs to be
performed from the adversary’s perspective, i.e., how
the adversary might attack the system under test (SUT).

The existing security testing techniques primarily use
implicit threat models (e.g., thoughts in security tester’s
mind) or informal threat descriptions (e.g., represented
by attack trees). However, security testing with informal
threat specifications (e.g., attack trees) has very limited
ability to automate test generation or test execution [14],
[15]. In this paper, threat modeling is based on a
rigorous formalism, PrT nets, from an effective approach
to secure software design [45]. By using PrT nets to
model system functions, security threats, and security
features, presence (and absence) of the security threats
can be verified against the system functions before (and

after) the security features are applied. Threat models
resulted from such a design process can be leveraged
to generate security tests for validating the resultant
implementation. In addition, the existing research on
model-based testing has focused on test generation
from intended behavior models [16], not from rigorous
threat models. Second, we used security mutation (i.e.,
injection of various security vulnerabilities) for evaluating
the effectiveness of our approach.

Traditional mutation testing research focuses on fault
injection by making syntactic changes to a target
program or specification [13], such as modification of &&
(and) to jj (or) in a condition. Obviously, such mutants
are unlikely security vulnerabilities because they have
not taken the semantics into consideration. The existing
work on security mutation analysis focuses on
vulnerability injection for particular types of attacks (e.g.,
injection, XSS, and buffer over flow) and fault injection
for role-based access control (RBAC) policies [16].

THREATMODELS FORSECURITYTESTING

This section introduces TMID, the front-end input
language for automated security testing. A TMID
specification includes a threat model and a MIM
specification. A threat model describes how attacks can
be performed against the SUT, whereas a MIM
specification maps the elements of a threat model to
implementation-level constructs. The former is used to
generate security tests and the latter is used to convert
them into executable code.

Threat Models:

Definition 1 (PrT net).A PrT net N is a tuple <P;T;F;I; P ;
L; ’;M0>, where 1. P is a set of places (i.e., predicates),
T is a set of transitions, F is a set of normal arcs, and Iis
set of inhibitor arcs.

2. P is a set of constants, relations (e.g., equal to and
greater than), and arithmetic operations (e.g., addition
and subtraction).

3. L is a labeling function on arcsF[I. L(f) is a label for
arc f. Each label is a tuple of variables and/or constants
in P

4. ’is a guard function on T:’ðtÞ;t’s guard condition, is
built from variables and the constants, relations, and
arithmetic operations in P . 5. M0¼ S p2PM0ðpÞis an
initial marking, hereM0ðpÞ is the set of tokens in place
p. Each token is a tuple of constants in P.

A simplified version of traditional PrT nets [8]. This
formalism has been applied successfully to threat
modeling in a formal method for secure software design
[15]. It is also supported by an efficient verification
technique [18]. Suppose each variable starts with a
lower case letter or question mark (?) and each constant
starts with an upper case letter or digit.<6c>denotes the
zero-argument tuple for a token or default arc label if an
arc is not labeled. pðV1;...;Vn Þ denotes
token<V1;...;Vn>in place p. Places and transitions are
represented by circles and rectangles, respectively. An
arrow represents a normal arc; a line segment with a
small solid diamond on both ends represents an inhibitor
arc. Fig. 2 shows an example.

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume.4, No.2, March- April, 2013, ISSN 2277-3061

396 | P a g e w w w . i j c t o n l i n e . c o m

Fig: 2 PrT net for a dictionary attack

Transitions legalAttempt and illegalAttempt have
formalparametersð?U;?pÞ. Illegal Attempt also has a
guard condition? u6¼0000. Letpbe a place and tbe a
transition. P Is called an input(or output) place oftif there
is a normal arc from pto t(orfrom t to p). pis called an
inhibitor place if there is aninhibitor arc between p and t.
Let ? x=V be a variablebinding, where ?xis bound to
value V. A substitution is aset of variable bindings. In
substitution f?u=ID1;?p=PSWD1g, ?uand ?p are bound
to ID1 and PSWD1,respectively. Let be a substitution
andlbe an arc label .l= denotes the tuple (or token)
obtained by substituting eachvariable inl for its bound
value
inIfl¼<?u;?p>andf?u=ID1;?p=PSWD1g,thenl=¼<ID1;PS
WD1>.

Transitiont is said to be enabled or firable by under
amarking if 1) each input placep of t has a token
thatmatches l=, where l is the normal arc label from pto
t;2) each inhibitor placepoftas no token that
matchesl=,wherelis the inhibitor arc label; and 3) the
guard conditionoftevaluates to true according
to.Suppose M0¼fp1;p2ðID1;PSWD1Þ;p3ðIDn
þ1;PSWDnþ1Þgfor the net in Fig. 1. LegalAttempt is
enabledby¼f?u=ID1;?p=PSWD1gbecausep1 has a
token (i.e.,<6c>) and p2 have a token<ID1;PSWD1>that
matches<?u;?p>=. IllegalAttempt is not enabled under
M0 becausep2, as an inhibitor place, has a token that
can be unified withthe arc label <?u1;?p1>. Inhibitor arcs
represent negation.

Firing an enabled transition t with substitution underM0
removes the matching token from each input place
andadds new tokenl=to each output place, wherel is the
arclabel fromtto theoutput place. This leads to a new
markingM1. Firing
tð?x1;...;?xnÞith¼f?x1=V1;...;?xn=Vngisdenoted bytor
tðV1;...;VnÞ:M0;t11;M1...tnn;Mn,orsimply t11;...;tnn, is
called a firing sequence, wheretið1inÞis a transition,
ið1inÞis the substitutionfor firingti, and Mi ð1inÞis the
marking after tifires,respectively. A marking M is said to
be reachable from M0if there is such a firing sequence
that transforms M0 to M.Note that evaluation of a guard
condition for transitionfiring may involve
comparisons,arithmetic operations, andbinding of free
variables to values. For example,
evaluationofz¼xþ1wherexis bound to two will first
computexþ1and then bindzto three. Therefore, a firing
sequencecan imply a sequence of data transformations.

Definition 2 (Threat model or net).A PrT
net<P;T;F;I;P;L;’;M0>is a threat model or net if Thas one
or moreattacktransitions (suppose the name of each
attack transitionstarts with “attack”). The firing of an
attacktransition is asecurity attack or a significant sign of
security vulnerability.

Fig:3A threat net for SQL injection attacks.

The net in Fig. 2 models a dictionary attack against
asystem that allows only n invalid login attempts
forauthentication. It describes that the adversary tries to
makesnþ1login ttempts.p2holdsninvalid<user id;
password>pairs andp3 holds one invalid<user id;
password>pair.SupposeM0¼fp0;p2ðID1;PSWD1Þ;p2ðI
D2;PSWD2Þ;p2ðID3;PSWD3Þ;p3ðIDnþ1;PSWDnþ1Þg:
Then, the following firing sequence violates the
authentication policy of a system that allows only three
invalid loginattempts:

Result Analysis

Both case studies have used a structured process to
build threat models by applying the STRIDE
classification to the system functions. STRIDE helps
identify threats to all security goals, including
confidentiality, integrity, avail-ability, authentication,
authorization, and non-repudiation.

The threat nets for each case study have covered all
systems functions and threat types. Through threat
modeling, a security tester can gain an in-depth
understanding about the SUT. Threat models document
the tester’s thoughts on the goals and processes of
security attacks. This is critical to effective security
testing. To achieve an attack goal, a real-world
adversary may only need one or few ways to break into
the system. Security testing, however, must consider as
many potential attacks as possible.

In both studies, attack paths are all generated
automatically from the threat nets. Majority of them are
successfully converted into executable code in that the
MIM specifications can be developed. Whether the MIM
for a threat net can be specified depends on whether the
individual actions and conditions are programmable.
95.1 (98/103) and 94.7 percent (72/76) of the tests can
be fully or partially automated for Magento.
Respectively. Although the prior work on testing with
attack trees [18] can generate attack paths
automatically, these attack paths are usually ambiguous
because the attack actions and conditions originated
from the attack trees are described in plain text.
Transformation of the attack paths to executable tests

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume.4, No.2, March- April, 2013, ISSN 2277-3061

397 | P a g e w w w . i j c t o n l i n e . c o m

can only be done by hand. In comparison, our new
approach allows for a high degree of automation for
security testing.

Both studies show that security testing with formal threat
models is very effective. The security tests have found
vulnerabilities in each system. They have killed 88.9
(56/63) and 92.1 percent (35/38) of the security mutants,
respectively. The overall vulnerability detection rate is
91=101¼90percent. The main reason for the
effectiveness is that the threat models are built as if the
tester were an intelligent adversary. The tests generated
from the threat models are directly on the target, i.e.,
vulnerabilities that can be exploited by attacks.
Nevertheless, testing with threat models also has
limitations. It is difficult to reveal vulnerabilities that are
not anticipated by the threat models.

DATA ALLOCATION PROBLEM

Our main focus in this paper is problem in data
allocation: the way the distributor can “intelligently”
distribute the data to the agents to improve the chances
of finding a guilty agent? Fig. 2 explains that the problem
address four instances, depending on the agents
request on data and whether “fake objects” are allowed.
We handle two types of requests here were defined in
Section 2: sample and explicit. The Fake objects are
generated by the distributor that is not in set T. The fake
objects are designed to look like real objects, and are
distributed to agents together with T objects,(Akshy) in
order to increase the chances of detecting agents that
leak data.

Fig: 4 Leakage problem instances

Fig. 4 shows that the representation of our four
probleminstances with the names EF, EF, SF, and SF,
where Estands for explicit requests, Sfor sample
requests,Ffor theuse of fake objects, andFfor the case
where fake objects arenot allowed.

For simplicity,we assume that problem instances in E,all
agents’ requests are done by explicitly, whilein
theinstances S, all requests are sample. We extended
this to handle mixed cases also, with some explicit and
sample requests. For example how mixed case handled,
but not elaborates further. Assume that we havetwo
agents with requests R1¼EXPLICITðT; cond1Þ
andR2¼SAMPLEðT0; 1Þ, whereT0 ¼EXPLICITðT;
cond2Þ.

Further, say thatcond1 is “state¼CA” (objects have a
statefield). If agentU2has the same
conditioncond2¼cond1, wecan create an equivalent
problem with sample data requests on set T0. That is,
our problem will be how to distribute theCA objects to
two agents, withR1¼SAMPLEðT0; jT0jÞand

R2¼SAMPLEðT0; 1Þ.If insteadU2 uses
condition“state¼NY,” we can solve two different
problems for setsT0 and T1. In each problem, we will
have onlyone agent. Finally, if the conditions partially
overlap.

For distributed data also the distributor will add fake
objects it improves effectiveness indetecting guilty
agents. However, fake objects may impactthe
correctness of what agents do, so they may not
alwaysbe allowable.

Fig. 4 Guilt probability as a function of the guessing
probabilityp(a) and the overlap between SandR2 (b)-(d).
In all scenarios, it holds that R1\S¼SandjSj¼16. (a)
jR2\SjjSj ¼0:5, (b) p¼0:2, (c) p¼0:5, and (d) p¼0:9.

To detect leakage of data is not a new idea called the
perturbing. However, in most cases, individual objects
areperturbed, e.g., by adding random noise to
sensitivesalaries, or adding a watermark to an image. In
our case,we are perturbing theset of distributor objects
by adding Fig. 4. Guilt probability as a function of the
guessing probabilityp(a) and the overlap
betweenSandR2 (b)-(d). In all scenarios, it holds
thatR1\S¼SandjSj¼16. (a)JR2\SjjSj ¼0:5, (b) p¼0:2, (c)
p¼0:5, and (d) p¼0:9.

ALLOCATION STRATEGIES

This section illustrates the allocation strategies those
involved to solve exactly or approximately the scalar
versions of (8) for the different instances presented in
Fig. 3. Where we cannot solve the optimization problem
there we place the approximate solutions.The proofs of
theorems that are stated in the following sections are
available in [14].

Explicit Data Requests

In EF class problems the distributor is not allowed to add
fake objects to the distributed data. So, the data
allocation is fully defined by the agents’ data requests.
Therefore, there is nothing to optimize.

The objective values are initialized in EF problems, by
agents’ data requests. Say, for example, that T={t1; t2}
and there are two agents with explicit data requests
such that R1={t1; t2} and R2={t1}. The value of the sum-
objective is in this case the distributor cannot remove or
alter theR1 orR2 data to decrease the overlap R1\R2.
However, say that the distributor can create one fake
object (B=1) and both agents can receive one fake
object (b1=b2=1). In this case, the distributor can add
one fake object to eitherR1 orR2 to increase the
corresponding denominator of the summation term.
Assume that the distributor creates a fake object f and
he gives it to agentR1. Agent U1 has nowR1={t1; t2;

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume.4, No.2, March- April, 2013, ISSN 2277-3061

398 | P a g e w w w . i j c t o n l i n e . c o m

f}andF1=ffgand the value of the sum-objective
decreases to 1 3þ1 1¼1:33<1:5.

If the distributor is able to create more fake objects, he
could further improve the objective. We present in
Algorithms 1 and 2 a strategy for randomly allocating
fake objects. Algorithm 1 is a general “driver” that will be
used by other strategies, while Algorithm 2 actually
performs the random selection. We denote the
combination of Algorithm 1 with 2 random. We will use
e-random as our baseline in our comparisons with other
algorithms for explicit data requests.

Algorithm 1.Allocation for Explicit Data Requests (EF)

Input: R1;…;Rn, cond1;…; condn, b1;…;bn, B

Output: R1;…;Rn, F1;…;Fn

1: R; .Agents that can receive fake objects

2: fori¼1;…;ndo

3: if bi >0then

4: R R[fig

5: Fi ;

6: whileB>0do

7: i SELECTAGENTðR;R1;…;RnÞ

8: f CREATEFAKEOBJECTðRi;Fi; condiÞ

9: RiRi [ffg

10: Fi Fi [ffg

11: bi bi 1

12: if bi ¼0then

13: R RnfRig

14: B B 1

EXPERIMENTAL RESULTS

Our allocation algorithms are implemented in Python
and we conducted experiments with simulated data
leakage problems to evaluate their performance. In
Section 8.1, we present the metrics we use for the
algorithm evaluation.

Metrics

we presented algorithms to optimize the problem of (8)
that is an approximation to the original optimization
problem of (7). In this section, we evaluate the
presented algorithms with respect to the original
problem. In this way, we measure not only the algorithm
performance, but also we implicitly evaluate how
effective the approximation is. The objectives in (7) are
thedifference functions.

We evaluate a given allocation with the following
objective scalarizations as metrics: Metric is the average
of ði; jÞ values for a given allocation and it shows how
successful the guilt detection is, on average, for this
allocation. For example, if it 0:4, then, on average, the
probability PrfGijRig for the actual guilty agent will be 0.4
higher than the probabilities of non-guilty agents. Note
that this scalar version of the original problem objective
is analogous to the sum-objective scalarizations of the
problem of (8). Hence, we expect that an algorithm that

is designed to minimize the sum-objective will
maximize. Metric M in is the minimum ði; jÞ value and it
corresponds to the case where agent Ui has leaked his
data and bothUi and another agentUj have very similar
guilt probabilities. Ifmin is small, then we will be unable
to Identify Ui as the leaker, versus Uj.Ifm in is large, say,
0.4, then no matter which agent leaks his data, the
probability that he is guilty will be 0.4 higher than any
other non-guilty agent. This metric is analogous to the
max-objective scalarizations of the approximate
optimization problem.

The selected values for these metrics aredepending on
the application. In particular, they depend on what might
be considered high confidence that an agent is guilty.
For instance, say that PrfGi jRig¼0:9 is enough to
arouse our suspicion that agentUi leaked data.
Furthermore, say that the difference between
PrfGijRigand any otherPrfGjjRigis at least 0.3. In other
words, the guilty agent isð0:90:6Þ=0:600%¼ 50%more
likely to be guilty compared to the other agents. In this
case, we may be willing to take action against Ui. In the
rest of this section, we will use value 0.3 as an example
of what might be desired in values.

To calculate the guilt probabilities anddifferences, we
use throughout this sectionp=0:5. Although not reported
here, we did the experiments with other p values and
observed that the relative performance of our algorithms
and our main conclusions do not change. If
papproaches to 0, itbecomes easier to find guilty agents
and algorithmperformance converges. On the other
hand, ifpapproaches1, the relative differences among
algorithms grow sincemore evidence is needed to find
an agent guilty.

Explicit Requests

In the first place, the goal of these experiments was to
seewhether fake objects in the distributed data sets
yieldsignificant improvement in our chances of detecting
a

Fig. 5 Evaluation of explicit data request algorithms (a)
Average, (b) Average min

We focused on with few objects that are shared among
multiple agents. These are the most interesting
scenarios, since object sharing makes it difficult to
distinguish a guilty from non-guilty agents. A scenario
with more objects to distribute or shared among fewer
agents are obviously easier to handle. As far as
scenarios with many objects to distribute and many
over-lapping agent requests are concerned, they are
similar to the scenarios we study, since we can map
them to the distribution of many small subsets.

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume.4, No.2, March- April, 2013, ISSN 2277-3061

399 | P a g e w w w . i j c t o n l i n e . c o m

In our scenarios, we have a set of jTj¼10objects for
which there are requests byn¼10 different agents. Our
assumption is that the each agent requests 8 particular
objects out of these 10. Hence, each object is shared,
on average, among ¼8 agents. This scenarios yield
more similar that the agent guilt probabilities and it is
most important to add fake objects. We generated a
random scenario that yielded¼0:073and min¼0:35and
we applied the algorithms e random and e-optimal to
distribute fake objects to the agents. Thenumber B
varied with distributed fake objects from 2 to 20, and for
each value of B, we ran both algorithms to allocate the
fake objects to agents. We rane-optimalonce for each
value of B, since it is a deterministic algorithm. Algorithm
e-random is randomized and we ran it 10 times for each
value of B. The results we present are the average over
the 10 runs. Fig. 3a shows how fake object allocation
can affect.

There are three curves in the plot. The solid curve is
constant and shows thevalue for an allocation without
fake objects (totally defined by agents’ requests). The
other two curves look at algorithms e-optimal and e-
random. The X-axis and the Y-axis shows the ratio
between the numbers of distributed fake objects to the
total number of objects that the agents explicitly request.

We observe that distributing fake objects can
significantly improve, on average, the chances of
detecting a guilty agent. The random allocation yields >
0.3 for approximately 10 to 15 percent fake objects. The
use of e-optimal improvesfurther, since thee-optimal
curve is >95 % consistently in intervals of e-random. If
the agent dint require same number of objects the
performance difference between the two algorithms
would be greater, since this symmetry allows non smart
fake object scenarios. However, we do not study more
this issue here, since the advantages of e-optimal
become obvious when we look at our second metric.

The function of the fraction of fake objects. The
insignificant improvement in random allocation shows
the plot chances of detecting a guilty agent in the worst-
case scenario. This was expected, since e-random does
not take into consideration due to that each agent “must”
receive a fake object to differentiate their requests from
other agents. On the contrary, algorithm e-optimal can
yield min >0:3 with the allocation of approximately 10
percent fake objects. This improvement is very important
taking into account that without fake objects, values min
and are close to 0.

By allocating 10 percent of fake objects, in worst case
also the distributor can detect a guilty agent.Without
allocating fake objects, the distributor was unsuccessful
in the worst case as well as in average case also. Our e-
optimal curve has two jumps due to the symmetry in our
scenario. Our e-optimal algorithm allocates one fake
object per each agent before allocating a second fake
object to other agents.

CONCLUSION

The agents may leak sensitive data that may
unknowingly or maliciously. And even if we want to
handle the sensitive data perfectly in this world we could
do watermarking each object so that we can trace its
origins with absolute certainty. In many cases in this
world, we must work with agents those are may not be

100 percent trusted, and we cannotconfirmthat the

leaked object came from an agent or from other source,

since our data cannot admit watermarks.

Automated generation of security test code largely
depends on whether or not threat models can be
formally specified, whether or not individual test inputs
(e.g., attack actions with particular input data) and test
oracles (e.g., for checking system states) can be
programmed. A system that s designed for testability
and traceability would certainly facilitate automating its
security testing process. For example, threat models
identified and documented in the design phase can be
reused for security test generation.

Access or methods designed for testability (i.e., for
accessing system states) are useful for verification of
security test oracles. The traceability of design-level
functions in the implementation can facilitate the
mapping from individual actions in threat models to
implementation constructs. It is worth pointing out that
the threat models in our approach can be built at
different levels of abstraction. They do not necessarily
specify design-level security threats.

Software security is a complex problem; there is no
silver bullet [17]. Different techniques are often needed
in order to achieve a high level of security assurance. In
particular, testing for security and static analysis for
security are two different approaches. It is of interest to
conduct a comparative study on their cost effectiveness.

REFRENCES

[1] R. Agrawal and J. Kiernan, “Watermarking Relational
Databases,”Proc. 28th Int’l Conf. Very Large Data Bases
(VLDB ’02),VLDBEndowment, pp. 155-166, 2002.

[2] C. Bezemer, A. Mesbah, and A. van Deursen,
“Automated Security Testing of Web Widget
Interactions,”Proc. Seventh Joint Meeting of the
European Software Eng. Conf. and the ACM SIGSOFT
Symp. Foundations of Software Eng. (ESE/FSE ’09),pp.
81-90, 2009

[3] P. Buneman, S. Khanna, and W.C. Tan, “Why and
Where: ACharacterization of Data Provenance,”Proc.
Eighth Int’l Conf.Database Theory (ICDT ’01),J.V. den
Bussche and V. Vianu, eds.,pp. 316-330, Jan. 2001.

[4] P. Buneman and W.-C. Tan, “Provenance in
Databases,”Proc.ACM SIGMOD,pp. 1171-1173, 2007.

[5] R. Chandramouli and M. Blackburn, “Automated
Testing of Security Functions Using a Combined Model
& Interface Driven Approach,”Proc. 37th Hawaii Int’l
Conf. System Sciences,pp. 299-308, 2004

[6] S. Czerwinski, R. Fromm, and T. Hodes, “Digital
Music Distribu-tion and Audio watermarking,”
http://www.scientificcommons.org/43025658, 2007.

[7] J. Fonseca, M. Vieira, and H. Madeira, “Testing and
Comparing Web Vulnerability Scanning Tools for SQL
Injection and Xss Attacks,”Proc. 13th Pacific Rim Int’l
Symp. Dependable Computing, pp. 365-372, Dec. 2007

[8] F. Hartung and B. Girod, “Watermarking of
Uncompressed andCompressed
Video,”SignalProcessing,vol. 66, no. 3, pp. 283-
301,1998.

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume.4, No.2, March- April, 2013, ISSN 2277-3061

400 | P a g e w w w . i j c t o n l i n e . c o m

 [9] P. Hope and B. Walther,Web Security Testing
Cookbook: Systematic Techniques to Find Problems
Fast.O’ Reilly Media, Inc., 2009.

[10] M. Howard and D. LeBlanc,Writing Secure
Code,second ed. Microsoft Press, 2003

[11] B. Mungamuru and H. Garcia-Molina, “Privacy,
Preservation andPerformance: The 3 P’s of Distributed
Data Management,”technical report, Stanford Univ.,
2008.

[12] V.N. Murty, “Counting the Integer Solutions of a
Linear Equationwith Unit
Coefficients,”Math.Magazine,vol. 54, no. 2, pp. 79-
81,1981.

[13] Y. Jia and M. Harman, “An Analysis and Survey of
the Development of Mutation Testing,”IEEE Trans.
Software Eng., vol. 37, no. 5, pp. 649-678, Sept./Oct.
2011.

[14] J. Julliand, P.A. Masson, and R. Tissot, “Generating
Security Tests in Addition to Functional Tests,” Proc.
Third Int’l Workshop Automation of Software Test,pp.
41-44, 2008

[15] J.J.K.O. Ruanaidh, W.J. Dowling, and F.M. Boland,
“Watermark-ing Digital Images for Copyright Protection,”
IEE Proc. Vision,Signal and Image Processing,vol. 143,
no. 4, pp. 250-256, 1996.

[16] R. Sion, M. Atallah, and S. Prabhakar, “Rights
Protection forRelational Data,”Proc. ACM SIGMOD,pp.
98-109, 2003.

[17] J. Kong, D. Xu, and X. Zeng, “UML-Based Modeling
and Analysis of Security Threats,”Int’l J. Software Eng.
and Knowledge Eng., vol. 20, no. 6, pp. 875-897, Sept.
2010.

[18] L. Sweeney, “Achieving K-Anonymity Privacy
Protection UsingGeneralization and Suppression,”
http://en.scientificcommons.org/43196131, 2002

Author Profiles:

Mr. P. Radha Krishna Reddy received his B.Sc (CS) &
M.Sc (CS) from Sri Venkateswara University-Tirupati,
and pursuing M.Tech in Computer Science and
Engineering from Vaagdevi Institute of Technology and
Sciences, JNTU-Anantapur. He has 2+ years of
teaching Experience. His interested research area is
Security about various fields of Computer Science.

Ms.G.Sireesha received her B.Tech in Computer science
and engineering from Royal Institute of Technology and
Science, JNTU, Hyderabad, M.Tech in Computer
science (Parallel computing) from Aurora’s Engineering
College, JNTU-Hyderabad.She is working as Assistant
Professor in Computer Science and Engineering in St.
Peters Engineering College-Hyderabad.

http://en.scientificcommons/

