A Statistical Analysis of Bhairav-The first morning Raga

Swarima Tewari and Soubhik Chakraborty*
Department of Applied Mathematics, Birla Institute of Technology Mesra, Ranchi-835215, India
Email swarimatewari@gmail.com : soubhikc@yahoo.co.in

Abstract

A raga, in Indian classical music, is a melodic structure with fixed notes and a set of rules characterizing a particular mood conveyed by performance. Bhairav is the first raga of the morning. The present paper gives a statistical analysis of this raga structure.

Key words: Raga, melody, entropy, Simple Exponential Smoothing, statistical analysis

1. INTRODUCTION

Music, according to Swami Vivekanada, is the highest form of art and also the highest form of worship (provided you understand it!). Understanding music, both aesthetically and scientifically, becomes important. This is especially true for classical music, be it Indian or Western, since each is a discipline in its own right. While the former stresses on the emotional richness of the raga as expressed through melody and rhythm, the latter is technically stronger as, in addition to melody and rhythm, the focus is also on harmony and counterpoint. A raga is a melodic structure with fixed notes and a set of rules characterizing a particular mood conveyed by performance. Bhairav is the first raga of the morning. The present paper gives a statistical structure analysis of this raga. Readers interested in performance analysis are referred to [1] where another morning raga, namely, Ahir Bhairav, has been analyzed. Those who are interested in some general musical features of Bhairav are referred to the appendix.
Our analysis attempts to answer the following questions:-
(a) Can we find a working statistical model that can capture the essence of the Bhairav raga structure?

This question is important because the true model is both complex and unknown and that one of the strengths of statistics lies in modeling. Although statistical models are subjective and biased, we can at least make the data objective as far as possible. Also, behind these models stand some beautiful mathematical theorems and they are unbiased [2]. Moreover, the true model may contain multiple parameters related to music theory, the training and background of the artist, the genre of music and even the place of performance and the audience etc. and we do not have an explicit idea as to how exactly (in what functional form) these parameters enter the model. Statistical models are, in contrast, approximate models that use fewer parameters to capture the phenomenon generated by these complex unknown true models. Although approximate, it is possible to verify the goodness of fit of these models as well as control the errors in them.
In the light of these arguments, modeling a musical structure or a musical performance has been a coveted research area in computational musicology.

There are three fundamental steps in statistical modeling: deciding which model to fit, estimate the parameters of the chosen model and verify the goodness of fit of this model. We all know that statistics can be broadly divided into two categories: descriptive and inferential. In statistical modeling, both are involved--as we first describe a pattern (through modeling) and then infer about its validity. Two types of models are used in statistics: probability models and stochastic models. Through a probability model, we can tell the probability of a note or a note combination but cannot predict the next note. Through a stochastic model we can predict (make an intelligent guess of) the next note, given the previous.
In the present paper, a Simple Exponential Smoothing is used to capture the note progression depicting the structure of the raga Bhairav. This is a stochastic model used in time series analysis
(b) What are the probabilities of the notes used in the raga? Which note has the highest probability and which the lowest? Interestingly, in music analysis, even a note with low probability cannot be neglected as its surprise element will be more! Entropy is the measure of surprise element in any message. We can treat the realization of a note as message that can be subjected to entropy analysis.

It should be emphasized here that entropy is measuring surprise which should not be confused with meaning. If I write stuoqqzf it is meaningless but since q is coming after q which never happens in English, there is definitely the surprise element. For further literature on entropy, see [3] and the references cited therein. The use of entropy in music analysis has been successfully tried in Western music. We are motivated by the work of Snyder [4].
(c) What are the melody groups and which melody groups are how much significant?

A melody may be mathematically defined as a complete sequence of musical notes that can be regarded as a single entity [5]. Length of a melody refers to the number of notes in it. Significance of a melody is computed by multiplying its length with the number of occurrences in the entire note sequence (this formula should be used for monophonic music such as Indian classical music. Monophonic music means there is a single melody line). For polyphonic music, one may use the formula given in [6].
As a final comment, there is no unique way of analyzing music, be it structure or performance, and hence statistics and probability are likely to play important roles [7]. For a good bibliography of statistical applications in musicology see [8].

2. METHODOLOGY

Simple Exponential smoothing is used to statistically model time series data for smoothing purpose or for prediction. Although it was Holt [9] who proposed it first, it is Brown's simple exponential smoothing that is commonly used nowadays (Brown [10]). Simple exponential smoothing is achieved by the model F_{t+1} $=\alpha Y_{t}+(1-\alpha) F t, 0<\alpha<1$, to the data (t, Y_{t}) where F_{t} is the predicted against Y_{t} and initially $F_{0}=Y_{0}$. Here α is the smoothing factor. This is the only parameter in the model that needs to be determined from the data. The smoothed statistic F_{t+1} is a simple weighted average of the previous observation Y_{t} and the previous smoothed statistic Ft. The term smoothing factor applied to a here is something of a misnomer, as larger values of α actually reduce the level of smoothing, and in the limiting case with $\alpha=1$ the output series is just the same as the original series (with lag of one time unit). Simple exponential smoothing is easily applied and it produces a smoothed statistic as soon as two observations are available. Values of a close to one have less of a smoothing effect and give greater weight to recent changes in the data, while values of α closer to zero have a greater smoothing effect and are less responsive to recent changes. There is no formally correct procedure for choosing a. Sometimes the statistician's judgment is used to choose an appropriate factor. Alternatively, a statistical technique may be used to optimize the value of a. For example, the method of least squares might be used to determine the value of a for which the sum of the quantities $\left(F_{t}-Y_{t}\right)^{2}$ is minimized. (see [11] for further literature).

Entropy Analysis

Definition 1: If $P(E)$ is the probability of an event, the information content of the event E is defined as $I(E)=$ $-\log _{2}(P(E))$. Events with lower probability will signal higher information content when they occur.

Definition 2: Let X be a discrete random variable which takes values $x_{1} x_{2} x_{3} \ldots \ldots . . x_{n}$ with corresponding probabilities $p_{1} p_{2} p_{3} \ldots \ldots . p_{n}$. Since X is a random variable, the information content of X is also random which we denote by $I(X)$ (what value $I(X)$ will take depends on what value X takes). When $X=x_{j}$ which is an event with probability p_{j} then $I(X)=-\log _{2}\left(p_{j}\right)$. Accordingly, it makes sense to talk about the mean value of $I(X)$ called its entropy, denoted by $H(X)$, so that we have

$$
H(X)=-\Sigma p_{j} \log _{2}\left(p_{j}\right) \text {, where the summation is over } j=1 \text { to } n .
$$

Although only raga structure is analyzed in the present work, the ideas are applicable to performance as well. Note that for an impossible event $E, P(E)=0, I(E)=-\infty$. As negative information is ruled out, it indicates the non-feasibility of ever obtaining information about an impossible event.

Remark: We shall define $\operatorname{plog}(p)=0$ when $p=0$. The range of $\operatorname{plog}(p)$ is thus $[0, \infty)$

Getting the musical data for structure analysis

Time series is a series of observations in chronological order. Musical data can also be taken as a time series in which a musical note characterized by pitch $\mathbf{Y}_{\mathbf{t}}$ is the entry corresponding to the argument time \mathbf{t} which may mean time of clock in actual performance or just the instance at which the note is realized. In our case, since we are modeling only the structure of the raga, so the arguments will be simply the instances $1,2,3 \ldots$. The desired note sequence is given in table 1. Western Art Music readers should refer to table 2 where corresponding western notations are provided. The tonic (Sa in Indian music) is taken at natural C. Analyzing the structure of a musical piece helps in giving an approximate model that captures the note progression in general without bringing the style of a particular artist into play. On the other hand, performance analysis gives additional features like note duration and the pitch movements between notes etc [1].

In table 2, pitches of notes in three octaves are represented by corresponding integers, C of the middle octave being assigned the value 0.We are motivated by the works of Adiloglu, Noll and Obermayer [6]. The letters S, R, G, M, P, D and N stand for Sa, Sudh Re, Sudh Ga, Sudh Ma, Pa, Sudh Dha and Sudh Ni respectively. The letters r, g, m, d, n represent Komal Re, Komal Ga, Tibra Ma, Komal Dha and Komal Ni respectively. Normal type indicates the note belongs to middle octave; italics implies that the note belongs to the octave just lower than the middle octave while a bold type indicates it belongs to the octave just higher than the middle octave. The terms "Sudh", "Komal" and "Tibra" imply, respectively, natural, flat and sharp.

Table 1: Raga Bhairav Note Sequence

t	Note	$\mathrm{Y}(\mathrm{t})$	t	Note	$\mathrm{Y}(\mathrm{t})$	t	Note	$\mathrm{Y}(\mathrm{t})$	T	Note	$Y(t)$	t	Note	$\mathrm{Y}(\mathrm{t})$
1	S	0	51	M	5	101	S	12	151	d	8	201	r	1
2	r	1	52	r	1	102	D	8	152	M	5	202	r	1
3	S	0	53	S	0	103	R	13	153	P	7	203	S	0
4	d	-4	54	S	0	104	S	12	154	G	4			
5	N	-1	55	G	4	105	N	11	155	M	5			
6	S	0	56	M	5	106	D	8	156	r	1			
7	r	1	57	P	7	107	D	8	157	r	1			
8	r	1	58	d	8	108	S	12	158	r	1			
9	S	0	59	M	5	109	R	13	159	S	0			
10	d	-4	60	P	7	110	S	12	160	S	0			
11	r	1	61	d	8	111	S	12	161	G	4			
12	S	0	62	d	8	112	R	13	162	M	5			
13	N	-1	63	N	11	113	G	16	163	P	7			
14	d	-4	64	d	8	114	r	13	164	G	4			
15	P	-5	65	N	11	115	G	16	165	M	5			
16	M	-7	66	S	12	116	G	16	166	N	11			
17	P	-5	67	d	8	117	M	17	167	d	8			
18	N	-1	68	N	11	118		13	168	N	11			
19	d	-4	69	d	8	119	S	12	169	d	8			
20	N	-1	70	M	5	120	N	11	170		7			
21	S	0	71	P	7	121	S	12	171	G	4			
22	S	0	72	G	4	122	G	16	172	M	5			
23	r	1	73	M	5	123	M	17	173	P	7			
24	G	4	74		1	124			174	d	8			
25	G	4	75	G	4	125	M	17	175	N	11			
26	M	5	76	M	5	126	r	13	176	S	12			
27	r	1	77	P	7	127	M	17	177	r	13			
28	S	0	78	M	5	128	r	13	178	S	12			
29	d	-4	79	d	8	129	r	13	179	d	8			
30	N	-1	80	M	5	130	S	12	180	N	11			
31	S	0	81	P	7	131	d	8	181	S	12			

Table 2: Numbers representing pitches of musical notes in three octaves [6]

C	Db	D	Eb	E	F	$\mathrm{F} \#$	G	Ab	A	Bb	B	Western notation
S	r	R	g	G	M	m	P	d	D	n	N	Notes (lower octave)
-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	Numbers for Pitch
S	r	R	g	G	M	m	P	d	D	n	N	Notes (middle octave)
0	1	2	3	4	5	6	7	8	9	10	11	Numbers for Pitch
S	r	R	g	G	M	m	P	d	D	n	N	Notes (higher octave)
12	13	14	15	16	17	18	19	20	21	22	23	Numbers for Pitch

3. STATISTICAL ANALYSIS

Simple Exponential Smoothing fitted to Bhairav note sequence

The fit is found to be explaining the note progression well enough with smoothing factor 0.762839 . Should such a model work well for the other ragas also, it is of interest to see how the smoothing factor varies. Here is a summary of our results obtained using Minitab Statistical package version 16:-
Single Exponential Smoothing for C1

* NOTE * Zero values of Yt exist; MAPE calculated only for non-zero Y

Data C1
Length 20
Smoothing Constant
Alpha 0.762839
Accuracy Measures
MAPE 48.1267
MAD 1.9867
MSD 5.5180
Time

C1	Smooth	Predict	Error
0	0.0327	0.1380	-0.13796
1	0.7706	0.0327	0.96728
0	0.1828	0.7706	-0.77060
-4	-3.0080	0.1828	-4.18276
-1	-1.4762	-3.0080	2.00802
0	-0.3501	-1.4762	1.47622
1	0.6798	-0.3501	1.35010
1	0.9241	0.6798	0.32019
0	0.2192	0.9241	-0.92406
-4	-2.9994	0.2192	-4.21915
1	0.0515	-2.9994	3.99938
0	0.0122	0.0515	-0.05150
-1	-0.7599	0.0122	-1.01221
-4	-3.2316	-0.7599	-3.24006
-5	-4.5806	-3.2316	-1.76841
-7	-6.4262	-4.5806	-2.41940
-5	-5.3382	-6.4262	1.42621
-1	-2.0289	-5.3382	4.33824

Council for Innovative Research
www.cirworld.com

International Journal of Computers \& Technology Volume 4 No. 2, March-April, 2013, ISSN 2277-3061

19	-4	-3.5325	-2.0289	-1.97114
20	-1	-1.6006	-3.5325	2.53252
21	0	-0.3796	-1.6006	1.60061
22	0	-0.0900	-0.3796	0.37960
23	1	0.7415	-0.0900	1.09003
24	4	3.2272	0.7415	3.25851
25	4	3.8167	3.2272	0.77279
26	5	4.7194	3.8167	1.18328
27	1	1.8821	4.7194	-3.71937
28	0	0.4464	1.8821	-1.88209
29	-4	-2.9455	0.4464	-4.44636
30	-1	-1.4614	-2.9455	1.94550
31	0	-0.3466	-1.4614	1.46140
32	4	2.9692	-0.3466	4.34659
33	5	4.5184	2.9692	2.03084
34	7	6.4115	4.5184	2.48163
35	11	9.9118	6.4115	4.58855
36	8	8.4534	9.9118	
37	11	10.3960	8.4534	54660
38	8	8.5682	10.3960	3960
39	7	7.3719	. 5682	-1.5682
40	4	4.7997	7.3719	-3.37193
41	5	4.9525	4.7997	0.20031
42	7	6.5144	4.9525	2.04751
43	4	4.5963	6.5144	-2.51441
44	5	4.9043	4.5963	0.40368
45	8	7.2658	4.9043	3.09574
46	7	7.0630	7.265	-0.26581
47	8	7.7778	7.0630	0.93696
48	5	5.6588	7.7778	-2.77779
49	7	6.6819	5.6588	1.34122
50	4	4.6360	6.6819	-2.68192
51	5	4.9137	4.6360	0.36396
52	1	1.9282	4.9137	-3.91368
53	0	0.4573	1.9282	-1.92817
54	0	0.1085	0.4573	-0.45729
55	4	3.0771	0.1085	3.89155
56	5	4.5440	3.0771	1.92292
57	7	6.4175	4.5440	2.45604
58	8	7.6247	6.4175	1.58248
59	5	5.6225	7.6247	-2.62470
60	7	6.6733	5.6225	1.37753
61	8	7.6854	6.6733	1.32669

62	8	7.9254	7.6854	0.31464
63	11	10.2708	7.9254	3.07462
64	8	8.5385	10.2708	-2.27082
65	11	10.4162	8.5385	2.46145
66	12	11.6244	10.4162	1.58376
67	8	8.8596	11.6244	-3.62439
68	11	10.4924	8.8596	2.14044
69	8	8.5911	10.4924	-2.49237
70	5	5.8517	8.5911	-3.59109
71	7	6.7277	5.8517	1.14833
72	4	4.6469	6.7277	-2.72766
73	5	4.9163	4.6469	0.35311
74	1	1.9288	4.9163	-3.91626
75	4	3.5088	1.9288	2.07122
76	5	4.6463	3.5088	1.49121
77	7	6.4418	4.6463	2.35366
78	5	5.3419	6.4418	1.44181
79	8	7.3696	5.3419	6580
80	5	5.5620	7.3696	2.36961
81	7	6.6590	5.562	1.4380
82	4		6.6590	-2.6589
83	5	4.9124	4.6306	0.36940
84	7	6.5049	4.9124	2.08761
85	8	7.6454	6.5049	1.49510
86	11	10.2044	7.6454	3.35458
87	8	8.5228	10.2044	-2.20443
88	7	7.3611	8.5228	-1.52280
89	4	4.7971	36	-3.36115
90	5	4.9519	79	0.20287
91	8	7.2771	4.9519	3.04811
92	7	7.0657	7.2771	-0.27711
93	8	7.7784	7.0657	0.93428
94	11	10.2360	7.7784	3.22157
95	12	11.5816	10.2360	1.76403
96	13	12.6636	11.5816	1.41836
97	13	12.9202	12.6636	0.33638
98	12	12.2182	12.9202	-0.92022
99	11	11.2889	12.2182	-1.21824
100	8	8.7800	11.2889	-3.28892
101	12	11.2363	8.7800	3.22000
102	8	8.7675	11.2363	-3.23634
103	13	11.9962	8.7675	4.23247
104	12	11.9991	11.9962	0.00377

105	11	11.2369	11.9991	-0.99910
106	8	8.7677	11.2369	-3.23695
107	8	8.1821	8.7677	-0.76768
108	12	11.0945	8.1821	3.81794
109	13	12.5481	11.0945	1.90546
110	12	12.1300	12.5481	-0.54810
111	12	12.0308	12.1300	-0.12999
112	13	12.7702	12.0308	0.96917
113	16	15.2340	12.7702	3.22985
114	13	13.5298	15.2340	-2.23401
115	16	15.4142	13.5298	2.47018
116	16	15.8611	15.4142	0.58583
117	17	16.7299	15.8611	1.13894
118	13	13.8846	16.7299	-3.72989
119	12	12.4469	13.8846	-1.88458
120	11	11.3432	12.4469	-1.44695
121	12	11.8442	11.3432	0.65684
122	16	15.0144	11.8442	4.15578
123	17	16.5291	15.0144	9855
124	16	16.1255	16.529	. 529
125	17	16.7926	16.1255	0.87452
126	13	13.8995	16.7926	-3.79260
127	17	16.2647	13.8995	3.10055
128	13	13.7743	16.2647	-3.26467
129	13	13.1836	13.7743	-0.77425
130	12	12.2807	13.1836	-1.18362
131	8	9.0152	12.2807	-4.28071
132	11	10.5293		1.98479
133	12	11.6512	10.5293	1. 47071
134	8	8.8659	11.6512	-3.65121
135	13	12.0196	8.8659	4.13408
136	12	12.0046	12.0196	-0.01956
137	12	12.0011	12.0046	-0.00464
138	11	11.2374	12.0011	-1.00110
139	8	8.7678	11.2374	-3.23742
140	7	7.4192	8.7678	-1.76779
141	4	4.8109	7.4192	-3.41925
142	5	4.9552	4.8109	0.18909
143	8	7.2779	4.9552	3.04484
144	7	7.0659	7.2779	-0.27788
145	8	7.7785	7.0659	0.93410
146	11	10.2360	7.7785	3.22153
147	12	11.5816	10.2360	1.76402

Council for Innovative Research www.cirworld.com

International Journal of Computers \& Technology Volume 4 No. 2, March-April, 2013, ISSN 2277-3061

148	11	11.1379	11.5816	-0.58164
149	8	8.7442	11.1379	-3.13794
150	7	7.4137	8.7442	-1.74420
151	8	7.8609	7.4137	0.58635
152	5	5.6785	7.8609	-2.86094
153	7	6.6866	5.6785	1.32150
154	4	4.6372	6.6866	-2.68659
155	5	4.9139	4.6372	0.36285
156	1	1.9282	4.9139	-3.91395
157	1	1.2201	1.9282	-0.92823
158	1	1.0522	1.2201	-0.22014
159	0	0.2495	1.0522	-1.05221
160	0	0.0592	0.2495	-0.24954
161	4	3.0654	0.0592	3.94082
162	5	4.5412	3.0654	1.93461
163	7	6.4169	4.5412	2.45881
164	4	4.5732	6.4169	-2.41687
165	5	4.8988	4.5732	126
166	11	9.5530	4.8988	1
167	8	8.3683	9.5530	. 5530
168	11	10.3759	8.3683	2.631
169	8	8.5635	10.3759	-2.37587
170	7	7.3708	8.5635	-1.56346
171	4	4.7994	7.3708	-3.37079
172	5	4.9524	4.7994	0.20058
173	7	6.5144	4.9524	2.04757
174	8	7.6477	6.5144	1.48560
175	11	10.2050	7.6477	3.35233
176	12	11.5743	10.2050	1.79504
177	13	12.6619	11.5743	1.42571
178	12	12.1570	12.6619	-0.66188
179	8	8.9859	12.1570	-4.15697
180	11	10.5223	8.9859	2.01413
181	12	11.6496	10.5223	1.47767
182	13	12.6797	11.6496	1.35045
183	12	12.1612	12.6797	-0.67973
184	16	15.0896	12.1612	3.83880
185	17	16.5469	15.0896	1.91041
186	13	13.8412	16.5469	-3.54693
187	12	12.4367	13.8412	-1.84119
188	12	12.1036	12.4367	-0.43666
189	11	11.2617	12.1036	-1.10356
190	8	8.7736	11.2617	-3.26172

191	7	7.4206	8.7736	-1.77355
192	8	7.8626	7.4206	0.57938
193	5	5.6789	7.8626	-2.86259
194	7	6.6867	5.6789	1.32111
195	4	4.6372	6.6867	-2.68669
196	5	4.9140	4.6372	0.36282
197	8	7.2681	4.9140	3.08605
198	7	7.0636	7.2681	-0.26811
199	4	4.7266	7.0636	-3.06359
200	5	4.9352	4.7266	0.27344
201	1	1.9333	4.9352	-3.93515
202	1	1.2213	1.9333	-0.93326
203	0	0.2897	1.2213	-1.22133

Single Exponential Smoothing Plot for C1

Fig. 1: Simple Exponential Smoothing captures the Bhairav note sequence

Residual Plots for C1

Fig. 2: Residual Plots

Entropy Analysis of Bhairav

Table 3 Information content of notes of Bhairav with varying probability

Note Occurrence \mathbf{x}	Information Content $=-\log _{2}(\mathbf{x} / \mathbf{2 0 3})$
$\mathrm{S}=35$	$\mathrm{I}(\mathrm{S})=2.5361$
$\mathrm{r}=27$	$\mathrm{I}(\mathrm{r})=2.9104$
$\mathrm{G}=24$	$\mathrm{I}(\mathrm{G})=3.0804$
$\mathrm{M}=30$	$\mathrm{I}(\mathrm{M})=2.7584$
$\mathrm{P}=25$	$\mathrm{I}(\mathrm{P})=3.0215$
$\mathrm{~d}=38$	$\mathrm{I}(\mathrm{d})=2.4174$
$\mathrm{~N}=24$	$\mathrm{I}(\mathrm{N})=3.0804$

Also, mean entropy of Bhairav notes ignoring octave $=2.7851$

Melody analysis

Table 4 with reference to table 1 gives the melody groups
Table 4 : Bhairav Melody Groups

Note Sr.No.	Group No.	Length
1-3	G1	3
4-6	G2	3
7-9	G3	3
10-15	G4	6
16-27	G5	12
28-31	G6	4
32-34	G7	3
35-39	G8	5
40-42	G9	3
43-46	G10	4
47-53	G11	7
54-57	G12	
58-60	G13	3
61-67	G14	
68-71	G15	4
72-74	G16	3
75-77	G17	3
78-81	G18	4
82-85	G19	4
86-88	G20	3
89-92	G21	4
93-98	G22	
99-104	G23	
105-110	G24	6
111-115	G25	5
116-119	G26	4
120-123	G27	4
124-126	G28	3
127-130	G29	4
131-136	G30	6
137-140	G31	4
141-144	G32	4
145-147	G33	3
148-159	G34	12
160-163	G35	4
164-170	G36	7

$171-178$	G37	8
$179-183$	G38	5
$184-187$	G39	4
$188-191$	G40	4
$192-194$	G41	3
$195-198$	G42	4
$199-203$	G43	5

Table 5 gives the significance of the melody groups.
Table 5: Melody groups and their significance

4. DISCUSSION

Interpretations from figures 1 and 2:-

The random pattern of the residuals (fig. 2) together with the closeness of smoothed data with the observed one (fig. 1) justifies the Simple Exponential Smoothing. A detailed discussion of the findings is given next.
MAPE (Mean Absolute Percent Error) - measures the accuracy of fitted time series values. It expresses accuracy as a percentage.
MAD (Mean Absolute Deviation) - measures the accuracy of fitted time series values. It expresses accuracy in the same units as the data, which helps conceptualize the amount of error.
MSD (Mean Squared Deviation) - measures the accuracy of fitted time series values. MSD is always computed using the same denominator (the number of forecasts) regardless of the model, so one can compare MSD values across models and hence compare the accuracy of two different models.
For all three measures, smaller values generally indicate a better fitting model. In case we fit other models to the same data, it is of interest to compare the corresponding MAPE, MAD and MSD values. This is reserved as a rewarding future work.

The normal probability graph plots the residuals versus their expected values when the distribution is normal. The residuals from the analysis should be normally distributed. In practice, for data with a large number of observations, moderate departures from normality do not seriously affect the results.
The normal probability plot of the residuals should roughly follow a straight line. One can use this plot to look for the following:
This pattern... Indicates...

Not a straight line	Nonnormality
Curve in the tails	Skewness
A point far away from the line	An outlier

An unidentified variable

As is clear from fig. 2, the plot roughly follows a straight line.

The next graph plots the residuals versus the fitted values. The residuals should be scattered randomly about zero. One can use this plot to look for the following:

This pattern...
Indicates...
Fanning or uneven spreading of
Non-constant variance residuals across fitted values

Curvilinear

A missing higher-order term

A point far away from zero
An outlier
As is clear from fig. 2, there are more residuals on the positive side than the negative side. We may make transformations to stabilize variance by working on some function of the response rather than the response itself although its musical meaningfulness is difficult to justify and hence omitted.

A histogram of the residuals shows the distribution of the residuals for all observations. One can use the histogram as an exploratory tool to learn about the following characteristics of the data:

Typical values, spread or variation, and shape
\square Unusual values in the data
The histogram of the residuals should be bell-shaped. One can use this plot to look for the following:
This pattern...
Long tails

Skewness

A bar far away from the other bars An outlier
Because the appearance of the histogram can change depending on the number of intervals used to group the data, one should use the normal probability plot and goodness-of-fit tests to assess whether the residuals are normal. We have already given the normal probability plot for residuals.

The graph "residuals versus order" plots the residuals in the order of the corresponding observations. The plot is useful when the order of the observations may influence the results, which can occur when data are collected in a time sequence (as in our case) or in some other sequence, such as geographic area. This plot can be particularly helpful in a designed experiment in which the runs are not randomized.
The residuals in the plot should fluctuate in a random pattern around the center line as in fig. 2. One can examine the plot to see if any correlation exists between error terms that are near each other. Correlation among residuals may be signified by:
\square An ascending or descending trend in the residuals
$\square \quad$ Rapid changes in signs of adjacent residuals
Remark:
Simple exponential smoothing is useful when (i) there is no trend (ii) there is no seasonal variation (iii) there is no missing value (iv) we want short term forecast.

From the entropy analysis, we find that $I(G)=I(N)>I(P)>I(r)>I(M)>I(S)>I(d)$
Finally, from the melody analysis, we find that 64 is numerically the highest melody significance measure and that it is attained by a good number of melody groups.

4. CONCLUSION

Music analysis, broadly speaking, can be divided into commonality analysis ("what is common?") and diversity analysis ("what is special?"). A statistician is essentially a commonality expert in the sense that the philosophy of statistics is to summarize and average and make inferences which are true on the whole and which describe a process rather than an individual entity. Fortunately, there are issues in music where this traditional mindset of the statistician finds a support. For example, a collection of recordings of the same artist if analyzed statistically will definitely reflect certain common features having to do with the style of the artist. In our analysis, we found different melody groups sharing the same significance measure (commonality). But the statistician must realize that every single music piece will have something special to offer.

Thus the smoothing factor of 0.762839 is typical of this raga structure that was taken from a standard text (Dutta [12]) and hence is a diversity for that text. Another raga from the same text can have a similar smoothing factor but if it comes close, it is of interest to seek musical commonality in the ragas concerned. On the other hand, the particular modeling we have done in this paper may not in general hold good for all raga structures. Similar comments can be made about entropy analysis. There may other ragas that use the same notes but their information contents would be, in general, quite different. Hence the entropy analysis also reflects a diversity. It appears that diversity is more important than commonality in music analysis. Fortunately, there are issues even in statistics where the statistician does take an individual observation seriously-as in the case of an outlier or influential observation for example. There is a whole literature in statistics to deal with outliers. When an outlier comes, the traditional philosophy of summarizing and averaging is brushed aside. The statistician goes after this individual influential observation exploring how it came and what it signifies. The case of outliers is an exception in statistics. It is the very grammar in music as music is a work of art! If the statistician can use his experience and mindset of handling outliers (regarding every musical performance or structure as a musical outlier) alongwith his commonality expertise, he can be a very effective music analyst.** That said, we close the paper.
**Remark: We wholeheartedly appreciate a similar point of view expressed very strongly by Nettheim [8].

APPENDIX:

Table 6: Musical features of raga Bhairav

N.B.

Suresh Chandra Chakraborty, a well known musicologist, has asserted that Bhairav although called the Adi-raga being the first raga of the morning is not older than the raga Bhairavi. The "Komal Re" (r) of Bhairav is actually ati komal (a microtone whose pitch is between 0 and 1 in our notation but we have taken it as 1 for simplicity) and andolita (oscillating) in a way that helps create the raga mood. The "Komal Dha" (d) is also andolita but only komal, not ati komal. In performance, it is necessary to give a meend (glide) from M to r and also from S or N to $\mathrm{d}[13]$.

REFERENCES

[1] Chakraborty S, Ranganayakulu R, Chauhan S, Solanki SS, Mahto K (Winter 2009) A Statistical Analysis of Raga Ahir Bhairav. Journal of Music and Meaning, Vol. 8, sec. 4, http://www.musicandmeaning.net/issues/showArticle.php?artID=8.4
[2] Klemens, B., (2008) Modeling with data : tools and techniques for scientific computing, Princeton University Press, Princeton, NJ
[3] Applebaum, D., (1996) Probability and information: An integrated approach, Cambridge University Press, chapter 6
[4] Snyder, J. L., (1990) Entropy as a measure of musical style: the influence of a priori Assumptions, Music Theory Spectrum, 12, 121-160
[5] Chakraborty, S., Krishnapryia, K. Loveleen, Chauhan, S., Solanki, S. S. and Mahto, K. (2010) Melody Revisited: Tips from Indian Music Theory, International Journal of Computational Cognition, Vol. 8, No. 3, 2010, 26-32
[6] Adiloglu, K., Noll, T. and Obermayer, K., (2006) A Paradigmatic Approach to Extract the Melodic Structure of a Musical Piece, Journal of New Music Research, Vol. 35(3), 221-236
[7] Beran, J. and Mazzola, G., (1999) Analyzing Musical Structure and Performance A Statistical Approach, Statistical Science, vol. 14, no. 1, p. 47-79
[8] Nettheim, N., (1997), A Bibliograhy of Statistical Applications in Musicology, Musicology Australia, Vol. 20, 94-106
[9] Holt, Charles C (1957) "Forecasting Trends and Seasonal by Exponentially Weighted Averages". Office of Naval Research Memorandum 52. reprinted in Holt, Charles C. (January-March 2004). "Forecasting Trends and Seasonal by Exponentially Weighted Averages". International Journal of Forecasting 20 (1): 5-10. doi:10.1016/j.ijforecast.2003.09.015
[10] Brown, Robert Goodell (1963) Smoothing Forecasting and Prediction of Discrete Time Series. Englewood Cliffs, NJ: Prentice-Hall
[11] http://en.wikipedia.org/wiki/Exponential_smoothing (accessed on 28th Jan,.2013)
[12] Dutta, D., Sangeet Tattwa (Pratham Khanda) (2006), Brati Prakashani, $5^{\text {th }}$ ed, (Bengali)
[13] Chakraborty, S. C., (1965) Raga Rupayan [Bengali], General Printers \& Pub. Pvt. Ltd, Kolkata

