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Abstract: The data distributors work is to give 

sensitive data to a set of presumably trusted third party 
agents.The data i.e., sent to these third parties are 
available on the unauthorized places like web and or 
some ones systems, due to data leakage. The 
distributor must know the way the data was leaked from 
one or more agents instead of as opposed to having 
been independently gathered by other means. Our new 
proposal on data allocation strategies will improve the 
probability of identifying leakages along with Security 
attacks typically result from unintended behaviors or 
invalid inputs.  Due to too many invalid inputs in the real 
world programs is labor intensive about security 
testing.The most desirable thing is to automate or 
partially automate security-testing process. In this paper 
we represented Predicate/ Transition nets approach for 
security tests automated generationby using formal 
threat models to detect the agents using allocation 
strategies without modifying the original data.The guilty 
agent is the one who leaks the distributed data. To 
detect guilty agents more effectively the idea is to 
distribute the data intelligently to agents based on 
sample data request and explicit data request. The fake 
object implementation algorithms will improve the 
distributor chance of detecting guilty agents. 

Key words: Data leakage, Data privacy, Allocation 

strategies, security testing, Software security. 

INTRODUCTION 

Our consideration about applications where the Original 
sensitive data can’t be perturbed. For this the application 
must detect when the sensitive data got leaked and if 
possible from where. Before sending the sensitive data 
to the agents we need to convert it to low sensitive data 
by using the most useful technique perturbation. For 
example, one can add random noise to certain 
attributes, or one can replace exact values by ranges 
[1]. In some critical cases there is no need of altering the 
original distributor’s sensitive data. For example, the 
alteration of bank account number and salary 
information not needed if an outsourcer is doing our 
payroll.In medical field also the researchers need 
accurate information about patients. Traditionally, 
leakage detection is handled by water -marking, e.g., a 
unique code is embedded in each distributed copy. The 
leaker can identify easily in the hands of the 
unauthorized party where the copy is discovered later.In 
some cases this watermarks technique also useful, but it 
involves some modification of the originalsensitive data. 
If the data recipient is malicious the watermarks can also 
be destroyed.In this paper, the leakage of a set of 
objects or records will detect by using the study 
unobtrusive techniques.The following is the special 
scenario we will study: the distributor founds same 
objects in unauthorized place those are distributed to the 
agents,afterdistribution.By this moment, the distributor 

will acquires the information about leaked data where it 
came from either one or more agents, neither gathered 
independently by other means. For example a cookie is 
stolen from a cookie jar, if distributor catchesRam with a 
single cookie; he can argue that a friend gave him the 
cookie. But if we catch Ram with five cookies, it is too 
hard to him to argue that his hands were not in the 
cookie jar. In (Stanford, 2008) If the distributor sees 
“enough evidence” that an agent leaked data, he may 
stop doing business with him, or may initiate legal 
proceedings. 

Security testing needs to target the “presence of an 
intelligent adversary bent on breaking the system” [10]. 
The threat model will provide a basis for effective 
security testing because threat models describe security 
threats from the standpoint of how the adversary would 
attack or exploit a system. Although threat modeling has 
become a viable practice for secure software 
development, security testing with implicit and informal 
threat models has very limited ability to automatically 
generate security tests (Lijo Thomas). The Predicate/ 
Transition (PrT) nets are used for automated security 
testing by using formal threat models represented.PrT 
nets are high-level Petri nets, which are a well-studied 
mathematically-based method for modeling and verifying 
distributed systems. To achieve secure design, wehave 
used PrT nets as a unified formalism for 
modelingsystem functions, security threats, and security 
features.Presence (or absence) of the threats can be 
verified againstthe functions before (or after) the security 
features areapplied. Recently, we have implemented an 
animator forstepwise simulation of attack behaviors. 
Based on this work,this paper aims at automated 
security testing with PrT net-based threat models. 

Our developed model will acquire the agent’s guilt. To 
identify the leaker of whom we sent the objects, we 
present the algorithms also. We also add the fake 
objects to the original objects. Such objects will appear 
related to the agents but do not correspond to real 
entities. The fake objects will act as a watermark for the 
entire set, without modifying any individual members. In 
(Karthik, 2012) If it turns out that an agent was given 
one or more fake objects that were leaked, then the 
distributor can be more confident that agent was guilty. 

Section 2 explains our problem setupand the used 
notation.The 4 & 5Sections willrepresent amodel for 
calculating data leakage “guilt” probabilities.The data 
allocation strategies will be explained in Sections 6 and 
7. Section 8 will explains the way we evaluatethe 
strategies to identify the leaker in different data leakage 
scenarios. 

PROBLEMSETUP ANDNOTATION 

Entities and Agents 
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A district but or owns a setT¼ft1;...; tm of valuable data 
objects. The set of agents U1;U2;…;Un, the distributor 
wants to share some of the objects, but leakage of 
objects to the other third parties are not interested. The 
objects in T could be of any type and size, e.g., they 
could be tuples in a relation, or relations in a database. 

In (Panagiotis Papadimitriou)RiT is a subset of objects is 
received by agent Ui.determined either by a sample 
request or an explicit request: 

Sample request Ri ¼SAMPLEðT; miÞ: Any 
subset of mi records from T can be given to Ui 
Explicit request Ri ¼EXPLICITðT; CondiÞ: 
Agent Ui receives all To bisects that satisfy 
Cond i 

For example: Say thatTcontains customer records for a 
given companyA. One company C1hires a marketing 
agency M1 to do an online survey of customers. If any 
customer wants to do the survey,agency M1 requests a 
sample of 1,000 customer records. At the same time, 
company C1 subcontracts with agent M2 to handle 
billing for all Mumbai customers. Thus, M2receives all T 
records that satisfy the condition “state is Mumbai.” Our 
model for a sample of object requests can easily be 
extended to satisfy a condition (e.g., an agent wants any 
100 Mumbai customer records). Also note that we need 
not concern ourselves with the randomness of a sample.  

Guilty Agents 

T is a set of objects leaked from agents is discovered by 
the distributor after distribution of objects. The third party 
called the target has been caught in jump to S. For 
example, the target website displaysthat it’s Son the 
main website, or perhaps as part of a legal discovery 
process, the target turned over S to the distributor. 
Based on this we can say that the data was leaked 
because the agentsU1;...; Un have some of the data. 
And data S were obtained through other way by the 
target. For example, (Panagiotis, 2011) X is the 
customer S in the objects, and also a customer of some 
other company, and that company provided the data to 
the target.  

Our aim is to found that the leaked data came from the 
agents compare to other sources. Intuitively, the agents 
may argue that they dint leak anything to third party is 
very hard. Similarly, it is hard to get that the objects 
obtained by other means to the targeter.  

Our aim is not only to estimate the likelihood of leaked 
data from the agents, but also like to find out the leaker 
in particular more likely. For the moment of time, in S 
object one is only given to the agentU1, and the other 
objects were given to all other agents, we may doubt 
onU1 more. The model we present next captures this 
intuition. We can say that an agent Ui is guilty due to his 
contribution on the objects leakage to the target. The 
agent Ui is guilty by Gi and the event that agent Ui is 
guilty for leakage of set S by GijS. The next step is to 
estimate PrfGijSg, i.e., the probability that agent Ui is 
guilty given evidence S. 

Data Allocation Problem 

To detect the guilty agents more effectively the 
distributor will give data logically to agents.In this 
problem we represent four instances based on the 

agent’s data requests whether they allowed or not the 
fake objects. The Agent calls are two types called 
sample and explicit,but the fake objects may add based 
on the type of request. The Fake objects are not in the 
set T &objects are generated by the distributor.These 
fake objects may look like real objects, and are 
distributed to agents together with the T objects, in order 
to increase the detecting chances of agent’sdata 
leakage. 

 

Fig: 1 Leakage Problem Instances 

The above figure represents four problem instances with 
the names EF, E, SF and S, where E =explicit requests, 
S = sample requests, F = use of fake objects, and for 
the case where fake objects are not allowed. 

To detect guilty agents more effectively the distributor 
will add the fake objects to the distributed data.Based on 
this will find out the correctness of the agents.By using 
the fake objects we can “trace” records in mailing lists.  

RELATEDWORK 

Our proposed detection of guilt approachis related to the 
data provenance problem [2]: tracing the lineage of S 
objects implies essentially the detection of the guilty 
agents. Tutorial [3] provides a good overview on the 
research conducted in this field. Suggested solutions are 
domain specific, such as lineage tracing for data ware-
houses [4], and assume some prior knowledge on the 
way a data view is created out of data sources. Our 
problem formulation with objects and sets is more 
general and simplifies lineage tracing, since we do not 
consider any data transformation from Ri sets to S. 

How many times the data allocation strategies are 
concerned, our work is relevant to watermarking 
technique will establish original ownership of distributed 
objects. Watermarks were initially used in images [5], 
video [6], and audio data [6] whose digital 
representation includes considerable redundancy. Our 
approach is similar as watermarking that provides 
agentssome receiver identifying information.  

By its nature, a watermark modifies the item being 
watermarked. If the object is watermarked it cannot be 
modified, and another watermark cannot be inserted. In 
such cases, attaching watermarks to the distributed data 
are not applicable. 

Other works are also there to allow authorized user 
access control to access sensitive data through access 
control policies. Those approaches will prevent in sense 
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the data leakage by sharing information only with trusted 
parties. However, these policies impossible to satisfy 
agents’ requests. 

The main focus in this paper is on automated generation 
of executable security test code from Threat Model-
Implement Description (TMID) specifications. A TMID 
specification consists of a threat model (i.e., PrT net) 
and a Model-Implementation Mapping (MIM) description. 
A threat model describes how toattack to violate a 
security goal. A MIM description maps the individual 
elements of a threat model to their implementation 
constructs. Given a TMID specification, our approach 
can generate all attack paths from the threat model and 
then convert them into executable code according to the 
MIM description. As such, the security tests generated 
from the threat model can be executed automatically. 
We have implemented our approach in Integration and 
System Test Automation (ISTA), a framework for 
automated test code generation from PrT nets [12]. 
Currently, ISTA uses either HTML/Selenium IDE or C as 
the target language of test code for generating security 
tests from TMID specifications. Selenium 2 is a Firefox 
plug-in for creating, recording, and replaying test cases 
for web applications. 

We have built comprehensive threat models according 
to the threat classification system STRIDE (spoofing 
identity, tampering with data, repudiation, information 
disclosure, denial of service, and elevation of privilege) 
[10], [13]. STRIDE has been widely used for threat 
modeling [46]. The security tests generated from the 
threat models of these systems have revealed security 
vulnerabilities and risks in each system. While all attack 
paths are generated automatically from the threat 
models, about 95 percent of them are converted to 
executable test code and can be performed 
automatically. To further evaluate the vulnerability 
detection capability of the security tests, we have 
applied them to the security mutants of the above 
systems. Each mutant is a variation of the original 
version with one vulnerability injected deliberately. A 
mutant is said to be killed if at least one of the security 
tests is a successful attack against the mutant.  

Our experiments shows that the security tests generated 
from the security models are very effective they have 
killed about 90 percent of the mutants. The contribution 
of this paper is twofold. First, our approach can generate 
executable security tests from rigorous threat models 
that capture various security attacks, such as spoofing, 
tampering with data, information disclosure, denial of 
service, and elevation of privilege. It is recognized that 
security testing of software applications needs to be 
performed from the adversary’s perspective, i.e., how 
the adversary might attack the system under test (SUT). 

The existing security testing techniques primarily use 
implicit threat models (e.g., thoughts in security tester’s 
mind) or informal threat descriptions (e.g., represented 
by attack trees). However, security testing with informal 
threat specifications (e.g., attack trees) has very limited 
ability to automate test generation or test execution [14], 
[15]. In this paper, threat modeling is based on a 
rigorous formalism, PrT nets, from an effective approach 
to secure software design [45]. By using PrT nets to 
model system functions, security threats, and security 
features, presence (and absence) of the security threats 
can be verified against the system functions before (and 

after) the security features are applied. Threat models 
resulted from such a design process can be leveraged 
to generate security tests for validating the resultant 
implementation. In addition, the existing research on 
model-based testing has focused on test generation 
from intended behavior models [16], not from rigorous 
threat models. Second, we used security mutation (i.e., 
injection of various security vulnerabilities) for evaluating 
the effectiveness of our approach.  

Traditional mutation testing research focuses on fault 
injection by making syntactic changes to a target 
program or specification [13], such as modification of && 
(and) to jj (or) in a condition. Obviously, such mutants 
are unlikely security vulnerabilities because they have 
not taken the semantics into consideration. The existing 
work on security mutation analysis focuses on 
vulnerability injection for particular types of attacks (e.g., 
injection, XSS, and buffer over flow) and fault injection 
for role-based access control (RBAC) policies [16].  

THREATMODELS FORSECURITYTESTING 

This section introduces TMID, the front-end input 
language for automated security testing. A TMID 
specification includes a threat model and a MIM 
specification. A threat model describes how attacks can 
be performed against the SUT, whereas a MIM 
specification maps the elements of a threat model to 
implementation-level constructs. The former is used to 
generate security tests and the latter is used to convert 
them into executable code. 

Threat Models: 

Definition 1 (PrT net).A PrT net N is a tuple <P;T;F;I; P ; 
L; ’;M0>, where 1. P is a set of places (i.e., predicates), 
T is a set of transitions, F is a set of normal arcs, and Iis 
set of inhibitor arcs. 

2. P is a set of constants, relations (e.g., equal to and 
greater than), and arithmetic operations (e.g., addition 
and subtraction). 

3. L is a labeling function on arcsF[I. L(f) is a label for 
arc f. Each label is a tuple of variables and/or constants 
in P 

4. ’is a guard function on T:’ðtÞ;t’s guard condition, is 
built from variables and the constants, relations, and 
arithmetic operations in P . 5. M0¼ S p2PM0ðpÞis an 
initial marking, hereM0ðpÞ is the set of tokens in place 
p. Each token is a tuple of constants in P. 

A simplified version of traditional PrT nets [8]. This 
formalism has been applied successfully to threat 
modeling in a formal method for secure software design 
[15]. It is also supported by an efficient verification 
technique [18]. Suppose each variable starts with a 
lower case letter or question mark (?) and each constant 
starts with an upper case letter or digit.<6c>denotes the 
zero-argument tuple for a token or default arc label if an 
arc is not labeled. pðV1;...;Vn Þ denotes 
token<V1;...;Vn>in place p. Places and transitions are 
represented by circles and rectangles, respectively. An 
arrow represents a normal arc; a line segment with a 
small solid diamond on both ends represents an inhibitor 
arc. Fig. 2 shows an example. 
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Fig: 2 PrT net for a dictionary attack 

Transitions legalAttempt and illegalAttempt have 
formalparametersð?U;?pÞ. Illegal Attempt also has a 
guard condition? u6¼0000. Letpbe a place and tbe a 
transition. P Is called an input(or output) place oftif there 
is a normal arc from pto t(orfrom t to p). pis called an 
inhibitor place if there is aninhibitor arc between p and t. 
Let ? x=V be a variablebinding, where ?xis bound to 
value V. A substitution is aset of variable bindings. In 
substitution f?u=ID1;?p=PSWD1g, ?uand ?p are bound 
to ID1 and PSWD1,respectively. Let be a substitution 
andlbe an arc label .l= denotes the tuple (or token) 
obtained by substituting eachvariable inl for its bound 
value 
inIfl¼<?u;?p>andf?u=ID1;?p=PSWD1g,thenl=¼<ID1;PS
WD1>. 

Transitiont is said to be enabled or firable by under 
amarking if 1) each input placep of t has a token 
thatmatches l=, where l is the normal arc label from pto 
t;2) each inhibitor placepoftas no token that 
matchesl=,wherelis the inhibitor arc label; and 3) the 
guard conditionoftevaluates to true according 
to.Suppose M0¼fp1;p2ðID1;PSWD1Þ;p3ðIDn 
þ1;PSWDnþ1Þgfor the net in Fig. 1. LegalAttempt is 
enabledby¼f?u=ID1;?p=PSWD1gbecausep1 has a 
token (i.e.,<6c>) and p2 have a token<ID1;PSWD1>that 
matches<?u;?p>=. IllegalAttempt is not enabled under 
M0 becausep2, as an inhibitor place, has a token that 
can be unified withthe arc label <?u1;?p1>. Inhibitor arcs 
represent negation. 

Firing an enabled transition t with substitution underM0 
removes the matching token from each input place 
andadds new tokenl=to each output place, wherel is the 
arclabel fromtto theoutput place. This leads to a new 
markingM1. Firing 
tð?x1;...;?xnÞith¼f?x1=V1;...;?xn=Vngisdenoted bytor 
tðV1;...;VnÞ:M0;t11;M1...tnn;Mn,orsimply t11;...;tnn, is 
called a firing sequence, wheretið1inÞis a transition, 
ið1inÞis the substitutionfor firingti, and Mi ð1inÞis the 
marking after tifires,respectively. A marking M is said to 
be reachable from M0if there is such a firing sequence 
that transforms M0 to M.Note that evaluation of a guard 
condition for transitionfiring may involve 
comparisons,arithmetic operations, andbinding of free 
variables to values. For example, 
evaluationofz¼xþ1wherexis bound to two will first 
computexþ1and then bindzto three. Therefore, a firing 
sequencecan imply a sequence of data transformations. 

Definition 2 (Threat model or net).A PrT 
net<P;T;F;I;P;L;’;M0>is a threat model or net if Thas one 
or moreattacktransitions (suppose the name of each 
attack transitionstarts with “attack”). The firing of an 
attacktransition is asecurity attack or a significant sign of 
security vulnerability. 

 

Fig:3A threat net for SQL injection attacks. 

The net in Fig. 2 models a dictionary attack against 
asystem that allows only n invalid login attempts 
forauthentication. It describes that the adversary tries to 
makesnþ1login ttempts.p2holdsninvalid<user id; 
password>pairs andp3 holds one invalid<user id; 
password>pair.SupposeM0¼fp0;p2ðID1;PSWD1Þ;p2ðI
D2;PSWD2Þ;p2ðID3;PSWD3Þ;p3ðIDnþ1;PSWDnþ1Þg:
Then, the following firing sequence violates the 
authentication policy of a system that allows only three 
invalid loginattempts: 

Result Analysis 

Both case studies have used a structured process to 
build threat models by applying the STRIDE 
classification to the system functions. STRIDE helps 
identify threats to all security goals, including 
confidentiality, integrity, avail-ability, authentication, 
authorization, and non-repudiation. 

The threat nets for each case study have covered all 
systems functions and threat types. Through threat 
modeling, a security tester can gain an in-depth 
understanding about the SUT. Threat models document 
the tester’s thoughts on the goals and processes of 
security attacks. This is critical to effective security 
testing. To achieve an attack goal, a real-world 
adversary may only need one or few ways to break into 
the system. Security testing, however, must consider as 
many potential attacks as possible. 

In both studies, attack paths are all generated 
automatically from the threat nets. Majority of them are 
successfully converted into executable code in that the 
MIM specifications can be developed. Whether the MIM 
for a threat net can be specified depends on whether the 
individual actions and conditions are programmable. 
95.1 (98/103) and 94.7 percent (72/76) of the tests can 
be fully or partially automated for Magento.  
Respectively. Although the prior work on testing with 
attack trees [18] can generate attack paths 
automatically, these attack paths are usually ambiguous 
because the attack actions and conditions originated 
from the attack trees are described in plain text. 
Transformation of the attack paths to executable tests 
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can only be done by hand. In comparison, our new 
approach allows for a high degree of automation for 
security testing. 

Both studies show that security testing with formal threat 
models is very effective. The security tests have found 
vulnerabilities in each system. They have killed 88.9 
(56/63) and 92.1 percent (35/38) of the security mutants, 
respectively. The overall vulnerability detection rate is 
91=101¼90percent. The main reason for the 
effectiveness is that the threat models are built as if the 
tester were an intelligent adversary. The tests generated 
from the threat models are directly on the target, i.e., 
vulnerabilities that can be exploited by attacks. 
Nevertheless, testing with threat models also has 
limitations. It is difficult to reveal vulnerabilities that are 
not anticipated by the threat models. 

DATA ALLOCATION PROBLEM 

Our main focus in this paper is problem in data 
allocation: the way the distributor can “intelligently” 
distribute the data to the agents to improve the chances 
of finding a guilty agent? Fig. 2 explains that the problem 
address four instances, depending on the agents 
request on data and whether “fake objects” are allowed. 
We handle two types of requests here were defined in 
Section 2: sample and explicit. The Fake objects are 
generated by the distributor that is not in set T. The fake 
objects are designed to look like real objects, and are 
distributed to agents together with T objects,(Akshy)  in 
order to increase the chances of detecting agents that 
leak data.  

 

Fig: 4 Leakage problem instances 

Fig. 4 shows that the representation of our four 
probleminstances with the names EF, EF, SF, and SF, 
where Estands for explicit requests, Sfor sample 
requests,Ffor theuse of fake objects, andFfor the case 
where fake objects arenot allowed. 

For simplicity,we assume that problem instances in E,all 
agents’ requests are done by explicitly, whilein 
theinstances S, all requests are sample. We extended 
this to handle mixed cases also, with some explicit and 
sample requests. For example how mixed case handled, 
but not elaborates further. Assume that we havetwo 
agents with requests R1¼EXPLICITðT; cond1Þ 
andR2¼SAMPLEðT0; 1Þ, whereT0 ¼EXPLICITðT; 
cond2Þ. 

Further, say thatcond1 is “state¼CA” (objects have a 
statefield). If agentU2has the same 
conditioncond2¼cond1, wecan create an equivalent 
problem with sample data requests on set T0.  That is, 
our problem will be how to distribute theCA objects to 
two agents, withR1¼SAMPLEðT0; jT0jÞand 

R2¼SAMPLEðT0; 1Þ.If insteadU2 uses 
condition“state¼NY,” we can solve two different 
problems for setsT0 and T1. In each problem, we will 
have onlyone agent. Finally, if the conditions partially 
overlap. 

For distributed data also the distributor will add fake 
objects it improves effectiveness indetecting guilty 
agents. However, fake objects may impactthe 
correctness of what agents do, so they may not 
alwaysbe allowable. 

 

Fig. 4 Guilt probability as a function of the guessing 
probabilityp(a) and the overlap between SandR2 (b)-(d). 
In all scenarios, it holds that R1\S¼SandjSj¼16. (a) 
jR2\SjjSj ¼0:5, (b) p¼0:2, (c) p¼0:5, and (d) p¼0:9. 

To detect leakage of data is not a new idea called the 
perturbing. However, in most cases, individual objects 
areperturbed, e.g., by adding random noise to 
sensitivesalaries, or adding a watermark to an image. In 
our case,we are perturbing theset of distributor objects 
by adding Fig. 4. Guilt probability as a function of the 
guessing probabilityp(a) and the overlap 
betweenSandR2 (b)-(d). In all scenarios, it holds 
thatR1\S¼SandjSj¼16. (a)JR2\SjjSj ¼0:5, (b) p¼0:2, (c) 
p¼0:5, and (d) p¼0:9. 

ALLOCATION STRATEGIES 

This section illustrates the allocation strategies those 
involved to solve exactly or approximately the scalar 
versions of (8) for the different instances presented in 
Fig. 3. Where we cannot solve the optimization problem 
there we place the approximate solutions.The proofs of 
theorems that are stated in the following sections are 
available in [14]. 

Explicit Data Requests 

In EF class problems the distributor is not allowed to add 
fake objects to the distributed data. So, the data 
allocation is fully defined by the agents’ data requests. 
Therefore, there is nothing to optimize. 

The objective values are initialized in EF problems, by 
agents’ data requests. Say, for example, that T={t1; t2} 
and there are two agents with explicit data requests 
such that R1={t1; t2} and R2={t1}. The value of the sum-
objective is in this case the distributor cannot remove or 
alter theR1 orR2 data to decrease the overlap R1\R2. 
However, say that the distributor can create one fake 
object (B=1) and both agents can receive one fake 
object (b1=b2=1). In this case, the distributor can add 
one fake object to eitherR1 orR2 to increase the 
corresponding denominator of the summation term. 
Assume that the distributor creates a fake object f and 
he gives it to agentR1. Agent U1 has nowR1={t1; t2; 
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f}andF1=ffgand the value of the sum-objective 
decreases to 1 3þ1 1¼1:33<1:5. 

If the distributor is able to create more fake objects, he 
could further improve the objective. We present in 
Algorithms 1 and 2 a strategy for randomly allocating 
fake objects. Algorithm 1 is a general “driver” that will be 
used by other strategies, while Algorithm 2 actually 
performs the random selection. We denote the 
combination of Algorithm 1 with 2 random. We will use 
e-random as our baseline in our comparisons with other 
algorithms for explicit data requests. 

Algorithm 1.Allocation for Explicit Data Requests (EF) 

Input: R1;…;Rn, cond1;…; condn, b1;…;bn, B 

Output: R1;…;Rn, F1;…;Fn 

1: R; .Agents that can receive fake objects  

2: fori¼1;…;ndo 

3: if bi >0then 

4: R R[fig 

5: Fi ; 

6: whileB>0do 

7: i SELECTAGENTðR;R1;…;RnÞ 

8: f CREATEFAKEOBJECTðRi;Fi; condiÞ 

9: RiRi [ffg 

10: Fi  Fi [ffg 

11: bi  bi                                                          1 

12: if bi ¼0then 

13: R RnfRig 

14: B B                                                          1 

EXPERIMENTAL RESULTS 

Our allocation algorithms are implemented in Python 
and we conducted experiments with simulated data 
leakage problems to evaluate their performance. In 
Section 8.1, we present the metrics we use for the 
algorithm evaluation. 

Metrics 

we presented algorithms to optimize the problem of (8) 
that is an approximation to the original optimization 
problem of (7). In this section, we evaluate the 
presented algorithms with respect to the original 
problem. In this way, we measure not only the algorithm 
performance, but also we implicitly evaluate how 
effective the approximation is. The objectives in (7) are 
thedifference functions.  

We evaluate a given allocation with the following 
objective scalarizations as metrics: Metric is the average 
of ði; jÞ values for a given allocation and it shows how 
successful the guilt detection is, on average, for this 
allocation. For example, if it 0:4, then, on average, the 
probability PrfGijRig for the actual guilty agent will be 0.4 
higher than the probabilities of non-guilty agents. Note 
that this scalar version of the original problem objective 
is analogous to the sum-objective scalarizations of the 
problem of (8). Hence, we expect that an algorithm that 

is designed  to minimize the sum-objective will 
maximize. Metric M in is the minimum ði; jÞ value and it 
corresponds to the case where agent Ui has leaked his 
data and bothUi and another agentUj have very similar 
guilt probabilities. Ifmin is small, then we will be unable 
to Identify Ui as the leaker, versus Uj.Ifm in is large, say, 
0.4, then no matter which agent leaks his data, the 
probability that he is guilty will be 0.4 higher than any 
other non-guilty agent. This metric is analogous to the 
max-objective scalarizations of the approximate 
optimization problem.  

The selected values for these metrics aredepending on 
the application. In particular, they depend on what might 
be considered high confidence that an agent is guilty. 
For instance, say that PrfGi jRig¼0:9 is enough to 
arouse our suspicion that agentUi leaked data. 
Furthermore, say that the difference between 
PrfGijRigand any otherPrfGjjRigis at least 0.3. In other 
words, the guilty agent isð0:90:6Þ=0:600%¼ 50%more 
likely to be guilty compared to the other agents. In this 
case, we may be willing to take action against Ui. In the 
rest of this section, we will use value 0.3 as an example 
of what might be desired in values. 

To calculate the guilt probabilities anddifferences, we 
use throughout this sectionp=0:5. Although not reported 
here, we did the experiments with other p values and 
observed that the relative performance of our algorithms 
and our main conclusions do not change. If 
papproaches to 0, itbecomes easier to find guilty agents 
and algorithmperformance converges. On the other 
hand, ifpapproaches1, the relative differences among 
algorithms grow sincemore evidence is needed to find 
an agent guilty. 

Explicit Requests 

In the first place, the goal of these experiments was to 
seewhether fake objects in the distributed data sets 
yieldsignificant improvement in our chances of detecting 
a 

 

Fig. 5 Evaluation of explicit data request algorithms (a) 
Average, (b) Average min 

We focused on with few objects that are shared among 
multiple agents. These are the most interesting 
scenarios, since object sharing makes it difficult to 
distinguish a guilty from non-guilty agents. A scenario 
with more objects to distribute or shared among fewer 
agents are obviously easier to handle. As far as 
scenarios with many objects to distribute and many 
over-lapping agent requests are concerned, they are 
similar to the scenarios we study, since we can map 
them to the distribution of many small subsets. 
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In our scenarios, we have a set of jTj¼10objects for 
which there are requests byn¼10 different agents. Our 
assumption is that the each agent requests 8 particular 
objects out of these 10. Hence, each object is shared, 
on average, among ¼8 agents. This scenarios yield 
more similar that the agent guilt probabilities and it is 
most important to add fake objects. We generated a 
random scenario that yielded¼0:073and min¼0:35and 
we applied the algorithms e random and e-optimal to 
distribute fake objects to the agents. Thenumber B 
varied with distributed fake objects from 2 to 20, and for 
each value of B, we ran both algorithms to allocate the 
fake objects to agents. We rane-optimalonce for each 
value of B, since it is a deterministic algorithm. Algorithm 
e-random is randomized and we ran it 10 times for each 
value of B. The results we present are the average over 
the 10 runs. Fig. 3a shows how fake object allocation 
can affect. 

There are three curves in the plot. The solid curve is 
constant and shows thevalue for an allocation without 
fake objects (totally defined by agents’ requests). The 
other two curves look at algorithms e-optimal and e-
random. The X-axis and the Y-axis shows the ratio 
between the numbers of distributed fake objects to the 
total number of objects that the agents explicitly request. 

We observe that distributing fake objects can 
significantly improve, on average, the chances of 
detecting a guilty agent. The random allocation yields > 
0.3 for approximately 10 to 15 percent fake objects. The 
use of e-optimal improvesfurther, since thee-optimal 
curve is >95 % consistently in intervals of e-random. If 
the agent dint require same number of objects the 
performance difference between the two algorithms 
would be greater, since this symmetry allows non smart 
fake object scenarios. However, we do not study more 
this issue here, since the advantages of e-optimal 
become obvious when we look at our second metric. 

The function of the fraction of fake objects. The 
insignificant improvement in random allocation shows 
the plot chances of detecting a guilty agent in the worst-
case scenario. This was expected, since e-random does 
not take into consideration due to that each agent “must” 
receive a fake object to differentiate their requests from 
other agents. On the contrary, algorithm e-optimal can 
yield min >0:3 with the allocation of approximately 10 
percent fake objects. This improvement is very important 
taking into account that without fake objects, values min 
and are close to 0.  

By allocating 10 percent of fake objects, in worst case 
also the distributor can detect a guilty agent.Without 
allocating fake objects, the distributor was unsuccessful 
in the worst case as well as in average case also. Our e-
optimal curve has two jumps due to the symmetry in our 
scenario. Our e-optimal algorithm allocates one fake 
object per each agent before allocating a second fake 
object to other agents. 

CONCLUSION 

The agents may leak sensitive data that may 
unknowingly or maliciously. And even if we want to 
handle the sensitive data perfectly in this world we could 
do watermarking each object so that we can trace its 
origins with absolute certainty. In many cases in this 
world, we must work with agents those are may not be 

100 percent trusted, and we cannotconfirmthat the 

leaked object came from an agent or from other source, 

since our data cannot admit watermarks. 

Automated generation of security test code largely 
depends on whether or not threat models can be 
formally specified, whether or not individual test inputs 
(e.g., attack actions with particular input data) and test 
oracles (e.g., for checking system states) can be 
programmed. A system that s designed for testability 
and traceability would certainly facilitate automating its 
security testing process. For example, threat models 
identified and documented in the design phase can be 
reused for security test generation. 

Access or methods designed for testability (i.e., for 
accessing system states) are useful for verification of 
security test oracles. The traceability of design-level 
functions in the implementation can facilitate the 
mapping from individual actions in threat models to 
implementation constructs. It is worth pointing out that 
the threat models in our approach can be built at 
different levels of abstraction. They do not necessarily 
specify design-level security threats. 

Software security is a complex problem; there is no 
silver bullet [17]. Different techniques are often needed 
in order to achieve a high level of security assurance. In 
particular, testing for security and static analysis for 
security are two different approaches. It is of interest to 
conduct a comparative study on their cost effectiveness. 
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